Advertisement

Beyond Euler-Cauchy Continua: The structure of contact actions in N-th gradient generalized continua: a generalization of the Cauchy tetrahedron argument

  • Francesco dell’Isola
  • Pierre Seppecher
  • Angela Madeo
Part of the CISM Courses and Lectures book series (CISM, volume 535)

Abstract

The most general and elegant axiomatic framework on which continuum mechanics can be based starts from the Principle of Virtual Works (or Virtual Power). This Principle, which was most likely used already at the very beginning of the development of mechanics (see e.g. Benvenuto (1981), Vailati (1897), Colonnetti (1953), Russo (2003)), became after D’Alembert the main tool for an efficient formulation of physical theories. Also in continuum mechanics it has been adopted soon (see e.g. Benvenuto (1981), Salençon (1988), Germain (1973), Berdichevsky (2009), Maugin (1980), Forest (2006)). Indeed the Principle of Virtual Works becomes applicable in continuum mechanics once one recognizes that to estimate the work expended on regular virtual displacement fields of a continuous body one needs a distribution (in the sense of Schwartz). Indeed in the present paper we prove, also by using concepts from differential geometry of embedded Riemanniam manifolds, that the Representation Theorem for Distributions allows for an effective characterization of the contact actions which may arise in N-th order strain-gradient multipolar continua (as defined by Green and Rivlin (1964)), by univocally distinguishing them in actions (forces and n-th order forces) concentrated on contact surfaces, lines (edges) and points (wedges). The used approach reconsiders the results found in the pioneering papers by Green and Rivlin (1964)–(1965), Toupin (1962), Mindlin (1964)–(1965) and Casal (1961) as systematized, for second gradient models, by Paul Germain (1973). Finally, by recalling the results found in dell’Isola and Seppecher (1995)–(1997), we indicate how Euler-Cauchy approach to contact actions and the celebrated tetrahedron argument may be adapted to N-th order strain-gradient multipolar continua.

Keywords

Contact Force Regularity Assumption Gradient Theory Gradient Continuum Virtual Power 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. [1]
    R. K. Abu Al-Rub Modeling the interfacial effect on the yield strength and flow stress of thin metal films on substrates Mechanics Research Communications 35 65–72 (2008)MathSciNetCrossRefGoogle Scholar
  2. [2]
    R. Abeyaratne, N. Triantafyllidis, An investigation of localization in a porous elastic material using homogenization theory. Trans. ASME J. Appl. Mech. 51, no. 3, 481–486 (1984)MathSciNetCrossRefGoogle Scholar
  3. [3]
    R. Abraham, J.E. Marsden, and T. Ratiu, ‘Manifolds,Tensor Analysis, and Applications’, Applied Mathematical Sciences, 75, Springer Verlag, (1988).Google Scholar
  4. [4]
    Alibert, J.-J., Seppecher, P., dell’Isola, F. Truss modular beams with deformation energy depending on higher displacement gradients. Math. Mech. Solids 8, no. 1, 51–73 (2003).MathSciNetzbMATHCrossRefGoogle Scholar
  5. [5]
    V.I. Arnold, Mathematical Methods of Classical Mechanics Springer Verlag (1979)–(1989)Google Scholar
  6. [6]
    C. Banfi, A. Marzocchi and A. Musesti On the principle of virtual powers in continuum mechanics Ricerche di Matematica 55: 299–310 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  7. [7]
