Polysaccharide Fibres in Textiles

  • Lidija Fras Zemljic
  • Silvo Hribernik
  • Avinash P. Manian
  • Hale B. Öztürk
  • Zdenka Peršin
  • Majda Sfiligoj Smole
  • Karin Stana Kleinscheck
  • Thomas BechtoldEmail author
  • Barbora Široká
  • Ján Široký


Besides naturally grown cellulose fibres like cotton, hemp or flax, interest in textile fibres made up from regenerated cellulose is growing. By sure the use of a polymer material, which is provided by nature in huge amounts, favours its use as more sustainable material compared to oil-based products. However, a much stronger argument is the high variability of the properties that can be achieved, which allows design an extremely wide range of products.

In this chapter the main characteristics of textile fibres from regenerated cellulose are highlighted. Dependent on the production process, pore characteristics, accessibility and surface can be shaped. The chemical reactivity of the cellulose polymer and the swelling behaviour of the fibrous structure permit many chemical conversion processes towards specialised products.

Representative examples for fibre modifications are highlighted in this chapter, among them are fibre reorganisation during swelling processes, accessibility-controlled reactivity, plasma treatment for surface modification, antimicrobial functionalisation, deposition of magnetic nanoparticles and incorporation of pigments. The given examples demonstrate the diversity of processing strategies which all lead to unique products with specific functionality.


Fibre Surface Viscose Fibre Conductometric Titration Water Retention Value Regenerate Cellulose Fibre 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Abbott GM, Robinson GA (1977a) The corona treatment of cotton, part I: silver cohesion. Text Res J 47:141–144Google Scholar
  2. Abbott GM, Robinson GA (1977b) The corona treatment of cotton, part II: yarn and fabric properties. Text Res J 47:199–202Google Scholar
  3. Abu-Rous M, Varga K, Bechtold T, Schuster KC (2007) A new method to visualise and characterise the pore structure of TENCEL® (Lyocell) and other mans-made cellulosic fibres using a fluorescent dye molecular probe. J Appl Polym Sci 106(3):2083–2091CrossRefGoogle Scholar
  4. Akishev Y, Kroepke S, Behnisch J, Hollander A, Napartovich A, Trushkin N (2000) Non-thermal plasma treatment of polymer films and fabrics based on a glow discharge at atmospheric pressure In: Wagner H, Behnke JF, Babucke G (eds) Proceedings of the international symposium on high pressure low temperature plasma chemistry, vol. 2. Greifswald, Germany, pp 481–485Google Scholar
  5. Akishev YS, Grushin ME, Monich AE, Napartovich AP, Trushkin NI (2003) One-atmosphere argon dielectric-barrier corona discharge as an effective source of cold plasma for the treatment of polymer films and fabrics. High Energ Chem 37(5):286–291CrossRefGoogle Scholar
  6. Allwood JM, Laursen SE, Malvido de Rodriguez C, Boecken NMP (2006) Well dressed? The present and future sustainability of clothing and textiles in the United Kindgdom. University Cambridge Institute for Manufacturing, Cambridge. ISBN 1-902546-52-0Google Scholar
  7. Anon (2000) A Glossary of AATCC Standard Terminology, AATCC Technical Manual 75, American Association of Textile Chemists and Colorists, Research Triangle Park, NC, USA, p 399Google Scholar
  8. Anon (2008) ESFRI - European Road Map for Research Infrastructures; Roadmap 2008, ISBN 978-92-79-10117-5Google Scholar
  9. Anon (2010a) PES-Weltproduktion +9 %. Melliand Textilberichte 91/1–2, pp 4–5Google Scholar
  10. Anon (2010b) Globale Faserproduktion. Melliand Textilberichte 91/4-5, pp 149Google Scholar
  11. Bartsch P, Ruef H (1999) Method for producing cellulosic moulded bodies. WO 99/46434, 16 Sep 1999Google Scholar
  12. Batt IP (1961) Process for producing colored pellicular gel structures of regenerated cellulose. US 3005723, 24 Oct 1961Google Scholar
  13. Baumann H, Keller B, Ruzicka E (1991) Partially cationized cellulose for non- thrombogenic membrane in the presence of heparin and endothelial-cell-surface-heparansulfate (ES-HS). J Membr Sci 61:253–268CrossRefGoogle Scholar
  14. Bechtold T, Manian AP (2005) Method of producing a dyed formed cellulosic article. WO 2007/070904, 19 Dec 2005Google Scholar
  15. Berger J, Reist M, Mayer JM, Felt O, Peppas NA, Gurny R (2004) Structure and interactions in covalently and ionically crosslinked chitosan hydrogels for biomedical applications. Eur J Pharm Biopharm 57:19–34PubMedCrossRefGoogle Scholar
  16. Berscht PC, Nies B, Liebendorfer A, Kreuter J (1994) Incorporation of basic fibroblast growth factor into methylpyrrolidinone chitosan fleeces and determination of the in vitro release characteristics. Biomaterials 15:593–600PubMedCrossRefGoogle Scholar
