Polysaccharides: Molecular and Supramolecular Structures. Terminology

  • Thomas HeinzeEmail author
  • Katrin Petzold-Welcke
  • Jan E. G. van Dam


This chapter summarises important issues about the molecular and supramolecular structure of polysaccharides. It describes the terminology of polysaccharides systematically. The polysaccharides are divided regarding the molecular structures in glucans, polyoses, polysaccharides with amino functions, polysaccharides with acid functions and some miscellaneous. The most important glucans cellulose, (1 → 3)-β-d-glucans, starch, glycogen, dextran and pullulan are discussed. For polyoses, xylans, mannans, xyloglucans and mixed-linkage β-glucans are described. Polysaccharides with amino functions include the description of chitin and chitosan, hyaluronan or hyaluronic acid, glycosaminoglycans and murein. The polysaccharides with acid functions are described including pectins, alginates, agar-agar and carrageenan. Moreover, inulin, levan and xanthan gum are described.


Hyaluronic Acid Uronic Acid Compression Wood Primary Cell Wall Sugar Beet Pulp 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Adinolfi M, Corsaro MM, Lanzetta R, Parrilli M, Folkard G, Grant W, Sutherland J (1994) Composition of the coagulant polysaccharide fraction from Strychnos potatorum seeds. Carbohydr Res 263:103PubMedGoogle Scholar
  2. Alsop RM, Byrne GA, Done JN, Earl IE, Gibbs R (1977) Quality assurance in clinical dextran manufacture by molecular-weight characterization. Process Biochem 12:15–35Google Scholar
  3. Altaner C, Knox JP, Jarvis MC (2007) In situ detection of cell wall polysaccharides in sitka spruce (Picea sitchensis (Bong. carrière) wood tissue. BioResources 2: 284–295Google Scholar
  4. Antonini E, Bellelli L, Bruzzesi MR, Caputo A, Chiancone E, Rossi-Fanelli A (1964) Studies on dextran and dextran derivatives. I. Properties of native dextran in different solvents. Biopolymers 2:27–34Google Scholar
  5. Armisén R, Galatas F (2009) Agar. In: Philips GO, Williman PA (eds) Handbook of hydrocolloids. Woodhead Publishing Ltd., Cambridge. ISBN 978-1-84569-414-2Google Scholar
  6. Arnott S, Fulmer A, Scottl WE, Dea CM, Moorhouse R, Rees DA (1974) The agarose double helix and its function in agarose gel structure. J Mol Biol 90: 269–272PubMedGoogle Scholar
  7. Atalla RH, VanderHart DL (1984) Native cellulose: a composite of two distinct crystalline forms. Science 223:283–285PubMedGoogle Scholar
  8. Bathgate GN, Manners DJ (1966) Multiple branching in glycogens. Biochem J 101:3c–5cPubMedGoogle Scholar
  9. Bender H, Wallenfels K (1961) Investigations on pullulan. II. Specific degradation by means of a bacterial enzyme. Biochem Z 334:79–95Google Scholar
  10. Bender H, Lehmann J, Wallenfels K (1959) Pullulan, an extracellular glucan from Pullularia pullulans. Biochim Biophys Acta 36:309–316PubMedGoogle Scholar
  11. Bender H, Siebert R, Stadler-Szöke A (1982) Can cyclodextrin glycosyltransferase be useful for the investigation of the fine structure of amylopectins? Characterisation of highly branched clusters isolated from digests with potato and maize starches. Carbohydr Res 110:245–259Google Scholar
  12. Bertoft E (2004a) On the nature of categories of chains in amylopectin and their connection to the super helix model. Carbohydr Polym 57:211–224Google Scholar
  13. Bertoft E (2004b) Lintnerisation of two amylose-free starches of A- and B-crystalline types, respectively. Starch-Starke 56:167–180Google Scholar
  14. Bertoft E (2007a) Composition of building blocks in clusters from potato amylopectin. Carbohydr Polym 70:123–136Google Scholar
  15. Bertoft E (2007b) Composition of clusters and their arrangement in potato amylopectin. Carbohydr Polym 70:433–446Google Scholar
  16. Bertoft E, Zhu Q, Andtfolk H, Jungner M (1999) Structural heterogeneity in waxy-rice starch. Carbohydr Polym 38:349–359Google Scholar
  17. Blows JMH, Calder PC, Geddes R, Wills PR (1988) The structure of placental glycogen. Placenta 9:493–500PubMedGoogle Scholar
  18. Bluhm TL, Sarko A (1977) The triple helical structure of lentinan, a linear β-(1 → 3)-d-glucan. Can J Chem 55: 293–299Google Scholar
  19. Bluhm TL, Deslands Y, Marchessault RH, Perz S, Rinaudo M (1982) Solid-state and solution conformations of scleroglucan. Carbohydr Res 100:117–130Google Scholar
  20. Boral S, Saxena A, Bohidar HB (2008) Universal growth of microdomains and gelation transition in agar hydrogels. J Phys Chem 112:3625–3632Google Scholar
  21. Born K, Langendorff V, Boulenguer P (2002) Xanthan. In: Vandamme E, De Baets S, Steinbüchel A (eds) Biopolymers: biology, chemistry, biotechnology, applications, vol 6, Polysaccharide I. Wiley-VCH, Weinheim, p 259Google Scholar