    S. Bardenhagen, N. Triantafyllidis Derivation of higher order gradient continuum theories in 2,3-D nonlinear elasticity from periodic lattice models. J. Mech. Phys. Solids 42, no. 1, 111–139 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  8. [8]
    E. Benvenuto La scienza delle costruzioni e il suo sviluppo storico Sansoni, Firenze, (1981)Google Scholar
  9. [9]
    V. Berdichevsky, Variational Principles of Continuum Mechanics, Springer, (2009).Google Scholar
  10. [10]
    J.L. Bleustein, A note on the boundary conditions of Toupin’s strain-gradient theory International Journal of Solids and Structures, 3(6), pp. 1053–1057. (1967)CrossRefGoogle Scholar
  11. [11]
    B. Bourdin, G.A. Francfort and J.-J. Marigo, The variational approach to fracture, J. Elasticity, 91, 1–3, 2008, 1–148 (also appeared as a Springer book: ISBN: 978-1-4020-6394-7).MathSciNetCrossRefGoogle Scholar
  12. [12]
    J.L. Borges, Pierre Menard Author of the Quixote (translation by James E. Irby) http://www.coldbacon.com/writing/borgesquixote.htmlGoogle Scholar
  13. [13]
    P. Casal, et H. Gouin, ‘Relation entre l’équation de l’énergie et l’équation du mouvement en théorie de Korteweg de la capillaritè’, C. R. Acad. Sci. Paris, t. 300, Série II, N. 7 231–233 (1985).MathSciNetzbMATHGoogle Scholar
  14. [14]
    P. Casal, ‘La théorie du second gradient et la capillarité’, C. R. Acad. Sci. Paris, t. 274, Série A 1571–1574 (1972).Google Scholar
  15. [15]
    P. Casal, La capillarité interne, Cahier du groupe Français de rhéologie, CNRS VI, 3, pp. 31–37 (1961).Google Scholar
  16. [16]
    P. Casal, et H. Gouin, ‘Relation entre l’équation de l’énergie et l’équation du mouvement en théorie de Korteweg de la capillarité’, C. R. Acad. Sci. Paris, t. 300, Série II, N. 7 231–233 (1985).MathSciNetzbMATHGoogle Scholar
  17. [17]
    A. Carcaterra, A. Akay, I.M. Koc Near-irreversibility in a conservative linear structure with singularity points in its modal density Journal of the Acoustical Society of America 1194 2141–2149 (2006)CrossRefGoogle Scholar
  18. [18]
    A. Carcaterra Ensemble energy average and energy flow relationships for nonstationary vibrating systems Journal of Sound and Vibration 288,3, 751–790 (2005)CrossRefGoogle Scholar
  19. [19]
    F. Collin, R. Chambon and R. Charlier A finite element method for poro mechanical modelling of geotechnical problems using local second gradient models. Int. J. Num. Meth. Engng. 65, 1749–1772 (2006).MathSciNetzbMATHCrossRefGoogle Scholar
  20. [20]
    G. Colonnetti, Scienza delle costruzioni, Torino, Edizioni scientifiche Einaudi, 3o ed., (1953–57).Google Scholar
  21. [21]
    E. Cosserat and F. Cosserat Note sur la théorie de l’action euclidienne. Paris, Gauthier-Villars, (1908).Google Scholar
  22. [22]
    E. Cosserat, and F. Cosserat Sur la Théorie des Corps Déformables, Herman, Paris, (1909).Google Scholar
  23. [23]
    N. Daher, G. A. Maugin Virtual power and thermodynamics for electromagnetic continua with interfaces. J. Math. Phys. 27, no. 12, 3022–3035 (1986).MathSciNetzbMATHCrossRefGoogle Scholar
  24. [24]
    N. Daher, G. A. Maugin The method of virtual power in continuum mechanics. Application to media presenting singular surfaces and interfaces. Acta Mech. 60, no. 3–4, 217–240, (1986)MathSciNetzbMATHCrossRefGoogle Scholar
  25. [25]
    F. dell’Isola and W. Kosinski “Deduction of thermodynamic balance laws for bidimensional nonmaterial directed continua modelling interphase layers,” Archives of Mechanics, vol. 45, pp. 333–359 (1993).MathSciNetGoogle Scholar
  26. [26]