  17. Bongiovanni R, Di Gianni A, Priola A, Pollicino A (2007) Surface modification of polyethylene for improving the adhesion of a highly fluorinated UV-cured coating. Eur Polym J 43:3787–3794CrossRefGoogle Scholar
  18. Bredereck K, Commarmot A (1998) Ammonia treatment of cellulosic fibers. Melliand Textilberichte 79(1–2):E19–E22Google Scholar
  19. Bredereck K, Stefani HW, Beringer J, Schulz F (2003) Alkali- und Flüssigammoniakbehandlung von Lyocellfasern. Melliand Textilberichte 58(1–2):58–64Google Scholar
  20. Briganti S, Picardo M (2003) Antioxidant activity, lipid peroxidation and skin diseases. What‘s new. J Eur Acad Dermatol Venereol 17(6):663–669PubMedCrossRefGoogle Scholar
  21. Brüser V, Heintze M, Brandl W, Marginean G, Bubert H (2004) Surface modification of carbon nanofibres in low temperature plasmas. Diamond Relat Mater 13:1177–1181CrossRefGoogle Scholar
  22. Bui HM, Lenninger M, Manian AP, Abu-Rous M, Schimper CB, Schuster KC, Bechtold T (2008) Treatment in swelling solutions modifying cellulose fibre reactivity – Part 2: Accessibility and reactivity. In: Macromolecular symposia: zellcheming 2007 conference proceedings, vol 262, pp 50–64Google Scholar
  23. Bullett NA, Bullett DP, Truica-Marasescu FE, Lerouge S, Mwale F, Wertheimer MR (2004) Polymer surface micropatterning by plasma and VUV-photochemical modification for controlled cell culture. Appl Surf Sci 235:395–405CrossRefGoogle Scholar
  24. Byrne GA, Brown KC (1972) Modifications of textiles by glow-discharge reactions. J Soc Dyers Colour 88:113–117CrossRefGoogle Scholar
  25. Čakara D, Fras Zemljič L, Bračič M, Stana-Kleinschek K (2009) Protonation behavior of cotton fabric with irreversibly adsorbed chitosan: a potentiometric titration study. Carbohydr Polym 78:36–40CrossRefGoogle Scholar
  26. Carrazana-Garcia JA, López-Quintela MA, Rivas-Rey J (1997) Characterization of ferrite particles synthesized in presence of cellulose fibres. Colloids Surf A Physicochem Eng Asp 121:61–66CrossRefGoogle Scholar
  27. Cassella Farbwerke Mainkur A.G. (1961) Dyeing of regenerated cellulose in the spinning paste. BE 611323, 29 Dec 1961, vide Chemical Abstract No. 57:17664Google Scholar
  28. Castelvetro V, Fatarella E, Corsi L, Giaiacopi S, Ciardelli G (2006) Graft polymerisation of functional acrylic monomers onto cotton fibres activated by continuous Ar plasma. Plasma Process Polym 3(1):48–57CrossRefGoogle Scholar
  29. Chedin J, Marsaudon A (1955) Action of caustic soda solutions on cellulose fibers. Equilibrium fixation of caustic soda. Mercerization. Die Makromolekulare Chemie 15:115–160CrossRefGoogle Scholar
  30. Chedin J, Marsaudon A (1956) The mechanism of the fixation of sodium hydroxide on the cellulose fiber-mercerization-structure of aqueous sodium hydroxide solutions II. Die Makromolekulare Chemie 20:57–82CrossRefGoogle Scholar
  31. Chedin J, Marsaudon A (1959) The adsorption and desorption mechanism of aqueous sodium hydroxide solutions in cellulose fibers III. Equilibriums of NaOH fixation. Die Makromolekulare Chemie 33:195–221CrossRefGoogle Scholar
  32. Chen JR (1991) Free radicals of fibers treated with low temperature plasma. J Appl Polym Sci 42(7):2035–2037CrossRefGoogle Scholar
  33. Ciba Ltd. (1965) Dyeing of regenerated cellulosic fibers and films. FR 1417575, 12 Nov 1965, vide Chemical Abstract No. 65:57365Google Scholar
  34. Ciba Ltd. (1966) Transparent colored regenerated cellulose. NL 6514672, 13 May 1966, vide Chemical Abstract No. 65:82924.Google Scholar
  35. Ciba Ltd. (1968) Process for the preparation of transparent colored shaped articles of regenerated cellulose with the aid of organic dyestuffs of low solubility in water. GB 1128158, 25 Sep 1968Google Scholar
  36. Coats JP, Gailey RM (1968) Method of treating cellulosic materials. British Patent 1136417, 1968Google Scholar
  37. Colom X, Carrillo F (2002) Crystallinity, crystallinity changes in lyocell and viscose-type fibres by caustic treatment. Eur Polym J 38(11):2225–2230CrossRefGoogle Scholar
  38. Corbman BP (1985) Textiles: fiber to fabric, 6th edn. McGraw-Hill, New York, NY. ISBN 0-07-Y66236-3Google Scholar
  39. Crawshaw J, Cameron RE (2000) A small angle X-ray scattering study of pore structure in Tencel cellulose fibres and the effects of physical treatments. Polymer 41:4691–4698CrossRefGoogle Scholar
  40. Culler MD, Bitman J, Thompson MJ, Robbins WE, Dutky SR, Mastitis I (1979) In vitro antimicrobial activity of alkyl amines against mastitic bacteria. J Dairy Sci 62:584–595PubMedCrossRefGoogle Scholar
  41. Czaja W, Krystynowicz A, Bielecki Sand Brown RM (2006) The natural power to heal wounds. J Biomater 27(2):145–151CrossRefGoogle Scholar
  42. De Geyter N, Morent R, Leys C (2006) Surface modification of a polyester non-woven with a dielectric barrier discharge in air at medium pressure. Surf Coat Tech 201:2460–2466CrossRefGoogle Scholar
  43. Denoyelle G (1959) Action of soda solutions on native cellulose, formation of hydrated sodium cellulosate; swelling. Svensk Papperstid 62:390–406Google Scholar
