Helix-helix interaction patterns in membrane proteins

  • Dieter Langosch
  • Jana R. Herrmann
  • Stephanie Unterreitmeier
  • Angelika Fuchs


Membrane-spanning α-helices represent major sites of protein-protein interaction in membrane protein oligomerization and folding. As such, these interactions may be of exquisite specificity. Specificity often rests on a complex interplay of different types of residues forming the helix-helix interfaces via dense packing and different non-covalent forces, including van der Waal’s forces, hydrogen bonding, charge-charge interactions, and aromatic interactions. These interfaces often contain complex residue motifs where the contribution of constituent amino acids depends on the context of the surrounding sequence. Moreover, transmembrane helix-helix interactions are increasingly recognized as being dynamic and dependent on the functional state of a given protein.


GpA, glycophorin A H-bond, hydrogen bond TMD, transmembrane domain 


  1. Adamian L and Liang J (2001) Helix-helix packing and interfacial pairwise interactions of residues in membrane proteins. J Mol Biol 311: 891–907CrossRefGoogle Scholar
  2. Adamian L and Liang J (2002) Interhelical hydrogen bonds and spatial motifs in membrane proteins: polar clamps and serine zippers. Proteins Struct Funct Genet 47: 209–218CrossRefGoogle Scholar
  3. Adamian L, Jackups R Jr, Binkowski TA, Liang J (2003) Higher-order interhelical spatial interactions in membrane proteins. J Mol Biol 327: 251–272CrossRefGoogle Scholar
  4. Adams PD, Engelman DM, Brünger AT (1996) Improved prediction for the structure of the dimeric transmembrane domain of glycophorin A obtained through global searching. Proteins 26: 257–261CrossRefGoogle Scholar
  5. Arbely E and Arkin IT (2004) Experimental measurement of the strength of alpha Ca-H...O bond in a lipid bilayer. J Am Chem Soc 126: 5362–5363CrossRefGoogle Scholar
  6. Arbely E, Granot Z, Kass I, Orly J, Arkin IT (2006) A trimerizing GxxxG motif is uniquely inserted in the severe acute respiratory syndrome (SARS) coronavirus spike protein transmembrane domain. Biochemistry 45: 11349–11356CrossRefGoogle Scholar
  7. Arkin IT (2002) Structural aspects of oligomerization taking place between the transmembrane alpha-helices of bitopic membrane proteins. Biochim Biophys Acta 1565: 347–363CrossRefGoogle Scholar
  8. Arkin IT and Brünger AT (1998) Statistical analysis of predicted transmembrane alpha-helices. Biochim Biophys Acta 1429: 113–128CrossRefGoogle Scholar
  9. Ash WL, Stockner T, MacCallum JL, Tieleman DP (2004) Computer modeling of polyleucine-based coiled coil dimers in a realistic membrane environment: insight into helix-helix interactions in membrane proteins. Biochemistry 43: 9050–9060CrossRefGoogle Scholar
  10. Asundi VK and Carey DJ (1995) Self-association of N-syndecan (syndecan-3) core protein is mediated by a novel structural motif in the transmembrane domain and ectodomain flanking region. J Biol Chem 270: 26404–26410CrossRefGoogle Scholar
  11. Barwe SP, Kim S, Rajasekaran SA, Bowie JU, Rajasekaran AK (2007) Janus model of the Na, K-ATPase beta-subunit transmembrane domain: distinct faces mediate alpha/beta assembly and beta-beta homo-oligomerization. J Mol Biol 365: 706–714CrossRefGoogle Scholar
  12. Bauer CM, Pinto LH, Cross TA, Lamb R (1999) The influenza virus M2 ion channel protein: probing the structure of the transmembrane domain in intact cells by using engineered disulfide crosslinking. Virology 254: 196–209CrossRefGoogle Scholar
  13. Beel AJ, Mobley CK, Kim HJ, Tian F, Hadziselimovic A, Jap B, Prestegard JH, Sanders CR (2008) Structural studies of the transmembrane C-terminal domain of the amyloid precursor protein (APP): does APP function as a cholesterol sensor? Biochemistry 47: 9428–9446CrossRefGoogle Scholar