    F. dell’Isola and P. Seppecher, “The relationship between edge contact forces, double force and interstitial working allowed by the principle of virtual power”, Comptes Rendus de l’Academie de Sciences-Serie IIb: Mecanique, Physique, Chimie, Astronomie, vol. 321,, pp. 303–308 (1995).Google Scholar
  27. [27]
    F. dell’Isola and P. Seppecher, “Edge Contact Forces and Quasi-Balanced Power”, Meccanica, vol. 32, pp. 33–52 (1997)MathSciNetCrossRefGoogle Scholar
  28. [28]
    F. dell’Isola, G. Sciarra, and S. Vidoli, Generalized Hooke’s law for isotropic second gradient materials. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 465, no. 2107, 2177–2196 (2009)MathSciNetCrossRefGoogle Scholar
  29. [29]
    F. dell’Isola, G. Sciarra, R. C.Batra, Static deformations of a linear elastic porous body filled with an inviscid fluid. Essays and papers dedicated to the memory of Clifford Ambrose Truesdell III. Vol. III. J. Elasticity 72, no. 1—3, 99–120 (2003)MathSciNetCrossRefGoogle Scholar
  30. [30]
    F. dell’Isola, M. Guarascio, K. Hutter A variational approach for the deformation of a saturated porous solid. A secondgradient theory extending Terzaghi’s effective stress principle. Arch. Appl. Mech. 70, 323–337 (2000)CrossRefGoogle Scholar
  31. [31]
    A. Di Carlo e A. Tatone (Iper-)Tensioni & Equi-Potenza AIMETA’01 XV Congresso AIMETA di Meccanica Teorica e Applicata 15th AIMETA Congress of Theoretical and Applied Mechanics 2001Google Scholar
  32. [32]
    M. Degiovanni, A. Marzocchi and A. Musesti Edge-force densities and second-order powers Annali di Matematica 185, 81–103 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  33. [33]
    M. Degiovanni, A. Marzocchi, and A. Musesti, A., ‘Cauchy fluxes associated with tensor fields having divergence measure’, Arch. Ration. Mech. Anal. 147 197–223 (1999).MathSciNetzbMATHCrossRefGoogle Scholar
  34. [34]
    J.E. Dunn, and J. Serrin, ‘On the thermomechanics of interstitial working’, Arch. Rational Mech. Anal., 88(2) 95–133 (1985).MathSciNetzbMATHCrossRefGoogle Scholar
  35. [35]
    J.E. Dunn ‘Interstitial working and a non classical continuum thermodynamics’, In: J. Serrin (Ed), New Perspectives in Thermodynamics, Springer Verlag, Berlin, pp. 187–222 (1986).CrossRefGoogle Scholar
  36. [36]
    G. E. Exadaktylos, I. Vardoulakis, Microstructure in linear elasticity and scale effects: a reconsideration of basic rock mechanics and rock fracture mechanics, Tectonophysics, Volume 335, Issues 1–2, 25 June 2001, Pages 81–109CrossRefGoogle Scholar
  37. [37]
    A.C. Fannjiang, Y.S. Chan, and G.H. Paulino Strain gradient elasticity for antiplane shear cracks: a hypersingular integrodifferential equation approach. SIAM J. Appl. Math. 62, no. 3, 1066–1091 (electronic) (2001/02).MathSciNetCrossRefGoogle Scholar
  38. [38]
    S. Forest, M. Amestoy, S. Cantournet, G. Damamme, S. Kruch Mécanique des Milieux Continus ECOLE DES MINES DE PARIS Année 2005–2006Google Scholar
  39. [39]
    S. Forest Mechanics of generalized continua: construction by homogenization J.Phys. IV France 8 1998Google Scholar
  40. [40]
    S. Forest Homogenization methods and the mechanics of generalized continua-part 2 Theoretical and applied Mechanics vol. 28–29, pp. 113–143 (2002)MathSciNetGoogle Scholar
  41. [41]
    S. Forest. Milieux continus généralisés et matériaux hétérogènes. Les Presses de l’Ecole des Mines de Paris, ISBN: 2-911762-67-3, 200 pages, (2006).Google Scholar
  42. [42]