  22. Bouveng HO, Kiessling H, Lindberg B, McKay J (1963) Polysaccharides elaborated by Pullularia pullulans. II. The partial acid hydrolysis of the neutral glucan synthesized from sucrose solutions. Acta Chem Scand 17:797–800Google Scholar
  23. Bovey FA (1959) Enzymatic polymerization. I. Molecular weight and branching during the formation of dextran. J Polym Sci 35:167–182Google Scholar
  24. Bu H, Kjøniksen A-L, Knudsen KD, Nyström B (2005) Effects of surfactant and temperature on rheological and structural properties of semidilute aqueous solutions of unmodified and hydrophobically modified alginate. Langmuir 21:10923–10930PubMedGoogle Scholar
  25. Calder PC (1991) Glycogen structure and biogenesis. Int J Biochem 23(12):1335–1352PubMedGoogle Scholar
  26. Calder PC, Geddes R (1985) The proteoglucan nature of mammalian muscle glycogen. Glycoconj J 2:365–373Google Scholar
  27. Calder PC, Geddes R (1986) Digestion of the protein associated with muscle and liver glycogens. Carbohydr Res 148:173–177PubMedGoogle Scholar
  28. Catley BJ, Ramsay A, Servis C (1986) Observations on the structure of the fungal extracellular polysaccharide, pullulan. Carbohydr Res 153:79–86Google Scholar
  29. Chaubey M, Kapoor VP (2001) Structure of a galactomannan from the seeds of Cassia angustifolia Vahl. Carbohydr Res 332:439–444PubMedGoogle Scholar
  30. Chuah CT, Sarko A, Deslandes Y, Marchessault RH (1983) Packing analysis of carbohydrates and polysaccharides. Part 14. Triple helical crystalline structure of curdlan and paramylon hydrates. Macromolecules 16: 1375–1382Google Scholar
  31. Cleemput G, van Oort M, Hessing M, Bergmans MEF, Gruppen H, Grobet PJ, Delcour JA (1995) Variation in the degree of d-xylose substitution in arabinoxylans extracted from a European wheat flour. J Cereal Sci 22:73–84Google Scholar
  32. Corsaro MM, Giudicianni I, Lanzetta R, Marciano CE, Monaco P, Parrilli M (1995) Polysaccharides from seeds of Strychnos species. Phytochemistry 39: 1377–1380PubMedGoogle Scholar
  33. Deslandes Y, Marchessault RH, Sarko A (1980) Triple-helical structure of (1 → 3)-β-d-glucan. Macromolecules 13: 1466–1471Google Scholar
  34. Dols M, Remaud-Simeon M, Willemot RM, Vignon M, Monsan PF (1997) Characterization of dextransucrases from Leuconostoc mesenteroides NRRL B-1299. Appl Biochem Biotechnol 62:47Google Scholar
  35. Ebringerová A (2006) Structural diversity and application potential of hemicelluloses. Macromol Symp 232:1–12Google Scholar
  36. Ebringerová A, Heinze T (2000) Xylan and xylan derivatives - biopolymers with valuable properties, 1. Naturally occurring xylans: structures, isolation, procedure and properties. Rapid Commun 21:542–556Google Scholar
  37. Ebringerová A, Hromádková Z (1999) Xylans of industrial and biomedical importance. In: Harding SE (ed) Biotechnology and genetic engineering reviews, vol 16. Intercept, England, p 325Google Scholar
  38. Ebringerová A, Hromádková Z, Alföldi J, Hříbalová V (1998) The immunologically active xylan from ultrasound-treated corn cobs: extractability, structure and properties. Carbohydr Polym 37:231–239Google Scholar
  39. Ebringerová A, Kardšová A, Hromádková Z, Hříbalová V (2003) Mitogenic and comitogenic activities of polysaccharides from some European herbaceous plants. Fitoterapia 74:52–61PubMedGoogle Scholar
  40. Ebringerova A, Hromadkova Z, Heinze T (2005) Hemicellulose, In: Polysaccharides I, Structure, characterization and use. Adv Polym Sci 186:1–67Google Scholar
  41. Edgar KJ (2009) Polysaccharide chemistry: frontiers and challenges. In: Polysaccharide materials: performance by design. ACS Symp Ser 1017:3–12Google Scholar
  42. Esko JD, Kimata K, Lindahl U (2009) Proteoglycans and sulfated glycosaminoglycans. In: Varki A et al (eds) Essentials of glycobiology. Cold Spring Harbor Lab Press, Cold Spring Harbor, NY, Google Scholar
  43. Evtuguin DV, Tomás JL, Silva AMS, Neto CP (2003) Characterization of an acetylated heteroxylan from Eucalyptus globulus Labill. Carbohydr Res 338: 597–604PubMedGoogle Scholar
  44. Fischer MH, Yu N, Gray GR, Ralph JR, Anderson L, Marlett JA (2004) The gel-forming polysaccharide of psyllium husk (Plantago ovata Forsk). Carbohydr Res 339:2009–2017PubMedGoogle Scholar
  45. Franck A, De Leenheer L (2002) Polysaccharides. II. Polysaccharides from eukaryotes. In: Vandamme EJ, De Baets S, Steinbüchel A (eds) Biopolymers, vol 6. Wiley, Weinheim, pp 439–479Google Scholar
  46. French D (1972) Fine structure of starch and its relationship to the organization of starch granules. J Jpn Soc Starch Sci 19:8–25Google Scholar
  47. Fry SC (1989) The structure and functions of xyloglucan. J Exp Bot 40:1–11Google Scholar