  14. Bocharov EV, Pustovalova YE, Pavlov KV, Volynsky PE, Goncharuk MV, Ermolyuk YS, Karpunin DV, Schulga AA, Kirpichnikov MP, Efremov RG, Maslennikov IV, Arseniev AS (2007) Unique dimeric structure of BNip3 transmembrane domain suggests membrane permeabilization as a cell death trigger. J Biol Chem 282: 16256–16266CrossRefGoogle Scholar
  15. Bocharov EV, Mayzel ML, Volynsky PE, Goncharuk MV, Ermolyuk YS, Schulga AA, Artemenko EO, Efremov RG, Arseniev AS (2008a) Spatial structure and pH-dependent conformational diversity of dimeric transmembrane domain of the receptor tyrosine kinase EphA1. J Biol Chem 283: 29385–29395CrossRefGoogle Scholar
  16. Bocharov EV, Mineev KS, Volynsky PE, Ermolyuk YS, Tkach EN, Sobol AG, Chupin VV, Kirpichnikov MP, Efremov RG, Arseniev AS (2008b) Spatial structure of the dimeric transmembrane domain of the growth factor receptor ErbB2 presumably corresponding to the receptor active state. J Biol Chem 283: 6950–6956CrossRefGoogle Scholar
  17. Bormann B-J, Knowles WJ, Marchesi VT (1989) Synthetic peptides mimic the assembly of transmembrane glycoproteins. J Biol Chem 264: 4033–4037Google Scholar
  18. Bowie JU (1997) Helix packing in membrane proteins. J Mol Biol 272: 780–789CrossRefGoogle Scholar
  19. Bowie JU (2005) Solving the membrane protein folding problem. Nature 438: 581–589CrossRefGoogle Scholar
  20. Brandl M, Weiss MS, Jabs A, Sühnel J, Hilgenfeld R (2001) C-H...π interactions in proteins. J Mol Biol 307: 357–377CrossRefGoogle Scholar
  21. Brosig B and Langosch D (1998) The dimerization motif of the glycophorin A transmembrane segment in membranes: importance of glycine residues. Protein Sci 7: 1052–1056CrossRefGoogle Scholar
  22. Brown RJ, Adams JJ, Pelekanos R, Wan Y, McKinstry WJ, Palethorpe K, Seeber RM, Monks TA, Eidne K, Parker MW, Waters MJ (2005) Model for growth hormone receptor activation based on subunit rotation within a receptor dimer. Nat Struct Mol Biol 12: 814–821CrossRefGoogle Scholar
  23. Call ME, Schnell JR, Xu CQ, Lutz R, Chou JJ, Wucherpfennig KW (2006) The structure of the zeta transmembrane dimer reveals features essential for its assembly with the T cell receptor. Cell 127: 355–368CrossRefGoogle Scholar
  24. Call ME and Wucherpfennig KW (2007) Common themes in the assembly and architecture of activating immune receptors. Nat Rev Immunol 7: 841–850CrossRefGoogle Scholar
  25. Chamberlain AK, Faham S, Yohannan S, Bowie JU (2003) Construction of helix-bundle membrane proteins. Adv Protein Chem 63: 19–46CrossRefGoogle Scholar
  26. Chin CN and von Heijne G (2000) Charge pair interactions in a model transmembrane helix in the ER membrane. J Mol Biol 303: 1–5CrossRefGoogle Scholar
  27. Chin CN, Sachs JN, Engelman DM (2005) Transmembrane homodimerization of receptor-like protein tyrosine phosphatases. FEBS Lett 579: 3855–3858CrossRefGoogle Scholar
  28. Choma C, Gratkowski H, Lear JD, DeGrado WF (2000) Asparagine-mediated self-association of a model transmembrane helix. Nature Struct Biol 7: 161–166CrossRefGoogle Scholar
  29. Chothia C (1984) Principles that determine the structure of proteins. Annu Rev Biochem 53: 537–572CrossRefGoogle Scholar
  30. Dawson JP, Weinger JS, Engelman DM (2002) Motifs of serine and threonine can drive association of transmembrane helices. J Mol Biol 316: 799–805CrossRefGoogle Scholar
  31. DeCaen PG, Yarov-Yarovoy V, Zhao Y, Scheuer T, Catterall WA (2008) Disulfide locking a sodium channel voltage sensor reveals ion pair formation during activation. Proc Natl Acad Sci USA 105: 15142–15147CrossRefGoogle Scholar