  44. Dimick BE (1976) The importance of the structure of alkali metal hydroxide solutions in decrystallizing cellulose I, PhD thesis, Lawrance University, The Institute of Paper Chemistry, Appleton, WIGoogle Scholar
  45. Diniz JMBF, Gil MH, Castro JAAM (2004) Hornification-its origin and interpretation in wood pulps. Wood Sci Technol 37:489–494CrossRefGoogle Scholar
  46. Donnan FG, Harris AB (1911) Osmotic pressure and conductivity of aqueous solutions of congo red and reversible membrane equilibria. J Chem Soc Trans 99:1554–1577CrossRefGoogle Scholar
  47. Dosne H (1936) Colored cellulose material. US 2041907, 26 May 1936Google Scholar
  48. Douglas BE, McDaniel DH (1965) Concepts and models of inorganic chemistry. Blaisdell, Waltham, MA, p 199Google Scholar
  49. Ebeling H, Fink HP (2009) Method of producing cellulose carbamate blown film and use of the same, US Patent Application No. 2009/0259,032, 7 Apr 2009Google Scholar
  50. Ehrhardt A, Groner S, Bechtold T (2007) Swelling behaviour of cellulosic fibers – Part I, fibers and textiles in Eastern Europe fibres. Text Eastern Eur 15(5–6):46–48Google Scholar
  51. Eskridge BE (1962) Manufacture of pigmented viscose rayon. US 3033697, 8 May 1962Google Scholar
  52. Fras Zemljič L, Peršin Z, Stenius P (2009a) Improvement of chitosan adsorption onto cellulosic fabrics by plasma treatment. Biomacromolecules 10(5):1181–1187PubMedCrossRefGoogle Scholar
  53. Fras Zemljič L, Strnad S, Šauperl O, Stana-Kleischek K (2009b) Characterization of amino groups for cotton fibers coated with chitosan. Text Res J 79(3):219–226CrossRefGoogle Scholar
  54. Fras Zemljič L, Čakara D, Kokol V (2011a) Antimicrobial and antioxidant properties of chitosan-based viscose fibres enzymatically functionalized with flavonoids. Text Res J 81(15):1532–1540CrossRefGoogle Scholar
  55. Fras Zemljič L, Čakara D, Michaelis N, Heinze T, Stana-Kleinschek K (2011b) Protonation behavior of 6-deoxy-6-(2-aminoethyl)amino cellulose: a potentiometric titration study. Cellulose 18:33–43CrossRefGoogle Scholar
  56. Gimblett FGR, Monk CB (1954) E.m.f studies of electrolytic dissociation. VII. Some alkali and alkaline earth metal hydroxides in water. Trans Faraday Soc 50:965–972CrossRefGoogle Scholar
  57. Gomm AS, Morgan LB and Wood L (1964) Process of incorporating aqueous pigment composition in viscose. US 3156574, 10 Nov 1964Google Scholar
  58. Goodwin A, Herbert T, Leadley S, Swallow F (2002) In: Proceedings of 8th international symposium on high pressure low temperature plasma chemistry, vol 2. Pühajärve Estonia, pp P7.9–1Google Scholar
  59. Gorjanc M, Bukošek V, Gorenšek M, Mozetič M (2010) CF4 plasma and silver functionalized cotton. Text Res J 80(20):2204–2213CrossRefGoogle Scholar
  60. Greentex international. Accessed 4.5.2012
  61. Hama H, Sakurai H (1972) Dope dyeing viscose rayon having a good black luster. JP 47051968, 27 Dec 1972, vide Chemical Abstract No. 80:28345Google Scholar
  62. Hattori K, Yoshida T, Nakashima H, Premanathan M, Aragaki R, Mimura T, Kaneko Y, Yamamo N, Uryu T (1998) Synthesis of sulfonated amino polysaccharides having anti-HIV and blood anticoagulant activities. Carbohydr Res 312:1–8PubMedCrossRefGoogle Scholar
  63. Heinrich E (1966) Spin-dyed regenerated cellulose products and process for their manufacture. GB 1046299, 19 Oct 1966Google Scholar
  64. Heinze U, Wagenknecht W (1998) Comprehensive cellulose chemistry. functionalisation of cellulose, vol 2. Wiley, Weinheim. ISBN 10: 3527294899Google Scholar
  65. Ho KKC, Lee AF, Bismarck A (2007) Fluorination of carbon fibres in atmospheric plasma. Carbon 45:775–784CrossRefGoogle Scholar
  66. Hoenich N (2006) Cellulose for medical applications: past, present, and future. Bioresources 1(2):270–280Google Scholar
  67. Holländera A, Thome J, Keusgen M, I D, Klein W (2004) Polymer surface chemistry for biologically active materials. Appl Surf Sci 235:145–150CrossRefGoogle Scholar
  68. Holme I (2004) Coloration of technical textiles. In: Horrocks AR, Anand SC (eds) Handbook of technical textiles. Woodhead Publishing Ltd, CambridgeGoogle Scholar
  69. Horrocks AR, Anand SC (2004) Handbook of technical textiles. The Textile Institute, Woodhead Publishing Ltd, Cambridge. ISBN 1 85573 385 4Google Scholar
  70. Hribernik S, Sfiligoj-Smole M, Stana-Kleinschek K (2009) Formation of magnetic layers on regenerated cellulose fibres’ surface, EPNOE Polysaccharides as a source of advanced materials: Turku/Åbo 2009, Book of abstractsGoogle Scholar
  71. Hribernik S (2010) Study of pre-treatment and coating of regenerated cellulose fibres with nano particles, Doctoral thesis, University of Maribor, SloveniaGoogle Scholar
  72. Hwang YJ, Mccord MG, An JS, Kang BC, Park SW, Kang BC (2005) The effects of helium atmospheric pressure plasma treatment on low-stress mechanical properties of polypropylene nonwoven fabrics. Text Res J 75:771–778CrossRefGoogle Scholar