  48. Fujii N, Shinohara S, Ueno H, Imada K (1984) Polysaccharide produced by Aureobasidium sp. (black yeast). Kenkyu Hokuku-Miyazaki Daigaku Nogakubu, vol 31, pp 253–262Google Scholar
  49. Fulton WS, Atkins EDT (1980) The gelling mechanism and relationship to molecular structure of microbial polysaccharide curdlan. In: French AD, Gardner KH (eds) Fibre diffraction methods. American Chemical Society, Washington, DC, pp 385–410Google Scholar
  50. Gallagher JT, Lyon M, Steward WP (1986) Structure and function of heparan sulphate proteoglycans. Biochem J 236:313–325PubMedGoogle Scholar
  51. Gallant DJ, Bouchet B, Buléon A, Pérez S (1992) Physical characteristics of starch granules and susceptibility enzymatic degradation. Eur J Clin Nutr 46:3–16Google Scholar
  52. Ganter JLMS, Heyraud A, Petkowicz CLOM, Rinaudo M, Reicher F (1995) Galactomannans from Brazilian seeds: characterization of the oligosaccharides produced by mild acid hydrolysis. Int J Biol Macromol 17:13–19PubMedGoogle Scholar
  53. Gardiner ES, Sarko A (1985) Packing analysis of carbohydrates and polysaccharides. 16. The crystal structures of celluloses IVI and IVII. Can J Chem 63:173–180Google Scholar
  54. Gardner KH, Blackwell J (1974) The structure of native cellulose. Biopolymers 13:1975–2001Google Scholar
  55. Gérard C, Planchot V, Colonna P, Bertoft E (2000) Relationship between branching density and crystalline structure of A- and B-type maize mutant starches. Carbohydr Res 326:130–144PubMedGoogle Scholar
  56. Giavasis I, Harvey LM, McNeil B (2002) Scleroglucan. In: Vandamme E, De Baets S, Steinbüchel A (eds) Biopolymers: biology, chemistry, biotechnology, applications, vol 6, Polysaccharide II. Wiley-VCH, Weinheim, p 37Google Scholar
  57. Gibbs PA, Seviour RJ (1996) Pullulan. In: Dimitiu S (ed) Polysaccharides in medicinal applications. Dekker, New York, pp 59–86Google Scholar
  58. Gilmore KS, Russell RR, Ferretti JJ (1990) Analysis of the Streptococcus downei gtfS gene, which specifies a glucosyltransferase that synthesizes soluble glucans. Infect Immun 58:2452PubMedGoogle Scholar
  59. Goldsmith E, Sprang S, Fletterick R (1982) Structure of maltoheptaose by difference Fourier methods and a model for glycogen. J Mol Biol 156:411–427PubMedGoogle Scholar
  60. Guizard C, Chanzy H, Sarko A (1984) Molecular and crystal structure of dextrans: a combined electron and X-ray diffraction study. 1. The anhydrous high-temperature polymorph. Macromolecules 17:100–107Google Scholar
  61. Gunja-Smith Z, Marshall JJ, Mercier C, Smith EE, Whelan WJ (1970) A revision of the Meyer-Bernfeld model of glycogen and amylopectin. FEBS Lett 12: 101–104PubMedGoogle Scholar
  62. Gunja-Smith Z, Marshall JJ, Smith EE (1971) Enzymatic determination of the unit chain length of glycogen and related polysaccharides. FEBS Lett 13:309–311Google Scholar
  63. Hanashiro I, Abe J-I, Hizukuri S (1996) A periodic distribution of chain length of amylopectin as revealed by high-performance anion-exchange chromatography. Carbohydr Res 283:151–159Google Scholar
  64. Hare MD, Svensson S, Walker GJ (1978) Characterization of the extracellular, water-insoluble α-d-glucans of oral streptococci by methylation analysis, and by enzymatic synthesis and degradation. Carbohydr Res 66:245–264Google Scholar
  65. Harris PJ, Henry RJ, Blakeney AB, Stone BA (1984) An improved procedure for the methylation analysis of oligosaccharides and polysaccharides. Carbohydr Res 127:59–73PubMedGoogle Scholar
  66. Hayashi A, Kinoshita K, Miyake Y (1981) The conformation of amylose in solution. Polym J 13:537–541Google Scholar
  67. Heidrich C, Vollmer W (2002) Murein (peptidoglycan). In: Vandamme E, De Baets S, Steinbüchel A (eds) Biopolymers: biology, chemistry, biotechnology, applications, vol 6, Polysaccharide I. Wiley-VCH, Weinheim, p 431Google Scholar
  68. Heinze T, Liebert T, Koschella A (2006a) Esterification of polysaccharides. Springer, Heidelberg, p 5Google Scholar
  69. Heinze T, Liebert T, Heublein B, Hornig S (2006b) Functional polymers based on dextran. Adv Polym Sci 205: 199–291Google Scholar
  70. Hermansson A-M, Eriksson E, Jordansson E (1991) Effects of potassium, sodium and calcium on the microstructure and rheological behaviour of the kappa-carrageenan gels. Carbohydr Polym 16:297–320Google Scholar
  71. Hizukuri S (1985) Relationship between the distribution of the chain length of amylopectin and the crystalline structure of starch granules. Carbohydr Res 141: 295–306Google Scholar
  72. Hizukuri S (1986) Polymodal distribution of the chain lengths of amylopectins, and its significance. Carbohydr Res 147:342–347Google Scholar
