Advertisement

Variational principles are a powerful tool also for formulating field theories

  • Francesco dell’Isola
  • Luca Placidi
Part of the CISM Courses and Lectures book series (CISM, volume 535)

Abstract

Variational principles and calculus of variations have always been an important tool for formulating mathematical models for physical phenomena. Variational methods give an efficient and elegant way to formulate and solve mathematical problems that are of interest for scientists and engineers and are the main tool for the axiomatization of physical theories.

Keywords

Variational Principle Virtual Power Lagrangian Action Loeb Classical Library Epistemological Principle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. [1]
    Arnold, V.I., Mathematical Methods of Classical Mechanics, Springer, 2nd edition, May 16, 1989.Google Scholar
  2. [2]
    Benvenuto, E., La scienza delle costruzioni e il suo sviluppo storico, Sansoni, Firenze, 1981.Google Scholar
  3. [3]
    Berdichevsky V., Variational Principles of Continuum Mechanics, Springer, 2009.Google Scholar
  4. [4]
    Bourdin, B., Francfort, G.A., Marigo, J.-J., The variational approach to fracture, J. Elasticity, 91, 1–3, 1–148, 2008. (The paper also appeared as a Springer book: ISBN: 978-1-4020-6394-7).MathSciNetCrossRefGoogle Scholar
  5. [5]
    Colonnetti, G., Scienza delle costruzioni, Torino, Edizioni scientifiche Einaudi, 3rd ed., 1953–57.Google Scholar
  6. [6]
    Cosserat, E., Cosserat, F., Sur la Théorie des Corps Déformables, Herman, Paris, 1909.Google Scholar
  7. [7]
    dell’Isola, F., Seppecher, P., The relationship between edge contact forces, double force and interstitial working allowed by the principle of virtual power, Comptes Rendus de l’Academie de Sciences — Serie IIb: Mecanique, Physique, Chimie, Astronomie, vol. 321, pp. 303–308, 1995.Google Scholar
  8. [8]
    dell’Isola, F., Seppecher, P., Edge Contact Forces and Quasi-Balanced Power, Meccanica, vol. 32, pp. 33–52, 1997.MathSciNetCrossRefGoogle Scholar
  9. [9]
    dell’Isola, F., Madeo, A., Seppecher, P., Boundary Conditions in Porous Media: A Variational Approach, Int. Journal of Solids and Structures, Vol. 46, 3150–3164, 2009.MathSciNetCrossRefGoogle Scholar
  10. [10]
    dell’Isola, F., Madeo, A., Seppecher, P., “Beyond Euler-Cauchy continua”. In this book.Google Scholar
  11. [11]
    Feynman, R.P., Leighton, R., Sands, M., The Feynman Lectures on Physics: The Definitive and Extended Edition, (Feynman, Leighton, Sands), 3 vv., Addison Wesley, Reading (MA) 2nd ed., 2005.Google Scholar
  12. [12]
    Francfort, G.A., The chapter in this book by Prof. Gilles Frankfort.Google Scholar
  13. [13]
    Germain, P., La méthode des puissances virtuelles en mécanique des milieux continus. Premi’ere partie. Théorie du second gradient, J. Mécanique, 12, 235–274, 1973.MathSciNetzbMATHGoogle Scholar
  14. [14]
    Homer. The Iliad. Translated by Murray, A. T., Loeb Classical Library Volumes 1. Cambridge, MA, Harvard University Press; London, William Heinemann Ltd., 1924.Google Scholar
  15. [15]
    Lagrange, J.L., Mécanique Analytique, Editions Jaques Gabay, Sceaux, 1788.Google Scholar
  16. [16]
    Lanczos, C., The Variational Principles of Mechanics. Toronto: University of Toronto, 1970.zbMATHGoogle Scholar
  17. [17]
    Landau, L.D., Lifshitz, E.M., Quantum Mechanics: Non-Relativistic Theory. Vol. 3 (3rd ed.), Pergamon Press, 1977.Google Scholar
  18. [18]
    Moiseiwitsch, B.L., Variational Principles, Dover, 1966.Google Scholar
  19. [19]
    Netz, R., Noel., W., The Archimedes Codex: How a Medieval Prayer Book Is Revealing the True Genius of Antiquity’s Greatest Scientist, Da Capo press, 2009. See also the website http://www.archimedespalimpsest.org/Google Scholar
  20. [20]
    Rorres, C., Completing Book II of Archimedes’s On Floating Bodies, The mathematical intelligencer, 26,3. Pages 32–42, 2004.MathSciNetzbMATHCrossRefGoogle Scholar
  21. [21]
    Russo, L., The Forgotten Revolution, Springer Verlag, 2003.Google Scholar
  22. [22]
    Vailati, G., Il principio dei lavori virtuali da Aristotele a Erone d’Alessandria, Scritti (Bologna, Forni, 1987), vol. II, pp. 113–128. Atti della R. Accademia delle Scienze di Torino, vol. XXXII, adunanza del 13 giugno 1897, quaderno IG (091) 75 I–III. 1987.Google Scholar

Copyright information

© CISM, Udine 2011

Authors and Affiliations

  • Francesco dell’Isola
    • 1
    • 3
  • Luca Placidi
    • 2
    • 3
  1. 1.University of Roma “La Sapienza”Italy
  2. 2.International Telematic University “Uninettuno”Italy
  3. 3.International Research Centre on “Mathematics & Mechanics of Complex Systems” M& MOCSItaly

Personalised recommendations