  73. I.G. Farbenindustrie A.G. (1936) Process for the manufacture of dyed filaments and films. GB 448447, 8 Jun 1936Google Scholar
  74. I.G. Farbenindustrie A.-G. (1937) The manufacture of dyed artificial masses from regenerated cellulose. GB 465606, 10 May 1937Google Scholar
  75. Ibbett RN, Hsieh YL (2001) Effect of fiber swelling on the structure of lyocell fabrics. Text Res J 71(2):164–173CrossRefGoogle Scholar
  76. Jaturapiree A, Manian AP, Bechtold T (2006) Sorption studies on regenerated cellulosic fibres in salt-alkali mixtures. Cellulose 13(6):647–654CrossRefGoogle Scholar
  77. Jaturapiree A, Ehrhardt A, Groner S, Öztürk HB, Siroka B, Bechtold T (2008) Treatment in swelling solutions modifying cellulose fibre reactivity—Part 1: accessibility and sorption. In: Macromolecular symposia: Zellcheming 2007 conference proceedings, vol 262, pp 39–49Google Scholar
  78. Jaturapiree A, Manian AP, Lenninger M, Bechtold T (2011) The influence of alkali pretreatments in lyocell resin finishing—Changes in fiber accessibility to crosslinker and catalyst. Carbohydr Polym 86:612–620CrossRefGoogle Scholar
  79. Jeffries R, Warwicker JO (1969) Function of swelling in the finishing of cotton. Text Res J 39(6):548–559Google Scholar
  80. Jones FB (1959) Glossy, spun-dyed threads from aqueous cellulose solutions. DE 1067173, 15 Oct 1959Google Scholar
  81. Kampl R, Six W (1996) Non-woven flame retardant textile fabric. WO 96/14461, 17 Mai 1996Google Scholar
  82. Kaputskii FN, Gert EV, Torgashov VI, Zubets OV (2005) Hydrogels for medical applications fabricated by oxidative-hydrolytic modification of cellulose. Fibre Chem 37:485–489CrossRefGoogle Scholar
  83. Kasahara K, Sasaki H, Donkai N, Takagishi T (2004) Effect of processing and reactive dyeing on the swelling and pore structure of lyocell fibers. Text Res J 74(6):509–515CrossRefGoogle Scholar
  84. Keil A, Popp P, Krause E (1961) Process for the production of pigmented regenerated cellulosic fibers. GB 872207, 5 Jul 1961Google Scholar
  85. Klemm D, Philipp B, Heinze T (1998) Comprehensive cellulose chemistry. Wiley, Winheim, pp 9–32CrossRefGoogle Scholar
  86. Kline HB, Helm EB (1939) Manufacture of artificial silk. US 2143883, 17 Jan 1939Google Scholar
  87. Kongdee A, Bechtold T, Burtscher E, Scheinecker M (2004) The influence of wet/dry treatment on pore structure - the correlation of pore parameters, water retention and moisture regain values. Carbohydr Polym 57:39–44CrossRefGoogle Scholar
  88. Kotel’nikova NE, Wegener G, Paakkari T, Serimaa R, Demidov VN, Serebriakov AS, Shchukarevand AV, Gribanov AV (2003) Silver intercalation into cellulose matrix. An X-ray scattering, solid-state 13C NMR, IR, X-ray photoelectron, and Raman study. Russ J Gen Chem 73(3):418–426CrossRefGoogle Scholar
  89. Krentsel E, Fusselman S, Yasuda H, Yasuda T, Miyama M (1994) Penetration of plasma surface modification. II. CF4 and C2F4 low-temperature cascade arc torch. J Polym Sci A Polym Chem 32:1839–1845CrossRefGoogle Scholar
  90. Krentsel E, Yasuda H, Miyama M, Yasuda T (1995) Penetration of plasma surface modification. III. Multiple samples exposed to CF4 and C2F4 low temperature cascade arc torch. J Polym Sci A Polym Chem 33:2887–2892CrossRefGoogle Scholar
  91. Lacasse K, Baumann W (2004) Textile chemicals. Environmental data and facts. Springer, Berlin. ISBN 978-3-540-40815-4CrossRefGoogle Scholar
  92. Lim SH, Hudson SM (2004) Synthesis and antimicrobial activity of a water-soluble chitosan derivative with a fiber-reactive group. Carbohydr Res 339(2):313–319PubMedCrossRefGoogle Scholar
  93. Link E, Mason CR, Tosti A, Karnik A (2005) Flame blocking liner materials. US 2005/0118919, 2 June 2005Google Scholar
  94. Lockhart GR (1932) Manufacture of rayon. US 1865701, 5 July 1932Google Scholar
  95. Lund MN, Hviid MS, Skibsted LH (2007) The combined effect of antioxidants and modified atmosphere packaging on protein and lipid oxidation in beef patties during chill storage. Meat Sci 76(2):226–233PubMedCrossRefGoogle Scholar
  96. Lutgerhorst AG (1956) Spundyed rayon. US 2738252, 13 Mar 1956Google Scholar
  97. Malek RMA, Holme I (2003) The effect of plasma treatment on some properties of cotton. Iran Polym J 12(4):271–280Google Scholar
  98. Maloney MA (1967) Mass coloring of regenerated cellulose with vat dyes. DE 1253864, 9 Nov 1967Google Scholar
  99. Mancosky DG, Lucia LA (2005) A novel and efficient approach for imparting magnetic susceptibility to lignocellulosic fibers. Carbohydr Polym 59:517–520CrossRefGoogle Scholar
  100. Manian AP, Abu-Rous M, Schuster KC, Bechtold T (2006) The influence of alkali pre-treatments in lyocell resin finishing. J Appl Polym Sci 100(5):3596–3601CrossRefGoogle Scholar