  73. Hoffman M, Jia Z, Pena MJ, Cash M, Harper A, Blackburn AR II, Darvill A, York WS (2005) Structural analysis of xyloglucans in the primary cell walls of plants in the subclass Asteridae. Carbohydr Res 340:1826–1840PubMedGoogle Scholar
  74. Hon DN-S (1996) Functional polymers: a new dimensional creativity in lignocellulosic chemistry. In: Hon DN-S (ed) Chemical modification of lignocellulosic materials. Dekker, New York, pp 1–10Google Scholar
  75. Hoover R (2001) Composition, molecular structure, and physicochemical properties of tuber and root starches: a review. Carbohydr Polym 45:253–267Google Scholar
  76. Hromádková Z, Kovačiková J, Ebringerová A (1999) Study of the classical and ultrasound-assisted extraction of the corn cob xylan. Ind Crop Prod 9:101–109Google Scholar
  77. Huynh R, Chaubet F, Jozefonvicz J (1998) Carboxymethylation of dextran in aqueous alcohol as the first step of the preparation of derivatized dextrans. Angew Makromol Chem 254:61–65Google Scholar
  78. Illingworth B, Lamer J, Cori GT (1952) Structure of glycogens and amylopectins. I. Enzymatic determination of chain length. J Biol Chem 199:631–640PubMedGoogle Scholar
  79. Ioan CE, Aberle T, Burchard W (2000) Structure properties of dextran. 2. Dilute solution. Macromolecules 33: 5730–5739Google Scholar
  80. Ishii T (1997) Structure and functions of feruloylated polysaccharides. Plant Sci 127:111–127Google Scholar
  81. Ishrud O, Zahid M, Zhou H, Pan Y (2001) A water-soluble galactomannan from the seeds of Phoenix dactylifera L.. Carbohydr Res 335:297–301PubMedGoogle Scholar
  82. Jaffe MJ, Teleweski FW, Cooke PW (1984) Thigmomorphogenesis: on the mechanical properties of mechanically perturbed bean plants. Physiol Plant 62:73–78PubMedGoogle Scholar
  83. Jane J-L, Kasemsuwan T, Leas S, Zobel H, Robyt JF (1994) Anthology of starch granule morphology by scanning electron microscopy. Starch-Starke 46: 121–129Google Scholar
  84. Jang M-K, Kong B-G, Jeong Y-I, Lee CH, Nah J-W (2004) Physicochemical characterization of α-chitin, β-chitin and γ-chitin separated from natural resources. J Polym Sci 42:3423–3432Google Scholar
  85. Jeanes A, Haynes WC, Wilham CA, Rankin JC, Melvin EH, Austin MJ, Cluskey JE, Fisher BE, Tsuchiya HM, Rist CE (1954) Characterization and classification of dextrans from ninety-six strains of bacteria. J Am Chem Soc 76:5041–5052Google Scholar
  86. Jenkins PJ, Donald AM (1995) The influence of amylose on starch granule structure. Int J Biol Macromol 17: 315–321PubMedGoogle Scholar
  87. Jonas R, Farah LF (1998) Production and application of microbial cellulose. Polym Degrad Stabil 59:101–106Google Scholar
  88. Kamide K, Okajima K, Kowsaka K, Matsui T (1985) CP/MASS 13C NMR spectra of cellulose solids: an explanation by the intramolecular hydrogen bond concept. Polym J 17:701–706Google Scholar
  89. Kapoor VP, Chanzy H, Taravel FR (1995) X-ray diffraction studies on some seed galactomannans from India. Carbohydr Polym 27:229–233Google Scholar
  90. Kapoor VP, Taravel FR, Joseleau J-P, Milas M, Chanzy H, Rinaudo M (1998) Cassia spectabilis DC seed galactomannan: structural, crystallographical and rheological studies. Carbohydr Res 306:231–241PubMedGoogle Scholar
  91. Kasai N, Harada T (1980) Ultrastructure of curdlan. In: French AD, Gardner KH (eds) Fiber diffraction methods, vol 141. ACS Symposium, Washington, DC, pp 363–383Google Scholar
  92. Katz JR (1928) In: Walton RP (ed) A comprehensive survey of starch chemistry. Reinhold, New York, p 68Google Scholar
  93. Keith K, Wiley B, Ball D, Arcidiacono S, Zorfass D, Mayer J, Kaplan D (1991) Continuous culture system for production of biopolymer levan using Erwinia herbicola. Biotechnol Bioeng 38:557–560PubMedGoogle Scholar
  94. Kjolberg O, Manners DJ, Wright A (1963) α-1,4-Glucosans. XVII. The molecular structure of some glycogens. Comp Biochem Physiol 8:353–365Google Scholar
  95. Klemm D, Schmauder H-P, Heinze T (2002) Cellulose. In: Vandamme E, De Baets S, Steinbüchel A (eds) Biopolymers: biology, chemistry, biotechnology, applications, vol 6, Polysaccharide II. Wiley-VCH, Weinheim, p 275Google Scholar
  96. Kondo T (1997) The relationship between intramolecular hydrogen bonds and certain physical properties of regioselectively substituted cellulose derivatives. J Polym Sci B Polym Phys 35:717–723Google Scholar
  97. Kondo T (2005) Hydrogen bonds in cellulose and cellulose derivatives. In: Dumitriu S (ed) Polysaccharides: structural diversity and functional versatility. Dekker, New York, pp 69–98Google Scholar
  98. Kong X, Corke H, Bertoft E (2009) Fine structure characterization of amylopectins from grain amaranth starch. Carbohydr Res 344:1701–1708PubMedGoogle Scholar