  32. DeGrado WF, Gratkowski H, Lear JD (2003) How do helix-helix interactions help determine the folds of membrane proteins? Perspectives from the study of homo-oligomeric helical bundles. Prot Sci 12: 647–665Google Scholar
  33. Dews IC, MacKenzie KR (2007) Transmembrane domains of the syndecan family of growth factor coreceptors display a hierarchy of homotypic and heterotypic interactions. Proc Natl Acad Sci USA 104: 20782–20787CrossRefGoogle Scholar
  34. Dieckmann GR and DeGrado WF (1997) Modeling transmembrane helical oligomers. Curr Opin Struct Biol 7: 486–494CrossRefGoogle Scholar
  35. Doura AK and Fleming KG (2004) Complex interactions at the helix-helix interface stabilize the glycophorin A transmembrane dimer. J Mol Biol 343: 1487–1497CrossRefGoogle Scholar
  36. Doura AK, Kobus FJ, Dubrovsky L, Hibbard E, Fleming KG (2004) Sequence context modulates the stability of a GxxxG-mediated transmembrane helix-helix Dimer. J Mol Biol 341: 991–998CrossRefGoogle Scholar
  37. Escher C, Cymer F, Schneider D (2009) Two GxxxG-like motifs facilitate promiscuous interactions of the human ErbB transmembrane domains. J Mol Biol 389: 10–16CrossRefGoogle Scholar
  38. Fisher LE, Engelman DM, Sturgis JN (1999) Detergents modulate dimerization but not helicity, of the glycophorin A transmembrane domain. J Mol Biol 293: 639–651CrossRefGoogle Scholar
  39. Fleishman SJ, Schlessinger J, Ben-Tal N (2002) A putative molecular-activation switch in the transmembrane domain of erbB2. Proc Natl Acad Sci USA 99: 15937–15940CrossRefGoogle Scholar
  40. Fleming KG (2000) Riding the wave: structural and energetic principles of helical membrane proteins. Curr Opin Biotechnol 11: 67–71CrossRefGoogle Scholar
  41. Fleming KG (2008) Determination of membrane protein molecular weight using sedimentation equilibrium analytical ultracentrifugation. Curr Protoc Protein Sci, Chap. 7, Unit 7. 12. 1-7 12. 13Google Scholar
  42. Fleming KG and Engelman DM (2001) Specificity in transmembrane helix-helix interactions can define a hierarchy of stability for sequence variants. Proc Natl Acad Sci USA 98: 14340–14344CrossRefGoogle Scholar
  43. Fleming KG, Ackerman AL, Engelman DM (1997) The effect of point mutations on the free energy of transmembrane alpha helix dimerization. J Mol Biol 272: 266–275CrossRefGoogle Scholar
  44. Gorman PM, Kim S, Guo M, Melnyk R, McLaurin J, Fraser PE, Bowie JU, Chakrabartty A (2008) Dimerization of the transmembrane domain of amyloid precursor proteins and familial Alzheimer’s disease mutants. BMC Neurosci 9: 17CrossRefGoogle Scholar
  45. Gottschalk KE and Kessler H (2002) The structures of integrins and integrin-ligand complexes: implications for drug design and signal transduction. Angew Chem Int Ed 41: 3767–3774CrossRefGoogle Scholar
  46. Gottschalk KE and Kessler H (2004a) A computational model of transmembrane integrin clustering. Structure 12: 1109–1116CrossRefGoogle Scholar
  47. Gottschalk KE and Kessler H (2004b) Evidence for hetero-association of transmembrane helices of integrins. FEBS Lett 557: 253–258CrossRefGoogle Scholar
  48. Gottschalk KE, Adams PD, Brunger AT, Kessler H (2002) Transmembrane signal transduction of the alpha(IIb)beta(3) integrin. Protein Sci 11: 1800–1812CrossRefGoogle Scholar
  49. Gratkowski H, Lear JD, DeGrado WF (2001) Polar side chains drive the association of model transmembrane peptides. Proc Natl Acad Sci USA 98: 880–885CrossRefGoogle Scholar
  50. Grigoryan G and Degrado WF (2008) Modest membrane hydrogen bonds deliver rich results. Nat Chem Biol 4: 393–394CrossRefGoogle Scholar
  51. Gurezka R and Langosch D (2001) In vitro selection of membrane-spanning leucine zipper proteinprotein interaction motifs using POSSYCCAT. J Biol Chem 276: 45580–45587CrossRefGoogle Scholar