  101. Manian AP, Abu-Rous M, Lenninger M, Roeder T, Schuster KC, Bechtold T (2008) The influence of alkali pretreatments in lyocell resin finishing – Substrate structure. Carbohydr Polym 71(4):664–671CrossRefGoogle Scholar
  102. Manufactures de produits chimiques du Nord (establissment Kuhlmann) (1956) Coloring viscose fibers. FR 1114803, 17 Apr 1956, vide Chemical Abstract No. 53:102818Google Scholar
  103. Marchessault RH, Rioux P, Ricard S (1992) Preparation and synthesis of magnetic fibers. US Patent 5,143,583, 1 Sept 1992Google Scholar
  104. Mercer J (1850) Improvements in the preparation of cotton and other fabrics and other fibrous materials. British Patent 13,296, 1850Google Scholar
  105. Molina R, Espinós JP, Yubero F, Erra P, González-Elipe AR (2005) XPS analysis of down stream plasma treated wool: influence of the nature of the gas on the surface modification of wool. Appl Surf Sci 252:1417–1429CrossRefGoogle Scholar
  106. Morales J, Olayo MG, Cruz GJ, Herrera-Franco P, Olayo R (2006) Plasma modification of cellulose fibers for composite materials. J Appl Polym Sci 101(6):3821–3828CrossRefGoogle Scholar
  107. Morent R, De Geyter N, Leys C, Gengembre L, Payen E (2007) Surface modification of non-woven textiles using a dielectric barrier discharge operating in air, helium and argon at medium pressure. Text Res J 77(7):471–488CrossRefGoogle Scholar
  108. Moseley R, Hilton JR, Waddington RJ, Harding KG, Stephens P, Thomas DW (2004) Comparison of oxidative stress biomarker profiles between acute and chronic wound environments. Wound Repair Regen 12:419–429PubMedCrossRefGoogle Scholar
  109. Mozetič M (2007) Characterization of reactive plasmas with catalytic probes. Surf CoatTechnol 9–11(201):4837–4842CrossRefGoogle Scholar
  110. Mukhopadhyay SM, Joshia P, Datta S, Macdaniel J (2002a) Plasma assisted surface coating of porous solids. Appl Surf Sci 201(1–4):219–226CrossRefGoogle Scholar
  111. Mukhopadhyay SM, Joshi P, Datta S, Zhao JG, France P (2002b) Plasma assisted hydrophobic coatings in porous materials. J Phys D: Appl Phys 35:1927–1933CrossRefGoogle Scholar
  112. Muzzarelli RAA, Mattioli-Belmonte M, Tietz C, Biagini R, Ferioli G, Brunelli MA, Fini M, Giardino R, Ilari P, Biagini G (1994) Stimulatory effect on bone formation exerted by a modified chitosan. Biomaterials 15:1075–1081PubMedCrossRefGoogle Scholar
  113. Muzzarelli RAA (2009) Chitins and chitosan for the repair of wound skin, nerve, cartilage and bone. Carbohydr Polym 76:167–182CrossRefGoogle Scholar
  114. Myllyte P, Salmi J, Laine J (2009) The influence of pH on the adsorption and interaction of chitosan with cellulose. Bioresources 4(4):1647–1662Google Scholar
  115. Novacel SA (1953) Colored regenerated cellulose sponges. FR 1025296, 13 Apr 1953, vide Chemical Abstract No. 52:3968Google Scholar
  116. Oeztuerk HB, MacNaughtan B, Mitchell J, Bechtold T (2011) What does LiOH treatment offer for lyocell fibers? Investigation of structural changes. Ind Eng Chem Res 50:9087–9094CrossRefGoogle Scholar
  117. Okubayashi S, Griesser UJ, Bechtold T (2005) Moisture sorption/desorption behaviour of various manmade cellulosic fibres. J Appl Polym Sci 9(4):1621–1625CrossRefGoogle Scholar
  118. Ono S, Igase T (1979) Dope dyeing of rayon. JP 54038919, 24 Mar 1979, vide Chemical Abstract No. 91:40853Google Scholar
  119. Öztürk HB, Okubayashi S, Bechtold T (2006a) Splitting tendency of cellulosic fibers, part 1: the effect of shear force on mechanical stability of swollen lyocell fibers. Cellulose 13(4):393–402CrossRefGoogle Scholar
  120. Öztürk HB, Okubayashi S, Bechtold T (2006b) Splitting tendency of cellulosic fibers. part 2: effects of fiber swelling in alkali solutions. Cellulose 13(4):403–409CrossRefGoogle Scholar
  121. Öztürk HB (2008) Regenerated cellulosic fibers-Effect of alkali treatment on structure, chemical reactivity and fiber properties, PhD thesis, University of Innsbruck, AustriaGoogle Scholar
  122. Öztürk HB, Bechtold T (2007) Effect of NaOH treatment on the interfibrillar swelling and dyeing properties of lyocell (TENCEL) fibers. Fibers Text East Eur 15(5–6):114–117Google Scholar
  123. Öztürk HB, Bechtold T (2008) Splitting tendency of cellulosic fibers, part 3: splitting tendency of viscose and modal fibers. Cellulose 15(1):101–109CrossRefGoogle Scholar
  124. Öztürk HB, Potthast A, Rosenau T, Abu-Rous M, MacNaughtan B, Schuster KC, Mitchell J, Bechtold T (2009) Changes in the intra- and inter- fibrillar structure of lyocell (TENCEL) fibers caused by NaOH treatment. Cellulose 16(1):37–52CrossRefGoogle Scholar
  125. Öztürk HB, Abu-Rous M, MacNaughtan B, Schuster KC, Mitchell J, Bechtold T (2010a) Changes in the inter- and intra- fibrillar structure of lyocell (TENCEL) fibers after KOH treatment. Macromol Symp 294(2):24–37CrossRefGoogle Scholar
  126. Öztürk HB, MacNaughtan B, Mitchell J, Bechtold T (2010b) Effects of tetramethylammonium hydroxide (TMAH) treatment on interfibrillar structure of lyocell (TENCEL) fibers. Mater Res Innov 14(3):224–230CrossRefGoogle Scholar