  99. Koreeda A, Harada T, Ogawa K, Sato S, Kasai N (1974) Study of the ultrastructure of gel-forming (1 → 3)-β-d-glucan (curdlan type polysaccharide) by electron microscopy. Carbohydr Res 33:396–399PubMedGoogle Scholar
  100. Krässig HA (1993) Cellulose - structure, accessibility, and reactivity. Gordon & Breach, AmsterdamGoogle Scholar
  101. Langan P, Nishiyama Y, Chanzy H (1999) A revised structure and hydrogen bonding scheme in cellulose II from a neutron fibre diffraction analysis. J Am Chem Soc 121:9940–9946Google Scholar
  102. Laohaphatanaleart K, Piyachomkwan K, Sriroth K, Bertoft E (2010) The fine structure of cassava amylopectin. Part 1: Organization of clusters. Int J Biol Macromol 47:317–324PubMedGoogle Scholar
  103. Larm O, Lindberg B, Svensson S (1971) Studies on the length of the side chains of the dextran elaborated by Leuconostoc mesenteroides NRRL B-512. Carbohydr Res 20:39–48PubMedGoogle Scholar
  104. Leathers TD (2003) Biotechnological production and applications of pullulan. Appl Microbiol Biotechnol 62:468–473PubMedGoogle Scholar
  105. Lee EYC, Whelan WJ (1966) Enzymic methods for the microdetermination of glycogen and amylopectin, and their unit-chain lengths. Arch Biochem Biophys 116: 162–167PubMedGoogle Scholar
  106. Liang CY, Marchessault RH (1959) Infrared spectra of crystalline polysaccharides. I. Hydrogen bonds in native celluloses. J Polym Sci 37:385–395Google Scholar
  107. Lindman B, Karlström G, Stigsson L (2010) On the mechanism of dissolution of cellulose. J Mol Liq 156:76–81Google Scholar
  108. Lundqvist J, Teleman A, Junel L, Zacchi G, Dahlman O, Tjerneld F, Stålbrand H (2002) Isolation and characterization of galactoglucomannan from spruce (Picea abies). Carbohydr Polym 48:29–39Google Scholar
  109. Malmström A, Aberg L (1982) Biosynthesis of dermatan sulphate. Assay and properties of the uronosyl C-5 epimerase. Biochem J 201:489–493PubMedGoogle Scholar
  110. Manners DJ (1957) The molecular structure of glycogens. Adv Carbohydr Chem Biochem 12:261–298Google Scholar
  111. Manners DJ (1962) Enzymic synthesis and degradation of starch and glycogen. Adv Carbohydr Chem Biochem 17:371–430Google Scholar
  112. Manners DJ, Wright A (1962) α-1,4-d-Glucosans Part XIII. Determination of the average chain length of glycogens by α-amylolysism. J Chem Soc, 1597–1602Google Scholar
  113. Manno M, Emanuelle A, Martorana V, Bulone D, San Biagio PL, Palma-Vittorelli MB, Palma MU (1999) Multiple interactions between molecular and supramolecular ordering. Phys Rev E59:2222–2230Google Scholar
  114. Marchessault RH, Deslandes Y (1979) Fine structure of (1 → 3)-β-D-glucans: curdlan and paramylon. Carbohydr Res 75:231–242Google Scholar
  115. McIntosh M, Stone BA, Stanisich VA (2005) Curdlan and other bacterial (1 → 3)-β-d-glucans. Appl Microbiol Biotechnol 68:163–173PubMedGoogle Scholar
  116. Melendez-Hevia E, Waddell TG, Shelton ED (1993) Optimization of molecular design in the evolution of metabolism: the glycogen molecule. Biochem J 295:477–483PubMedGoogle Scholar
  117. Mitchell AJ (1988) Second derivative F.t.-i.r. spectra of celluloses I and II and related mono- and oligo-saccharides. Carbohydr Res 173:185–195Google Scholar
  118. Miyoshi K, Uezu K, Sakurai K, Shinkai S (2004) Proposal of a new hydrogen-bonding form to maintain curdlan triple. Chem Biodivers 1:916–924PubMedGoogle Scholar
  119. Naessens M, Cerdobbel A, Soetaert W, Vandamme EJ (2005) Leuconostoc dextransucrase and dextran: production, properties and applications. J Chem Technol Biotechnol 80:845–860Google Scholar
  120. Nakata M, Kawaguchi T, Kodama Y, Konno A (1998) Characterization of curdlan in aqueous sodium hydroxide. Polymer 39:1475–1481Google Scholar
  121. Navarini L, Gilli R, Gombac V, Abatangelo A, Bosco M, Toffanin R (1999) Polysaccharides from hot water extracts of roasted Coffea arabica beans: isolation and characterization. Carbohydr Polym 40:71–81Google Scholar
  122. Newburn E, Lacy R, Christie TM (1971) The morphology and size of extracellular polysaccharide from oral streptococci. Arch Oral Biol 16:863–872Google Scholar
  123. Nikuni Z (1978) Studies on starch granules. Starch-Starke 30:105–111Google Scholar
  124. Nilsson M, Saulnier L, Andersson R, Åman PM (1996) Water unextractable polysaccharides from three milling fractions of rye grain. Carbohydr Polym 30: 229–237Google Scholar
  125. Nilsson M, Andersson R, Andersson RE, Autio K, Åman PM (2000) Heterogeneity in a water-extractable rye arabinoxylan with a low degree of disubstitution. Carbohydr Polym 41:397–405Google Scholar
  126. Nishiyama Y, Langan P, Chanzy H (2002) Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 124:9074–9082PubMedGoogle Scholar
  127. Okada K, Yoneyama M, Mandai T, Aga H, Sakai S, Ichikawa T (1990) Digestion and fermentation of pullulan. Nippon Eiyo Shokoryo Gakkaishi 43:23–29Google Scholar