  52. Gurezka R, Laage R, Brosig B, Langosch D (1999) A heptad motif of leucine residues found in membrane proteins can drive self-assembly of artificial transmembrane segments. J Biol Chem 274: 9265–9270CrossRefGoogle Scholar
  53. Helms V (2002) Attraction within the membrane-Forces behind transmembrane protein folding and supramolecular complex assembly. EMBO Rep 3: 1133–1138CrossRefGoogle Scholar
  54. Herrmann J, Panitz J, Unterreitmeier S, Fuchs A, Frishman D, Langosch D (2009) Complex patterns of histidine, hydroxylated amino acids and the GxxxG motif mediate high-afinity transmembrane domain interactions. J Mol Biol 385: 912–923CrossRefGoogle Scholar
  55. Herrmann J, Fuchs A, Panitz J, Eckert T, Unterreitmeier S, Frishman D, Langosch D (2010) Ionic interactions promote transmembrane helix-helix association depending on sequence context. J Mol Biol, Scholar
  56. Hessa T, Kim H, Bihlmaier K, Lundin C, Boekel J, Andersson H, Nilsson I, White SH, Heijne Gv (2005) Recognition of transmembrane helices by the endoplasmic reticulum translocon. Nature 433: 377–381CrossRefGoogle Scholar
  57. Javadpour MM, Eilers M, Groesbeek M, Smith SO (1999) Helix packing in polytopic membrane proteins: role of glycine in transmembrane helix association. Biophys J 77: 1609–1618CrossRefGoogle Scholar
  58. Joh NHJ, Min A, Faham S, Whitelegge JP, Yang D, Woods VL Jr, Bowie JU (2008) Modest stabilization by most hydrogen-bonded side-chain interactions in membrane proteins. Nature 453: 1266–1270CrossRefGoogle Scholar
  59. Johnson RM, Rath A, Melnyk R, Deber CM (2006) Lipid solvation effects contribute to the affinity of Gly-xxx-Gly motif-mediated helix-helix interactions. Biochemistry 45: 8507–8515CrossRefGoogle Scholar
  60. Johnson RM, Hecht K, Deber CM (2007) Aromatic and cation-pi interactions enhance helix-helix association in a membrane environment. Biochemistry 46: 9208–9214CrossRefGoogle Scholar
  61. Jones DT, Taylor WR, Tornton JM (1994a) A model recognition approach to the prediction of allhelical membrane protein structure and topology. Biochemistry 33: 3038–3049CrossRefGoogle Scholar
  62. Jones DT, Taylor WR, Tornton JM (1994b) A mutation data matrix for transmembrane proteins. FEBS Lett 339: 269–275CrossRefGoogle Scholar
  63. Kim S, Jeon TJ, Oberai A, Yang D, Schmidt JJ, Bowie JU (2005) Transmembrane glycine zippers: physiological and pathological roles in membrane proteins. Proc Natl Acad Sci USA. 102: 14278–14283CrossRefGoogle Scholar
  64. Kim MJ, Park SH, Opella SJ, Marsilje TH, Michellys PY, Seidel HM, Tian SS (2007) NMR structural studies of interactions of a small, nonpeptidyl Tpo mimic with the thrombopoietin receptor extracellular juxtamembrane and transmembrane domains. J Biol Chem 282: 14253–14261CrossRefGoogle Scholar
  65. Laage R and Langosch D (1997) Dimerization of the synaptic vesicle protein synaptobrevin/VAMP II depends on specific residues within the transmembrane segment. Eur J Biochem 249: 540–546CrossRefGoogle Scholar
  66. Langosch D and Arkin IT (2009) Interaction and conformational dynamics of membrane-spanning protein helices. Protein Sci 18: 1343–1358CrossRefGoogle Scholar
  67. Langosch D and Heringa J (1998) Interaction of transmembrane helices by a knobs-into-holes geometry characteristic of soluble coiled coils. Proteins Struct Funct Genet 31: 150–160CrossRefGoogle Scholar
  68. Langosch DL, Brosig B, Kolmar H, Fritz H-J (1996) Dimerisation of the glycophorin A transmembrane segment in membranes probed with the ToxR transcription activator. J Mol Biol 263: 525–530CrossRefGoogle Scholar
  69. Langosch D, Lindner E, Gurezka R (2002) In vitro selection of self-interacting transmembrane segments-membrane proteins approached from a different perspective. IUBMB Life 54: 1–5CrossRefGoogle Scholar