    S. Forest. Generalized continua. In K.H.J. Buschow, R.W. Cahn, M.C. Flemings, B. Ilschner, E.J. Kramer, and S. Mahajan, editors, Encyclopedia of Materials: Science and Technology updates, pages 1–7. Elsevier, Oxford, (2005).CrossRefGoogle Scholar
  43. [43]
    S. Forest and M. Amestoy. Mécanique des milieux continus. Cours de l’Ecole des Mines de Paris n25e6 3121, 264 pages, (2004, 2005, 2006).Google Scholar
  44. [44]
    S. Forest. Milieux continus généralisés et matériaux hétérog`enes. Mémoire d’habilitation à diriger des recherches, (2004).Google Scholar
  45. [45]
    E. Fried and M.E. Gurtin, Tractions, balances, and boundary conditions for nonsimple materials with application to liquid flow at small length scales. Archive for Rational Mechanics and Analysis 182, 513–554 (2006).MathSciNetzbMATHCrossRefGoogle Scholar
  46. [46]
    E. Fried and M.E. Gurtin, A continuum mechanical theory for turbulence: a generalized Navier-Stokes-equation with boundary conditions. Theoretical and Computational Fluid Dynamics 182, 513–554 (2008)MathSciNetGoogle Scholar
  47. [47]
    P. Germain Cours de M`ecanique des Milieux Continus, tome I, Masson, Paris, (1973).Google Scholar
  48. [48]
    P. Germain La méthode des puissances virtuelles en mécanique des milieux continus. Première partie. Théorie du second gradient. J. Mécanique 12, 235–274 (1973)MathSciNetzbMATHGoogle Scholar
  49. [49]
    P. Germain The method of virtual power in continuum mechanics. Part 2: Microstructure. SIAM J. Appl. Math. 25, 556–575 (1973)MathSciNetzbMATHCrossRefGoogle Scholar
  50. [50]
    P. Germain ‘Sur l’application de la méthode des puissances virtuelles en mécanique des milieux continus’, C. R. Acad. Sci. Paris Série A-B 274 A1051-A1055.(1972)Google Scholar
  51. [51]
    A. E. Green, R. S. Rivlin, Multipolar continuum mechanics, Arch. Rational Mech. Anal., 17, 113–147 (1964)MathSciNetzbMATHCrossRefGoogle Scholar
  52. [52]
    A. E. Green, R. S. Rivlin, Simple force and stress multipoles, Arch. Rational Mech. Anal.,16, 325–353 (1964)MathSciNetzbMATHGoogle Scholar
  53. [53]
    A. E. Green, R. S. Rivlin,. On Cauchy’s equations of motion, Z. Angew. Math. Phys.,ZAMP. 15,, 290–292, (1964)MathSciNetzbMATHCrossRefGoogle Scholar
  54. [54]
    A. E. Green, R. S. Rivlin Multipolar continuum mechanics: Functional theory. I, Proc. Roy. Soc. Ser. A, 284, 303–324 (1965)MathSciNetCrossRefGoogle Scholar
  55. [55]
    M.E. Gurtin, A gradient theory of single-crystal viscoplasticity that accounts for geometrically necessary dislocations, International Journal of Plasticity 50, 809–819 (2002).MathSciNetGoogle Scholar
  56. [56]
    N. Kirchner, P. Steinmann, On the material setting of gradient hyperelasticity. (English summary) Math. Mech. Solids 12 (2007)Google Scholar
  57. [57]
    O.D. Kellogg, Foundations of Potential Theory Springer, Berlin, (1929)Google Scholar
  58. [58]
    W. Kosinski, Field Singularities and Wave Analysis in Continuum Mechanics. Ellis Horwood Series: Mathematics and Its Applications, Wiley & Sons, PWN — Polish Scientific Publishers, Warsaw 1986Google Scholar
  59. [59]
    R. Larsson, S. A Diebels, Second-order homogenization procedure for multi-scale analysis based on micropolar kinematics. Internat. J. Numer. Methods Engrg. 69, no. 12, 2485–2512 (2007).MathSciNetzbMATHCrossRefGoogle Scholar
  60. [60]
    M. Lazar, G. A. Maugin A note on line forces in gradient elasticity Mechanics Research Communications 33 674–680 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  61. [61]