  128. Okuyama K, Otsubo A, Fukuzawa Y, Ozawa M, Harada T, Kasai N (1991) Single-helical structure of native curdlan and its aggregation state. J Carbohydr Chem 10:645–656Google Scholar
  129. Peat S, Whelan WJ, Thomas GJ (1952) Evidence of multiple branching in waxy maize starch. J Chem Soc Chem Commun, 4546–4548Google Scholar
  130. Pérez S, Bertoft E (2010) The molecular structures of starch components and their contribution to the architecture of starch granules: a comprehensive review. Starch-Stärke 62:389–420Google Scholar
  131. Petrov PT, Shingel KI, Scripko AD, Tsarenkov VM (2002) Biosynthesis of pullulan by Aureobasidium pullulans strain BMP-97. Biotekhnologiya 1:36–48Google Scholar
  132. Pillai CKS, Paul W, Sharma CP (2009) Chitin and chitosan polymers: chemistry, solubility and fibre formation. Prog Biopolym Sci 34:641–678Google Scholar
  133. Powell DA (1979) Structure, solution properties and biological interactions of some extracellular polysaccharides. In: Berkeley RCW, Gooday GW, Ellwood DC (eds) Microbial polysaccharides and polysaccharases. Academic, London, pp 117–160Google Scholar
  134. Prehn P (2002) Hyaluronan. In: Vandamme E, De Baets S, Steinbüchel A (eds) Biopolymers: biology, chemistry, biotechnology, applications, vol 6, Polysaccharide I. Wiley-VCH, Weinheim, p 379Google Scholar
  135. Ralet M-C, Bonnin E, Thibault J-F (2002) Pectines. In: Vandamme E, De Baets S, Steinbüchel A (eds) Biopolymers: biology, chemistry, biotechnology, applications, vol 6, Polysaccharide II. Wiley-VCH, Weinheim, p 345Google Scholar
  136. Rao MVSSTS, Muralikrishna G (2001) Non-starch polysaccharides and bound phenolic acids from native and malted finger millet (Ragi, Eleusine coracana, Indaf - 15). Food Chem 72:187–192Google Scholar
  137. Rau U (2002) Schizophyllan. In: Vandamme E, De Baets S, Steinbüchel A (eds) Biopolymers: biology, chemistry, biotechnology, applications, vol 6, Polysaccharide II. Wiley-VCH, Weinheim, p 61Google Scholar
  138. Rau U, Müller R-J, Cordes K, Klein J (1990) Process and molecular data of branched 1,3-d-glucans in comparison with Xanthan. Bioprocess Eng 5:89–93Google Scholar
  139. Rees DA (1970) Structure, conformation, and mechanism in the formation of polysaccharide gels and networks. Adv Carbohydr Chem Biochem 24:267–332Google Scholar
  140. Reid JSG, Edwards ME (1995) Galactomannans and other cell wall storage polysaccharides in seeds. In: Stephen AM (ed) Food polysaccharides and their applications. Dekker, New York, pp 155–186Google Scholar
  141. Rhee S-K, Song K-B, Kim C-H, Park B-S, Jang E-K, Jang K-H (2002) Levan. In: Vandamme E, De Baets S, Steinbüchel A (eds) Biopolymers: biology, chemistry, biotechnology, applications, vol 6, Polysaccharide I. Wiley-VCH, Weinheim, p 351Google Scholar
  142. Rioux L-E, Turgeon S, Baeulieu M (2010) Structural characterization of laminaran and galactofucan extracted from the brown seaweed Saccharina longicruris. Phytochemistry 71:1586–1595PubMedGoogle Scholar
  143. Roberts GAF (1992) Chitin chemistry. Macmillan, London, p 185Google Scholar
  144. Rodén L (1968) The protein-carbohydrate linkages of acid mucopolysaccharides. In: Quintarelli G (ed) Chemical physiology of mucopolysaccharides, vol 1968. J & A Churchill Ltd., London, pp 17–32Google Scholar
  145. Rodgers NE (1973) Scleroglucan. In: Whistler RL, BeMiller JN (eds) Industrial gums, 2nd edn. Academic, New York, pp 499–511Google Scholar
  146. Roukas T, Montzouridpu F (2001) Effect of aeration rate on pullulan production and fermentation broth rheological properties in an airlift reactor. J Chem Technol Biot 76:371–376Google Scholar
  147. Sabra W, Deckewer W-D (2005) Alginate – a polysaccharide of industrial interest and diverse biological functions. In: Dumitriu S (ed) Polysaccharides: structural diversity and functional versatility. Dekker, New York, p 515Google Scholar
  148. Sakurai K, Uezu K, Numata M, Hasegawa T, Li C, Kaneko K, Shinkai S (2005) β-1,3-Glucan polysaccharides as novel one-dimensional hosts for DNA/RNA, conjugated polymers and nanoparticles. Chem Commun, 35:4383–4398Google Scholar
  149. Samuelsen AB, Lund I, Djahromi JM, Paulsen BS, Wold JK, Knutsen SH (1999a) Structural features and anti-complementary activity of some heteroxylan polysaccharide fractions from the seeds of Plantago major L.. Carbohydr Polym 38:133–143Google Scholar
  150. Samuelsen AB, Cohen EH, Paulsen BS, Brull LP, Thomas-Oates JE (1999b) Structural studies of a heteroxylan from Plantago major L. seeds by partial hydrolysis, HPAEC-PAD, methylation and GC–MS, ESMS and ESMS/MS. Carbohydr Res 315:312–318PubMedGoogle Scholar