  127. Pecse A, Jordane AA, Carluci G, Cintio A (2005) Articles comprising cationic polysaccharides and acidic pH buffering means. US Patent Application 0124799 A1, 2005Google Scholar
  128. Persin Z, Stana-Kleinschek K, Sfiligoj-Smole M, Kreze T (2004) Determining the surface free energy of cellulose materials with the powder contact angle method. Text Res J 74(&):55–62CrossRefGoogle Scholar
  129. Peršin Z, Vesel A Strnad S, Stana-Kleinschek K, Mozetič M (2008) XPS and sorption measurements of plasma-treated regenerated cellulose fabrics and ageing effects. In: Proceedings of the 24th annual meeting of the polymer processing society. PPS-24, Salerno, Italy, June 15–19, 2008 [COBISS.SI-ID 12397590]Google Scholar
  130. Persin Z, Stana-Kleinschek K, Foster TJ, Van Dam JEG, Boeriu CG, Navard P (2011) Challenges and opportunities in polysaccharides research and technology: the EPNOE views for the next decade in the areas of materials, food and healthcare. Carbohydr Polym 84(1):22–32CrossRefGoogle Scholar
  131. Phrix-Werke A.-G. (1965) Spun-dyed regenerated cellulose. NL 6407087, 18 Jan 1965, vide Chemical Abstract No. 63:63815Google Scholar
  132. Prabaharan M, Carneiro N (2005) Effect of low-temperature plasma on cotton fabric and its application to bleaching and dyeing. Indian J Fibre Text 30(1):68–74Google Scholar
  133. Rakowski W (1989) Plasmamodifizierung der Wolle unter industriellen Bedingungen. Melliand Textilberichte 70:780–785Google Scholar
  134. Ranby BG (1952a) The mercerization of cellulose. I. Thermodynamic discussion. Acta Chem Scand 6:101–115CrossRefGoogle Scholar
  135. Ranby BG (1952b) The mercerization of cellulose. II. A phase-transition study with X-ray diffraction. Acta Chem Scand 6:116–127CrossRefGoogle Scholar
  136. Ranby BG (1952c) The mercerization of cellulose. III. A phase-transition study with electron diffraction. Acta Chem Scand 6:128–138CrossRefGoogle Scholar
  137. Ranby BG, Mark HF (1955) The mercerization of cellulose. IV. Phase transition studies on technical wood pulps and cotton linters. Svensk Papperstid 58:374–382Google Scholar
  138. Rashidi A, Moussavipourgharbi H, Mirjalili M, Ghoranneviss M (2004) Effect of low-temperature plasma treatment on surface modification of cotton and polyester fabrics. Indian J Fibre Text 29(1):74–78Google Scholar
  139. Ravi Kumar MNV (2000) A review of chitin and chitosan applications. React Funct Polym 46:1–27CrossRefGoogle Scholar
  140. Riccobono PX (1973) Plasma treatment of textile: a novel approach to the environment problems of desizing. Text Chem Color 5:239–248Google Scholar
  141. Riehen WM, Reinach FS (1971a) Difficulty soluble organic dye compositions for dyeing transparent, shaped, regenerated cellulose bodies. DE 1806199, 29 Apr 1971Google Scholar
  142. Riehen WE, Reinach FS (1971b) Sparingly soluble organic dyestuffs. US 3620788, 16 Nov 1971Google Scholar
  143. Ruef H (2001) Colored cellulosic shaped bodies. WO 01/11121, 15 Feb 2001Google Scholar
  144. Ruesch R, Schmidt H (1936) Preparation of dyed filaments and films. US 2043069, 2 Jun 1936Google Scholar
  145. Sarmadi AM, Kwon YA (1993) Improved water repellency and surface dyeing of polyester fabrics by plasma treatment. Text Chem Color 25(12):33–40Google Scholar
  146. Scallan AM, Grignon J (1979) The effect of cations on pulp and paper properties. Svensk Papperstidning 82(2):40–47Google Scholar
  147. Scallan AM, Grignon J (1983) The effect of acidic groups on the swelling of pulps: a review. Tappi J 66(11):73–75Google Scholar
  148. Schimper CB, Ibanescu C, Bechtold T (2009) Effect of alkali pre-treatment on hydrolysis of regenerated cellulose fibers (part 1: viscose) by cellulases. Cellulose 16(6):1057–1068CrossRefGoogle Scholar
  149. Schoenbach V, Weissert J, Teige W (1967) Pigment dispersions for coloring viscose spinning masses. US 3337360, 22 Aug 1967Google Scholar
  150. Schuster KC, Rohrer C, Eichinger D, Schmidtbauer J, Aldred P, Firgo H (2003) Environmentally friendly lyocell and rayon fibers. In: Wallenberger FT, Weston NE (eds) Natural fibers, polymers and composites—Recent advances. Kluwer Academic, Boston, MA, pp 123–146Google Scholar
  151. Schwertmann U, Cornell RM (2000) Iron oxides in the laboratory. Preparation and characterization. Wiley, Weinheim. ISBN 978 3 527 29669 9CrossRefGoogle Scholar
  152. Shen L, Dai J (2007) Improvement of hydrophobic properties of silk and cotton by hexafluoropropene plasma treatment. Appl Surf Sci 253(11):5051–5055CrossRefGoogle Scholar
  153. Sheu GS, Shyu SS (1994) Surface properties and interfacial adhesion studies of aramid fibres modified by gas plasmas. Compos Sci Technol 52:489–497CrossRefGoogle Scholar