  70. Lau TL, Kim C, Ginsberg MH, Ulmer TS (2009) The structure of the integrin alphaIIbbeta3 transmembrane complex explains integrin transmembrane signalling. EMBO J 9: 1351–1361CrossRefGoogle Scholar
  71. Lehnert U, Xia Y, Royce TE, Goh CS, Liu Y, Senes A, Yu HY, Zhang ZL, Engelman DM, Gerstein M (2004) Computational analysis of membrane proteins: genomic occurrence, structure prediction and helix interactions. Q Rev Biophys 37: 121–146CrossRefGoogle Scholar
  72. Lemmon MA, Flanagan JM, Hunt JF, Adair BD, Bormann B-J, Dempsey CE, Engelman DM (1992a) Glycophorin A dimerization is driven by specific interactions between transmembrane alphahelices. J Biol Chem 267: 7683–7689Google Scholar
  73. Lemmon MA, Flanagan JM, Treutlein HR, Zhang J, Engelman DM (1992b) Sequence specificity in the dimerization of transmembrane alpha-helices. Biochemistry 31: 12719–12725CrossRefGoogle Scholar
  74. Lemmon MA, Treutlein HR, Adams PD, Brünger AT, Engelman D (1994) A dimerization motif for transmembrane alpha-helices. Nature Struct Biol 1: 157–163CrossRefGoogle Scholar
  75. Lew S, Ren J, London E (2000) The effects of polar and/or ionizable residues in the core and flanking regions of hydrophobic helices on transmembrane conformation and oligomerization. Biochemistry 39: 9632–9640CrossRefGoogle Scholar
  76. Li R, Bennett JS, DeGrado WF (2004a) Structural basis for integrin alpha IIb beta 3 clustering. Biochem Soc Trans 32: 412–415CrossRefGoogle Scholar
  77. Li R, Gorelik R, Nanda V, Law PB, Lear JD, DeGrado WF, Bennett JS (2004b) Dimerization of the transmembrane domain of integrin αIIb subunit in cell membranes. J Biol Chem 279: 26666–26673CrossRefGoogle Scholar
  78. Liang J, Adamian L, Jackups R Jr (2005) The membrane-water interface region of membrane proteins: structural bias and the anti-snorkeling effect. Trends Biochem Sci 30: 355–357CrossRefGoogle Scholar
  79. Lin X, Tan SM, Law SK, Torres J (2006a) Two types of transmembrane homomeric interactions in the integrin receptor family are evolutionarily conserved. Proteins Struct Funct Bioinform 63: 16–23CrossRefGoogle Scholar
  80. Lin X, Tan SM, Law SK, Torres J (2006b) Unambiguous prediction of human integrin transmembrane heterodimer interactions using only homologous sequences. PROTEINS: Struct Funct Bioinform 65: 274–279CrossRefGoogle Scholar
  81. Lindner E and Langosch D (2006) A ToxR-based dominant-negative system to investigate heterotypic transmembrane domain interactions. PROTEINS: Struct Funct Bioinform 65: 803–807CrossRefGoogle Scholar
  82. Luo BH and Springer TA (2006) Integrin structures and conformational signaling. Curr Opin Cell Biol 18: 579–586CrossRefGoogle Scholar
  83. MacKenzie KR (2006) Folding and stability of alpha-helical integral membrane proteins. Chem Rev 106: 1931–1977CrossRefGoogle Scholar
  84. MacKenzie KR and Engelman DM (1998) Structure-based prediction of the stability of transmembrane helix-helix interactions: the sequence dependence of glycophorin A dimerization. Proc Natl Acad Sci USA 95: 3583–3590CrossRefGoogle Scholar
  85. MacKenzie KR and Fleming KG (2008) Association energetics of membrane spanning alpha-helices. Curr Opin Chem Biol 18: 1–8Google Scholar
  86. MacKenzie KR, Prestegard JH, Engelman DM (1997) A transmembrane helix dimer: structure and implications. Science 276: 131–133CrossRefGoogle Scholar
  87. Mall S, Broadbridge R, Sharma RP, East JM, Lee AG (2001) Self-association of model transmembrane alpha-helices is modulated by lipid structure. Biochemistry 40: 12379–12386CrossRefGoogle Scholar
  88. Manor J, Mukherjee P, Lin Y, Leononv H, Skinner JL, Zanni MT, Arkin IT (2009) Gating mechanism of the influenza A M2 channel revealed by 1 and 2D-IR spectroscopies. Structure: (in press)Google Scholar