  151. Saulnier L, Marot C, Chanliaud E, Thibault J-F (1995) Cell wall polysaccharide interactions in maize bran. Carbohydr Polym 26:279–287Google Scholar
  152. Schooneveld-Bergmans MEF, Hopman AMCP, Beldman G, Voragen AGJ (1998) Extraction and partial characterization of feruloylated glucuronoarabinoxylans from wheat bran. Carbohydr Polym 35:39–47Google Scholar
  153. Schooneveld-Bergmans MEF, Beldman G, Voragen AGJ (1999) Structural features of (glucurono)arabinoxylans extracted from wheat bran by barium hydroxide. J Cereal Sci 29:63–75Google Scholar
  154. Scott JE, Heatley F (1999) Hyaluronan forms specific stable tertiary structures in aqueous solution: a 13C NMR study. PNAS 96:4850–4855PubMedGoogle Scholar
  155. Senti FR, Hellmann NN, Ludwig NH, Babcock GE, Tobin R, Glass CA, Lamberts BL (1955) Viscosity, sedimentation, and light-scattering properties of fraction of an acid-hydrolyzed dextran. J Polym Sci 17:527–546Google Scholar
  156. Seymour FR, Slodki ME, Plattner RD, Jeanes A (1977) Six unusual dextrans: methylation structural analysis by combined g.l.c.—m.s. of per-O-acetyl-aldononitriles. Carbohydr Res 53:153–166Google Scholar
  157. Seymour FR, Chen ECM, Bishop SH (1979) Methylation structural analysis of unusual dextrans by combined gas-liquid chromatography-mass spectrometry. Carbohydr Res 68:113Google Scholar
  158. Sharma BR, Naresh L, Dhuldhoya NC, Merchant SU, Merchant UC (2006) An overview on Pectins. Times Food Process J 4:44–51Google Scholar
  159. Shimamura A, Tsumori H, Mukasa H (1982) Purification and properties of Streptococcus mutans extracellular glucosyltransferase. Biochim Biophys Acta 702:72PubMedGoogle Scholar
  160. Shingel KI (2004) Current knowledge on biosynthesis, biological activity, and chemical modification of the exopolysaccharide pullulan. Carbohydr Res 339: 447–460PubMedGoogle Scholar
  161. Shogren RL (1998) Starch: properties and materials applications. In: Kaplan DL (ed) Biopolymers from renewable resources. Springer, Berlin, pp 30–46Google Scholar
  162. Singh V, Srivastava V, Pandey M, Esthi R, Sanghi R (2003) Ipomoea turpethum seeds: a potential source of commercial gum. Carbohydr Polym 51:357–359Google Scholar
  163. Singh RS, Saini GK, Kennedy JF (2008) Pullulan: microbial sources, production and applications. Carbohydr Polym 73:515–531Google Scholar
  164. Slodki ME, England RE, Plattner RD, Dick WE (1986) Methylation analyses of NRRL dextrans by capillary gas-liquid chromatography. Carbohydr Res 156: 199–206Google Scholar
  165. Sowa W, Blackwood AC, Adams GA (1963) Neutral extracellular glucan of Pullularia pullulans (de Bary) Berkhout. Can J Chem 41:2314–2319Google Scholar
  166. Srichuwong S, Sunarti TC, Mishima T, Isono N, Hisamatsu M (2005) Starches from different botanical sources I: contribution of amylopectin fine structure to thermal properties and enzymes digestibility. Carbohydr Polym 60:529–538Google Scholar
  167. Srivastava M, Kapoor VP (2005) Seed galactomannans: an overview. Chem Biodivers 2:295–317PubMedGoogle Scholar
  168. Stephen AM (1983) Other plant polysaccharides. In: Aspinall GO (ed) The polysaccharides, vol 2. Academic, New York, pp 97–193Google Scholar
  169. Stokke BT, Smidsrød O, Bruheim P, Sjåk-Bræk G (1991) Distribution of uronate residues in alginate chains in relation to alginate gelling properties. Macomolecules 24:4637–4640Google Scholar
  170. Takeo K, Tokumura A, Kuge T (1973) Complexes of starch and its related materials with organic compounds. X. X-ray diffraction of amylose-fatty acid complexes. Starch/Stärke 35:357–362Google Scholar
  171. Tashiro K, Kobayashi M (1991) Theoretical evaluation of three-dimensional elastic constants of native and regenerated celluloses: role of hydrogen bonds. Polymer 32: 1516–1526Google Scholar
  172. Taylor C, Cheetham NWH, Walker GJ (1985) Application of high-performance liquid chromatography to a study of branching in dextrans. Carbohydr Res 137:1–12Google Scholar
  173. Teleman A, Tenkanen M, Jacobs A, Dahlman O (2002) Characterization of O-acetyl-(4-O-methylglucurono)xylan isolated from birch and beech. Carbohydr Res 337:373–377PubMedGoogle Scholar
  174. Telewski FW (2006) A unified hypothesis of mechanoperception in plants. Am J Bot 93:1466–1476PubMedGoogle Scholar
  175. Tester RF, Karkalas J, Qi X (2004) Starch-composition, fine structure and architecture. J Cereal Chem 39: 151–165Google Scholar
  176. Timell TE (1986) Compression wood in gymnosperms, Springer series in wood science. Springer, Berlin, 2150 pGoogle Scholar
  177. VanCleve JW, Schaefer WC, Rist CE (1956) The Structure of NRRL B-512 Dextran. Methylation Studies. J AmChem Soc 78:4435Google Scholar