    M. Lucchesi ·M. Silhavý ·N. Zani On the Balance Equation for Stresses Concentrated on Curves J Elasticity 90:209–223 (2008).MathSciNetzbMATHCrossRefGoogle Scholar
  62. [62]
    A. Madeo, F. dell’Isola, N. Ianiro, G. Sciarra, “A second gradient poroelastic model of consolidation”, SIMAI 2008, Rome 15–19 September (2008).Google Scholar
  63. [63]
    A. Madeo, F. dell’Isola, N. Ianiro, and G. Sciarra, “A variational deduction of second gradient poroelasticity II: An application to the consolidation problem,” Journal of Mechanics of Materials and Structures, vol. 3,, pp. 607–625 (2008)CrossRefGoogle Scholar
  64. [64]
    A. Marzocchi,, A. Musesti, Balanced virtual powers in Continuum Mechanics. Meccanica 38, 369–389 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  65. [65]
    A. Marzocchi, A. Musesti,, ‘Decomposition and integral representation of Cauchy interactions associated with measures’, Cont. Mech. Thermodyn. 13 149–169 (2001).MathSciNetzbMATHCrossRefGoogle Scholar
  66. [66]
    G. Maugin MathReview MR1437786 (98d:73003) 73A05 (73B18 73S10) on the paper F.dell’Isola P. Seppecher (1997).Google Scholar
  67. [67]
    G. Maugin MathReview MR1600928 (99e:73005) on the paper G. Capriz and G. Mazzini Invariance and balance in continuum mechanics. Nonlinear analysis and continuum mechanics (Ferrara,1992), 27–35, Springer, New York, 1998.Google Scholar
  68. [68]
    G. A. Maugin A.V. Metrikine Editors Mechanics of Generalized Continua, One Hundred Years After the Cosserats, Springer (2010)Google Scholar
  69. [69]
    R.D. Mindlin, Second gradient of strain and surface tension in linear elasticity Int. J. Solids and Struct. 1,4,417–438 (1965)CrossRefGoogle Scholar
  70. [70]
    R.D. Mindlin, Micro-structure in linear elasticity, Arch. Rat. Mech. Analysis, vol. 16, pp. 51–78 (1964)MathSciNetzbMATHCrossRefGoogle Scholar
  71. [71]
    R. D. Mindlin, Complex representation of displacements and stresses in plane strain with couple-stresses. 1965 Appl. Theory of Functions in Continuum Mechanics (Proc. Internat. Sympos., Tbilisi), Vol. I, Mechanics of Solids (Russian) pp. 256–259 Izdat. ”Nauka”, Moscow (1963)Google Scholar
  72. [72]
    R. D. Mindlin, H. F. Tiersten, Effects of couple-stresses in linear elasticity. Arch. Rational Mech. Anal. 11 415–448 (1962)MathSciNetzbMATHCrossRefGoogle Scholar
  73. [73]
    R. D. Mindlin Influence of couple-stresses on stress concentrations Main features of cosserat theory are reviewed by lecturer and some recent solutions of the equations, for cases of stress concentration around small holes in elastic solids, are described EXPERIMENTAL MECHANICS 3, 1, 1–7, THE WILLIAM M. MURRAY LECTURE, (1962)Google Scholar
  74. [74]
    R. D. Mindlin N. N. Eshel On first strain-gradient theories in linear elasticity International Journal of Solids and Structures 4,1 1968, 109–124zbMATHCrossRefGoogle Scholar
  75. [75]
    R.D. Mindlin,. Stress functions for a Cosserat continuum International Journal of Solids and Structures, 1(3), pp. 265–271 (1965)CrossRefGoogle Scholar
  76. [76]
    R.D. Mindlin On the equations of elastic materials with microstructure International Journal of Solids and Structures, 1(1), pp. 73–78 (1965).CrossRefGoogle Scholar
  77. [77]
    M. Muntersbjom, Francis Bacon’s Philosophy of Science: Machina intellectus and Forma indita Philosophy of Science, 70 (December 2003) pp. 1137–1148.CrossRefGoogle Scholar
  78. [78]
    W. Noll, E.G. Virga, ‘On edge interactions and surface tension’, Arch. Rational Mech. Anal., 111(1) 1–31 (1990).MathSciNetzbMATHCrossRefGoogle Scholar