  89. Matthews EE, Zoonens M, Engelman DM (2006) Dynamic helix interactions in transmembrane signaling. Cell 127: 447–450CrossRefGoogle Scholar
  90. Melnyk R, Kim S, Curran AR, Engelman DM, Bowie JU, Deber CM (2004) The anity of GXXXG motifs in transmembrane helix-helix interactions is modulated by long-range commfsiunication. J Biol Chem 279: 16591–16597CrossRefGoogle Scholar
  91. Mendrola JM, Berger MB, King MC, Lemmon MA (2002) The single transmembrane domains of ErbB receptors self-associate in cell membranes. J Biol Chem 277: 4704–4712CrossRefGoogle Scholar
  92. Merzlyakov M and Hristova K (2008) Forster resonance energy transfer measurements of transmembrane helix dimerization energetics. Methods Enzymol 450: 107–127CrossRefGoogle Scholar
  93. Merzlyakov M, Chen L, Hristova K (2007) Studies of receptor tyrosine kinase transmembrane domain interactions: The EmEx-FRET method. J Membr Biol 215: 93–103CrossRefGoogle Scholar
  94. Miyauchi K, Komano J, Yokomaku Y, Sugiura W, Yamamoto N, Matsuda Z (2005) Role of the specific amino acid sequence of the membrane-spanning domain of human immunodeficiency virus type 1 in membrane fusion. J Virol 79: 4720–4729CrossRefGoogle Scholar
  95. Moore DT, Berger BW, DeGrado WF (2008) Protein-protein interactions in the membrane: sequence, structural, and biological motifs. Structure 16: 991–1001CrossRefGoogle Scholar
  96. Moriki T, Maruyama H, Maruyama IN (2001) Activation of preformed EGF receptor dimers by lig-and-induced rotation of the transmembrane domain. J Mol Biol 311: 1011–1026CrossRefGoogle Scholar
  97. Munter LM, Voigt P, Harmeier A, Kaden D, Gottschalk KE, Weise C, Pipkorn R, Schaefer M, Langosch D, Multhaup G (2007) GxxxG motifs within the amyloid precursor protein transmembrane sequence are critical for the etiology of Abeta42. EMBO J 26: 1702–1712CrossRefGoogle Scholar
  98. Naarmann N, Bilgicer B, Meng H, Kumar K, Steinem C (2006) Fluorinated interfaces drive self-association of transmembrane alpha helices in lipid bilayers. Angew Chem Int Ed 45: 2588–2591CrossRefGoogle Scholar
  99. Nakamura T, Miyakawa Y, Miyamura A, Yamane A, Suzuki H, Ito M, Ohnishi Y, Ishiwata N, Ikeda Y, Tsuruzoe N (2006) A novel nonpeptidyl human c-Mpl activator stimulates human megakaryopoiesis and thrombopoiesis. Blood 107: 4300–4307CrossRefGoogle Scholar
  100. North B, Cristian L, Stowell XF, Lear JD, Saven JG, deGrado WF (2006) Characterization of a membrane protein folding motif the ser zipper, using designed peptides. J Mol Biol 359: 930-939Google Scholar
  101. Oberai A, Ihm Y, Kim S, Bowie JU (2006) A limited universe of membrane protein families and folds. Protein Sci 15: 1723–1734CrossRefGoogle Scholar
  102. Oxenoid K and Chou JJ (2005) The structure of phospholamban pentamer reveals a channel-like architecture in membranes. Proc Natl Acad Sci USA 102: 10870–10875CrossRefGoogle Scholar
  103. Ozawa S, Hayashi R, Masuda A, Iio T, Takahashi S (1997) Reconstitution of bacteriorhodopsin from a mixture of a proteinase V8 fragment and two synthetic peptides. Biochim Biophys Acta 1323: 145–153CrossRefGoogle Scholar
  104. Pinto LH, Dieckmann GR, Gandhi CS, Papworth CG, Braman J, Shaughnessy MA, Lear JD, Lamb R, DeGrado WF (1997) A functionally defined model for the M2 proton channel of influenza A virus suggests a mechanism for its ion selectivity. Proc Natl Acad Sci USA 94: 11301–11306CrossRefGoogle Scholar
  105. Popot J-L and Engelman DM (1990) Membrane protein folding and oligomerization: the two-stage model. Biochemistry 29: 4031–4037CrossRefGoogle Scholar
  106. Popot J-L and Engelman DM (2000) Helical membrane protein folding, stability and evolution. Annu Rev Biochem 69: 881–922CrossRefGoogle Scholar