  154. Shishoo R (2007) Introduction – The potential of plasma technology in the textile industry. In: Shishoo R (ed) Plasma technologies for textiles. Woodhead Publishing Limited in association with The Textile Institute, CambridgeCrossRefGoogle Scholar
  155. Siroka B, Noisternig M, Griesser UJ, Bechtold T (2008) Characterisation of cellulosic fibers and fabrics by sorption and desorption. Carbohydr Res 343:2194–2199PubMedCrossRefGoogle Scholar
  156. Široký J, Manian AP, Široká B, Abu-Rous M, Schlangen J, Blackburn RS, Bechtold T (2009) Alkali treatments of lyocell in continuous processes. Part 1: effects of temperature and alkali concentration in treatments of plain-woven fabrics. J Appl Polym Sci 113(6):3646–3655CrossRefGoogle Scholar
  157. Široký J, Blackburn RS, Bechtold T, Taylor J, White P (2010a) Attenuated total reflectance Fourier-transform Infrared spectroscopy analysis of crystallinity changes in lyocell following continuous treatment with sodium hydroxide. Cellulose 17(1):103–115CrossRefGoogle Scholar
  158. Široký J, Blackburn RS, Bechtold T, Taylor J, White P (2010b) Alkali treatment of cellulose II fibers and effect on dye sorption. Carbohydr Polym 84(1):299–307CrossRefGoogle Scholar
  159. Soc. pour l’ind. chim. a Bale (1941) Pigment-containing spinning masses. CH 212386, 3 Mar 1941Google Scholar
  160. Sodhi RNS, Sahi VP, Mittelman MW (2001) Application of electron spectroscopy and surface modification techniques in the development of anti-microbial coatings for medical devices. J Electron Spectros Relat Phenomena 121:249–264CrossRefGoogle Scholar
  161. Sourty E, Ryan DH, Marchessault RH (1998) Characterization of magnetic membranes based on bacterial and man-made cellulose. Cellulose 5:5–17CrossRefGoogle Scholar
  162. Struszczyk H, Ciechanska D (1998) Perspectives of Enzymes for Processing Cellulose for New Chemical Fibers. Enzyme Applications in Fiber Processing, ACS Symposium Series 687/25, pp 306–317Google Scholar
  163. Sun D, Stylios GK (2004) The effect of low temperature plasma treatment on the scouring and dyeing processes of nature fabrics. Text Res J 74:751–756CrossRefGoogle Scholar
  164. Sun D, Stylios GK (2005) Investigating the plasma modification of natural fiber fabrics-the effect on fabric surface and mechanical properties. Text Res J 75:639–644CrossRefGoogle Scholar
  165. Sun D, Stylios GK (2006) Fabric surface properties affected by low temperature plasma treatment. J Mater Process Technol 173(2):172–177CrossRefGoogle Scholar
  166. Sun N, Swatloski RP, Maxim ML, Rahman M, Harland AG, Haque A, Spear SK, Daly DT, Rogers RD (2008) Magnetite-embedded cellulose fibers prepared from ionic liquid. J Mater Chem 18:283–290CrossRefGoogle Scholar
  167. Tan JS, Fisher LW, Marcus P (1975) 169th National Meeting of ACS, Philadelphia, PA, AprilGoogle Scholar
  168. Tatarova I, Manian A, Siroka B, Bechtold T (2010) Nonalkali swelling solution for cellulose. Cellulose 17:913–922CrossRefGoogle Scholar
  169. Tatarova I, MacNaughtan W, Manian AP, Siroka B, Bechtold T (2011) Steam processing of regenerated cellulose fabric in concentrated LiCl/urea solution. Macromol Mater Eng. doi:= 10.1002/mame.201100272Google Scholar
  170. Temmerman E, Leys C (2005) Surface modification of cotton yarn with a DC glow discharge in ambient air. Surf Coat Tech 200:686–689CrossRefGoogle Scholar
  171. Thorsen WJ, Kodani RY (1966) A corona discharge method of producing shrink-resistant wool and mohair. Text Res J 36(7):651–661CrossRefGoogle Scholar
  172. Thorsen WJ (1971) Improvement of cotton spinnability, strength, and abrasion resistance by corona treatment. Text Res J 41(5):455–458CrossRefGoogle Scholar
  173. Thorsen WJ (1974) Modification of the cuticle and primary wall of cotton by corona treatment. Text Res J 44(6):422–428CrossRefGoogle Scholar
  174. Tissington B, Pollard G, Ward IM (1992) Study of the effects of oxygen plasma treatment on the adhesion behaviour of polyethylene fibres. Compos Sci Technol 44:185–195CrossRefGoogle Scholar
  175. Vehviläinen M, Taina T, Rom M, Janicki J, Ciechańska D, Grönqvist S, Siika-Aho M, Christoffersson KE, Nousiainen P (2008) Effect of wet spinning parameters on the properties of novel cellulosic fibres. Cellulose 15(5):671–680CrossRefGoogle Scholar
  176. Vesel A, Mozetič M, Hladnik A, Dolenc J, Zule J, Milošević S, Krstulović N, Klanjšek Gunde M, Hauptman N (2007) Modification of ink-jet paper by oxygen-plasma treatment. J Phys D Appl Phys 40:3689–3696CrossRefGoogle Scholar
  177. Vesel A, Mozetic M, Strnad S, Peršin Z, Stana-Kleinschek K, Hauptman N (2009) Plasma modification of viscose textile. Vacuum 84(1):79–82CrossRefGoogle Scholar
  178. Vigo TL, Wade RH, Mitcham O, Welch CM (1969) Synergistic effect of mixed bases in the conversion of cotton cellulose I to cellulose II. Role of cations as cocatalysts for crystal lattice rearrangement. Text Res J 39(4):305–316Google Scholar