  79. [79]
    W. Noll ‘The foundations of classical mechanics in the light of recent advances in continuum mechanics’ Proceeding of the Berkeley Symposium on the Axiomatic Method, Amsterdam,, pp. 226–281 (1959).Google Scholar
  80. [80]
    W. Noll ‘Lectures on the foundations of continuum mechanics and thermodynamics’, Arch. Rational Mech. Anal. 52 62–92 (1973).MathSciNetzbMATHCrossRefGoogle Scholar
  81. [81]
    W. Noll ‘The geometry of contact separation and reformation of continuous bodies’, Arch. Rational Mech. Anal., 122(3) 197–212 (1993).MathSciNetzbMATHCrossRefGoogle Scholar
  82. [82]
    C. Pideri and P. Seppecher A second gradient material resulting from the homogenization of an heterogeneous linear elastic medium. Contin. Mech. Thermodyn. 9, no. 5, 241–257 (1997).MathSciNetzbMATHCrossRefGoogle Scholar
  83. [83]
    P. Podio-Guidugli A virtual power format for thermomechanics Continuum Mech. Thermodyn. 20: 479–487 (2009)MathSciNetCrossRefGoogle Scholar
  84. [84]
    P. Podio-Guidugli, Contact interactions, stress, and material symmetry, for nonsimple elastic materials. (English, Serbo-Croatian summary) Issue dedicated to the memory of Professor Rastko Stojanovic (Belgrade, 2002). Theoret. Appl. Mech. 28/29 (2002), 261–276.MathSciNetGoogle Scholar
  85. [85]
    P. Podio-Guidugli and M. Vianello Hypertractions and hyperstresses convey the same mechanical information Continuum Mech. Thermodyn. 22:163–176 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  86. [86]
    C. Polizzotto, Strain-gradient elastic-plastic material models and assessment of the higher order boundary conditions. Eur. J. Mech. A Solids 26, no. 2, 189–211 (2007).MathSciNetzbMATHCrossRefGoogle Scholar
  87. [87]
    Rorres C. Completing Book II of Archimedes’s On Floating Bodies THE MATHEMATICAL INTELLIGENCER 26,3, Pages 32–42 (2004)MathSciNetCrossRefGoogle Scholar
  88. [88]
    L. Russo The Forgotten Revolution Springer Verlag (2003)Google Scholar
  89. [89]
    J. Salençon Mécanique des milieux continus Ed. Ellipses (1988)–(1995) Handbook of Continuum Mechanics Ed. Springer (Berlin, 2001) Mécanique des milieux continus. Tome I. Éd. École polytechnique, Palaiseau; Ellipses, Paris, (2002)–(2005)Google Scholar
  90. [90]
    L. Schwartz, Théorie des Distributions, Hermann Paris, (1973).Google Scholar
  91. [91]
    G. Sciarra, F. dell’Isola and O. Coussy Second gradient poromechanics. Internat. J. Solids Structures 44, no. 20, 6607–6629 (2007).MathSciNetzbMATHCrossRefGoogle Scholar
  92. [92]
    G. Sciarra, F. dell’Isola and K. Hutter A solid-fluid mixture model allowing for solid dilatation under external pressure. Contin. Mech. Thermodyn. 13, no. 5, 287–306 (2001).MathSciNetzbMATHCrossRefGoogle Scholar
  93. [93]
    G. Sciarra, F. dell’Isola, N. Ianiro, and A. Madeo, “A variational deduction of second gradient poroelasticity part I: General theory”, Journal of Mechanics of Materials and Structures, vol. 3, pp. 507–526 (2008).CrossRefGoogle Scholar
  94. [94]
    P. Seppecher ‘Etude des conditions aux limites en théorie du second gradient: cas de la capillarité, C. R. Acad. Sci. Paris, t. 309, Série II 497–502 (1989).MathSciNetzbMATHGoogle Scholar
  95. [95]
    P. Seppecher Etude d’une Modélisation des Zones Capillaires Fluides: Interfaces et Lignes de Contact, Thèse de l’Université Paris VI, Avril (1987).Google Scholar
  96. [96]