  107. Popot JL, Trewhella J, Engelman DM (1986) Reformation of crystalline purple membrane from purified bacteriorhodopsin fragments. Embo 5: 3039–3044Google Scholar
  108. Rath A, Melnyk R, Deber CM (2006) Evidence for assembly of small multidrug resistance proteins by a “two-faced” transmembrane helix. J Biol Chem 281: 15546–15553CrossRefGoogle Scholar
  109. Rath A, Johnson RM, Deber CM (2007) Peptides as transmembrane segments: decrypting the determinants for helix-helix interactions in membrane proteins. PeptSci 88: 217–232Google Scholar
  110. Rath A, Tulumello DV, Deber CM (2009) Peptide models of membrane protein folding. Biochemistry 48: 3036–3045CrossRefGoogle Scholar
  111. Ridder AN and Langosch D (2005) Transmembrane domains in membrane protein folding, oligomerization, and function. In: Kiefhaber Ba (ed) Handbook of protein folding. Wiley, Weinheim, pp 876–918CrossRefGoogle Scholar
  112. Ridder A, Skupjen P, Unterreitmeier S, Langosch D (2005) Tryptophan supports interaction of transmembrane helices. J Mol Biol 354: 894–902CrossRefGoogle Scholar
  113. Ruan W, Becker V, Klingmüller U, Langosch D (2004a) The interface between the self-assembling erythropoietin receptor transmembrane segments corresponds to a heptad repeat pattern. J Biol Chem 279: 3273–3279CrossRefGoogle Scholar
  114. Ruan W, Lindner E, Langosch D (2004b) The interface of a membrane-spanning leucine zipper mapped by asparagine-scanning mutagenesis. Protein Sci 13: 555–559CrossRefGoogle Scholar
  115. Russ WP and Engelman DM (1999) TOXCAT: a measure of transmembrane helix association in a biological membrane. Proc Natl Acad Sci USA 96: 863–868CrossRefGoogle Scholar
  116. Russ WP and Engelman DM (2000) The GxxxG motif: a framework for transmembrane helix-helix association. J Mol Biol 296: 911–919CrossRefGoogle Scholar
  117. Sal-Man N and Gerber D, Shai Y (2004) The composition rather than position of polar residues (qxxs) drives aspartate receptor transmembrane domain dimerization in vivo. Biochemistry 43: 2309–2313CrossRefGoogle Scholar
  118. Sal-Man N, Gerber D, Shai Y (2005) The identification of a minimal dimerization motif QXXS that enables homo-and hetero-association of transmembrane helices in vivo. J Biol Chem 280: 27449–27457CrossRefGoogle Scholar
  119. Sal-Man N, Gerber D, Bloch I, Shai Y (2007) Specificity in transmembrane helix-helix interactions mediated by aromatic residues. J Biol Chem 282: 19753–19761CrossRefGoogle Scholar
  120. Samatey FA, Xu C, Popot J-L (1995) On the distribution of amino acid residues in transmembrane α-helix bundles. Proc Natl Acad Sci 92: 4577–4581CrossRefGoogle Scholar
  121. Sato T, Tang TC, Reubins G, Fei JZ, Fujimoto T, Kienlen-Campard P, Constantinescu SN, Octave JN, Aimoto S, Smith SO (2009) A helix-to-coil transition at the epsilon-cut site in the transmembrane dimer of the amyloid precursor protein is required for proteolysis. Proc Natl Acad Sci USA 106: 1421–1426CrossRefGoogle Scholar
  122. Schneider D (2004) Rendezvous in a membrane: close packing, hydrogen bonding, and the formation of transmembrane helix oligomers. FEBS Lett 577: 5–8CrossRefGoogle Scholar
  123. Schneider D and Engelman DM (2004) Involvement of transmembrane domain interactions in signal transduction by alpha/beta integrins. J Biol Chem 279: 9840–9846CrossRefGoogle Scholar
  124. Schnell JR and Chou JJ (2008) Structure and mechanism of the M2 proton channel of influenza A virus. Nature 451: U591–U595CrossRefGoogle Scholar
  125. Seelig J (2004) Thermodynamics of lipid-peptide interactions. Biochim Biophys Acta 1666: 40–50Google Scholar
  126. Senes A, Gerstein M, Engelman DM (2000) Statistical analysis of amino acid patterns in transmembrane helices: the GxxxG motif occurs frequently and in association with β-branched residues at neighboring positions. J Mol Biol 296: 921–936CrossRefGoogle Scholar