  179. Vigo TL, Mitcham O, Welch CM (1970) Decrystallization of cotton cellulose by benzyltrimethylammonium hydroxide followed by polar organic solvents. J Polym Sci (Polym Lett Ed) 8(6):385–393Google Scholar
  180. von der Eltz A (1996) Recycling of dyed cellulosic wastes. EP 0717131, 19 Jun 1996Google Scholar
  181. Wadsworth LC (2004) Nonwovens Science and Technology II In: Materials science and Engineering 554. Accessed 4.5.2012
  182. Wakida T, Takeda K, Tanaka I, Takagishi T (1989) Free radicals in cellulose fibers treated with low temperature plasma. Text Res J 59(1):49–53CrossRefGoogle Scholar
  183. Warwicker JO (1969) Cotton swelling in alkalis and acids. J Appl Polym Sci 13:41–54CrossRefGoogle Scholar
  184. Warwicker JO (1967) Effect of chemical reagents on the fine structure of cellulose. IV. Action of caustic soda on the fine structure of cotton and ramie. J Polym Sci A1 Polym Chem 5(10):2579–2593CrossRefGoogle Scholar
  185. Warwicker JO, Wright AC (1967) Function of sheets of cellulose chains in swelling reactions on cellulose. J Appl Polym Sci 11(5):659–671CrossRefGoogle Scholar
  186. Wegmann J, Booker C (1966) Colored viscose dope. DE 1220964, 14 Jul 1966Google Scholar
  187. Weise U, Maloney T, Paulapuro H (1996) Quantification of water in different states of interaction with wood pulp fibres. Cellulose 3:189–202CrossRefGoogle Scholar
  188. White P (2001) Lyocell: the production process and market development. In: Woodings C (ed) Regenerated cellulose fibers. Woodhead Publishing Ltd, CambridgeGoogle Scholar
  189. Whitehead W (1938) Colored organic derivatives of cellulose and method of making same. US 2128338, 30 Aug 1938Google Scholar
  190. Wong KK, Tao XM, Yuen CWM, Yeung KW (2000) Effect of plasma and subsequent enzymatic treatments on linen fabrics. J Soc Dyers Colour 116(7–8):208–214Google Scholar
  191. Wu M, Kuga S (2006) Cationization of cellulose fabrics by polyallylamine binding. J Appl Polym Sci 100:1668–1672CrossRefGoogle Scholar
  192. Yaman N, Özdoğan E, Seventekin N, Ayhan H (2009) Plasma treatment of polypropylene fabric for improved dyeability with soluble textile dyestuff. Appl Surf Sci 255:6764–6770CrossRefGoogle Scholar
  193. Yasuda T, Okuno T, Miyama M, Yasuda H (1994) Penetration of plasma surface modification. I. CF4 and C2F4 glow discharge plasma. J Polym Sci A Polym Chem 32:1829–1837CrossRefGoogle Scholar
  194. Yoon NS, Lim YJ, Tahara M, Takagishi T (1996) Mechanical and dyeing properties of wool and cotton fabrics treated with low temperature plasma and enzymes. Text Res J 66(5):329–336CrossRefGoogle Scholar
  195. Yuranova T, Rincon AG, Bozzi A, Parra S, Pulgarin C, Albers P, Kiwi J (2006) Performance and characterization of Ag–cotton and Ag/TiO2 loaded textiles during the abatement of E. coli. J Photoch Photobio A 181(2–3):363–369CrossRefGoogle Scholar
  196. Zakaria S, Ong BH, Ahmad SH, Abdullah M, Yamauchi T (2005) Preparation of lumen-loaded kenaf pulp with magnetite (Fe3O4). Mater Chem Phys 89:216–220CrossRefGoogle Scholar
  197. Zeronian SH, Cabradilla KE (1972) Action of alkali metal hydroxides on cotton. J Appl Polym Sci 16:113–128CrossRefGoogle Scholar
  198. Zhang W, Okubayashi S, Bechtold T (2005a) Fibrillation tendency of cellulosic fibers – Part 1 effects of swelling. Cellulose 12(3):267–273CrossRefGoogle Scholar
  199. Zhang W, Okubayashi S, Bechtold T (2005b) Fibrillation tendency of cellulosic fibres –part 3. Effects of alkali pretreatment of lyocell fibre. Carbohyd Polym 59(2):173–179CrossRefGoogle Scholar
  200. Zhou J, Zhang L (2002) Cellulose microporous membranes prepared from NaOH/urea aqueous solution. J Membr Sci 210(1):77–99CrossRefGoogle Scholar
  201. Zuchairah IM, Pailthorpe MT, David SK (1997) Effect of glow discharge-polymer treatments on the shrinkage behavior and physical properties of wool fabric. Text Res J 67(1):69–74Google Scholar

Copyright information

© Springer-Verlag/WIen 2012

Authors and Affiliations

  • Lidija Fras Zemljic
    • 2
  • Silvo Hribernik
    • 3
  • Avinash P. Manian
    • 4
  • Hale B. Öztürk
    • 5
  • Zdenka Peršin
    • 3
  • Majda Sfiligoj Smole
    • 6
  • Karin Stana Kleinscheck
    • 2
  • Thomas Bechtold
    • 1
    Email author
  • Barbora Široká
    • 4
  • Ján Široký
    • 4
  1. 1.Research Institute for Textile Chemistry and Textile PhysicsUniversity InnsbruckDornbirnAustria
  2. 2.Laboratory of Characterization and Processing PolymersUniversity of MariborMariborSlovenia
  3. 3.Laboratory for characterisation and processing of polymers, Institute for Textile Materials and DesignUniversity of MariborMariborSlovenia
  4. 4.Research Institute for Textile Chemistry and Textile PhysicsUniversity InnsbruckDornbirnAustria
  5. 5.Lenzing AG, Textile Marketing, Business Unit Textile FibersLenzingAustria
  6. 6.Laboratory of characterisation and processing of polymers, Institute for Textile Materials and DesignUniversity of MariborMariborSlovenia

Personalised recommendations