    M. Šilhavý ‘The existence of the flux vector and the divergence theorem for general Cauchy fluxes’, Arch.Ration. Mech. Anal. 90 195–211 (1985).zbMATHCrossRefGoogle Scholar
  97. [97]
    M. Šilhavý ‘Cauchy’s stress theorem and tensor fields with divergences in Lp’, Arch. Ration. Mech. Anal. 116 223–255 (1991).zbMATHCrossRefGoogle Scholar
  98. [98]
    M. Sokolowski, Theory of couple-stresses in bodies with constrained rotations. In CISM courses and lectures, vol. 26. Berlin, Germany: Springer (1970).Google Scholar
  99. [99]
    M. Spivak A comprehensive introduction to differential geometry. Voll. I and II. Second edition. Publish or Perish, Inc., Wilmington, Del. (1979)Google Scholar
  100. [100]
    A. S. J. Suiker and C. S. Chang, Application of higher-order tensor theory for formulating enhanced continuum models. Acta Mech. 142, 223–234 (2000).zbMATHCrossRefGoogle Scholar
  101. [101]
    R.A. Toupin Elastic Materials with couple-stresses, Arch. Rat. Mech. Analysis, vol. 11, pp. 385–414 (1962)MathSciNetzbMATHCrossRefGoogle Scholar
  102. [102]
    R. A. Toupin, Theories of elasticity with couple-stress. Arch. Rational Mech. Anal. 17 85–112 (1964).MathSciNetzbMATHCrossRefGoogle Scholar
  103. [103]
    N. Triantafyllidis and S. Bardenhagen, On higher order gradient continuum theories in 1-D nonlinear elasticity. Derivation from and comparison to the corresponding discrete models. J. Elasticity 33 (1993)Google Scholar
  104. [104]
    N. Triantafyllidis and S. Bardenhagen The influence of scale size on the stability of periodic solids and the role of associated higher order gradient continuum models. J. Mech. Phys. Solids 44, no. 11, 1891–1928 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  105. [105]
    C.A. Truesdell A First Course in Rational Continuum Mechanics, Vol. I General Concepts, Academic Press, New York, 1977.zbMATHGoogle Scholar
  106. [106]
    N. Triantafyllidis and E.C. Aifantis A gradient approach to localization of deformation. I. Hyperelastic materials. J. Elasticity 16, no. 3, 225–237 (1986).MathSciNetzbMATHCrossRefGoogle Scholar
  107. [107]
    Y. Yang, and A. Misra “Higher-order stress-strain theory for damage modeling implemented in an element-free Galerkin formulation,” Computer Modeling in Engineering and Sciences, Vol. 64, No. 1, 1–36 (2010)MathSciNetGoogle Scholar
  108. [108]
    Y. Yang, W.Y. Ching and Misra, A., “Higher-order continuum theory applied to fracture simulation of nano-scale intergranular glassy film,” Journal of Nanomechanics and Micromechanics, (in print). (2011)Google Scholar
  109. [109]
    G. Vailati, Il principio dei lavori virtuali da Aristotele a Erone d’Alessandria, Scritti (Bologna, Forni, 1987), vol. II, pp. 113–128, Atti della R. Accademia delle Scienze di Torino, vol. XXXII, adunanza del 13 giugno 1897, quaderno IG (091) 75 I–III (1897).Google Scholar

Copyright information

© CISM, Udine 2011

Authors and Affiliations

  • Francesco dell’Isola
    • 1
    • 4
  • Pierre Seppecher
    • 2
    • 4
  • Angela Madeo
    • 3
    • 4
  1. 1.Laboratorio Strutture e Materiali IntelligentiUniversità di Roma “La Sapienza” Dipartimento di Ingegneria Strutturale e GeotecnicaItaly
  2. 2.Institut de Mathématiques de Toulon U.F.R. des Sciences et TechniquesUniversité de Toulon et du VarToulonFrance
  3. 3.Institut National des Sciences Appliquées (INSA) GCU et LGCIEUniversité de LyonLyonFrance
  4. 4.International Research Centre on “Mathematics & Mechanics of Complex Systems” M& MOCSCisterna di LatinaItaly

Personalised recommendations