  178. Van de Velde F, De Ruiter GA (2002) Carrageenan. In: Vandamme E, De Baets S, Steinbüchel A (eds) Biopolymers: biology, chemistry, biotechnology, applications, vol 6, Polysaccharide II. Wiley-VCH, Weinheim, p 245Google Scholar
  179. Vandamme EJ, De Baets S, Vanbaelen A, Joris K, De Wulf P (1998) Improved production of bacterial cellulose and its application potential. Polym Degrad Stabil 59:93–99Google Scholar
  180. Vignon MR, Gey C (1998) Isolation, 1H and 13C NMR studies of (4-O-methyl-image-glucurono)-image-xylans from luffa fruit fibres, jute bast fibres and mucilage of quince tree seeds. Carbohydr Res 307: 107–111Google Scholar
  181. Vincken J-P, Schols HA, Oomen RJFJ, McCann MC, Ulvsko P, Voragen AGJ, Visser RGF (2003) If homogalacturonan were a side chain of rhamnogalacturonan I. Implications for cell wall architecture. Plant Physiol 132:1781–1789PubMedGoogle Scholar
  182. Vinkx CJA, Stevens I, Gruppen H, Grobet PJ, Delcour JA (1995) Physico-chemical and functional properties of rye nonstarch polysaccharides. VI. Variability in the structure of water-unextractable arabinoxylans. Cereal Chem 72:411–418Google Scholar
  183. Vollmer W, Bertsche U (2008) Murein (peptidoglycan) structure, architecture and biosynthesis in Escherichia coli. Biochim Biophys Acta 1778:1714–1734PubMedGoogle Scholar
  184. Voragen AGJ, Schols HA, Visser R (eds) (2003) Advances in pectin and pectinase research. Kluwer, DordrechtGoogle Scholar
  185. Wada M, Heux L, Isogai A, Nishiyama Y, Chanzy H, Sugiyama J (2001) Improved structural data of cellulose III prepared in supercritical ammonia. Macromolecules 34:1237–1243Google Scholar
  186. Wallenfels K, Keilich G, Bechtler G, Freudenberger D (1965) Investigations on pullulan. IV. Resolution of structural problems using physical, chemical and enzymatic methods. Biochem Z 341:433–450Google Scholar
  187. Wang Y, McNeil B (1996) Scleroglucan. Crit Rev Biotechnol 16:185–215PubMedGoogle Scholar
  188. Watherhouse AL, Chatterton NJ (1993) Glossary of fructan terms. In: Suzuki M, Chatterton NJ (eds) Science and technology of fructans. CRC, Boca Raton, FL, pp 2–7Google Scholar
  189. Widner B, Behr R, Von Dollen S, Tang M, Heu T, Sloma A, Sternberg D, DeAngelis PL, Weiggel PH, Brown S (2005) Hyaluronic acid production in Bacillus subtilis. Appl Environ Microbiol 71:3747–3752PubMedGoogle Scholar
  190. Wiley BJ, Ball DH, Arcidiacono SM, Sousa S, Mayer JM, Kaplan DL (1993) Control of molecular weight distribution of the biopolymer pullulan produced by Aureobasidium pullulans. J Environ Polym Degrad 1:3–9Google Scholar
  191. Willats WGT, Knox JP, Mikkelsen JD (2005) Pectin: new insights into an old polymer are starting to gel. Trends Food Sci Techol 17:97–104Google Scholar
  192. Wood PJ, Weisz J, Blackwell BA (1994) Structural studies of (1 → 3)(1 → 4)-β-d-glucans by 13C-NMR and by rapid analysis of cellulose-like regions using high-performance anion-exchange chromatography of oligosaccharides released by lichenase. Cereal Chem 71: 301–307Google Scholar
  193. Yanaki T, Norisuye T (1983) Triple helix and random coil scleroglucan in dilute solution. Polym J 15:389–396Google Scholar
  194. Yanaki T, Kojima T, Norisuye T (1981) Triple helix of scleroglucan in dilute aqueous sodium hydroxide. Polym J 13:1135–1143Google Scholar
  195. Yang B, Yu G, Zhao X, Ren W, Jiao G, Fangg L, Wang Y, Du G, Tiller C, Girouard G, Barrow CJ, Ewart HS, Zhang J (2011) Structural characterization and bioactivities of hybrid carrageenan-like sulphated galactan from red alga Furcellaria lumbricalis. Food Chem 124: 50–57Google Scholar
  196. Zhang H, Yoshimura M, Nishinari K, Williams MAK, Foster TJ, Norton IT (2001) Gelation behaviour of konjac glucomannan with different molecular weights. Biopolymers 59:38–50PubMedGoogle Scholar
  197. Zobel HF (1988) Starch crystal transformation and their industrial importance. Starch-Starke 40:1–7Google Scholar
  198. Zugenmaier P (2001) Conformation and packing of various crystalline cellulose fibers. Prog Polym Sci 26:1341–1417Google Scholar

Copyright information

© Springer-Verlag/WIen 2012

Authors and Affiliations

  • Thomas Heinze
    • 1
    • 2
    Email author
  • Katrin Petzold-Welcke
    • 3
  • Jan E. G. van Dam
    • 4
  1. 1.Centre of Excellence for Polysaccharide Research, Institute of Organic Chemistry and Macromolecular ChemistryFriedrich Schiller University of JenaJenaGermany
  2. 2.Laboratory of Fibre and Cellulose TechnologyÅbo Akademi UniversityÅboFinland
  3. 3.Centre of Excellence for Polysaccharide Research, Institute of Organic Chemistry and Macromolecular ChemistryFriedrich Schiller University of JenaJenaGermany
  4. 4.Wageningen UR Food & Biobased ResearchWageningenThe Netherlands

Personalised recommendations