  127. Senes A, Ubarretxena-Belandia I, Engelman DM (2001a) The Ca-H...O hydrogen bond: a determinant of stability and specificity in transmembrane helix interactions. Proc Natl Acad Sci 98: 9056–9061CrossRefGoogle Scholar
  128. Senes A, Ubarretxena-Belandia I, Engelman DM (2001b) The Calpha-H...O hydrogen bond: a determinant of stability and specificity in transmembrane helix interactions. Proc Natl Acad Sci USA 98: 9056–9061CrossRefGoogle Scholar
  129. Seubert N, Royer Y, Staerk J, Kubatzky KF, Moucadel V, Krishnakumar S, Smith SO, Constantinescu SN (2003) Active and inactive orientations of the transmembrane and cytosolic domains of the erythropoietin receptor dimer. Mol Cell 12: 1239–1250CrossRefGoogle Scholar
  130. Shai Y (2001) Molecular recognition within the membrane milieu: implications for the structure and function of membrane proteins. J Membr Biol 182: 91–104CrossRefGoogle Scholar
  131. Shigematsu D, Matsutani M, Furuya T, Kiyota T, Lee S, Sugihara G, Yamashita S (2002) Roles of peptide-peptide charge interaction and lipid phase separation in helix-helix association in lipid bilayer. Biochim Biophys Acta 1564: 271–280CrossRefGoogle Scholar
  132. Slivka PF, Wong J, Caputo GA, Yin H (2008) Peptide Probes for protein transmembrane domains. ACS Chem Biol 3: 402–411CrossRefGoogle Scholar
  133. Smith SO, Song D, Shekar S, Groesbeek M, Ziliox M, Amoto S (2001) Structure of the transmembrane dimer interface of glycophorin a in membrane bilayers. Biochemistry 40: 6553–6558CrossRefGoogle Scholar
  134. Stein A, Weber G, Wahl MC, Jahn R (2009) Helical extension of the neuronal SNARE complex into the membrane. Nature 60: 525–528Google Scholar
  135. Stevens TJ and Arkin IT (2001) Substitution rates in alpha-helical transmembrane proteins. Protein Sci 10: 2507–2517CrossRefGoogle Scholar
  136. Stouffer AL, Acharya R, Salom D, Levine AS, Di Costanzo L, Soto CS, Tereshko V, Nanda V, Stayrook S, DeGrado WF (2008) Structural basis for the function and inhibition of an influenza virus proton channel. Nature 451: 596–599CrossRefGoogle Scholar
  137. Sulistijo ES and MacKenzie KR (2006) Sequence dependence of BNIP3 transmembrane domain dimerization implicates side-chain hydrogen bonding and a tandem GxxxG motif in specific helix-helix interactions. J Mol Biol 364: 974–990CrossRefGoogle Scholar
  138. Sulistijo ES and Mackenzie KR (2009) Structural basis for dimerization of the BNIP3 transmembrane domain. Biochemistry 48: 5106–5120CrossRefGoogle Scholar
  139. Sulistijo ES, Jaszewski TM, MacKenzie KR (2003) Sequence-specific dimerization of the transmembrane domain of the “BH3-only” protein BNIP3 in membranes and detergent. J Biol Chem 278: 51950–51956CrossRefGoogle Scholar
  140. Treutlein HR, Lemmon MA, Engelman DM, Brünger AT (1992) The glycophorin A transmembrane domain dimer: sequence-specific propensity for a right-handed supercoil of helices. Biochemistry 31: 12726–12733CrossRefGoogle Scholar
  141. Ubarretxena-Belandia I and Engelman DM (2001) Helical membrane proteins: diversity of functions in the context of simple architecture. Curr Opin Struct Biol 11: 370–376CrossRefGoogle Scholar
  142. Unterreitmeier S, Fuchs A, Schäffler T, Heym RG, Frishman D, Langosch D (2007) Phenylalanine promotes interaction of transmembrane domains via GxxxG motifs. J Mol Biol 374: 705–718CrossRefGoogle Scholar
  143. Walters RFS and deGrado WF (2006) Helix-packing motifs in membrane proteins. Proc Natl Acad Sci USA 103: 13658–13663CrossRefGoogle Scholar
  144. Wang J, Pielak RM, McClintock MA, Chou JJ (2009) Solution structure and functional analysis of the influenza B proton channel. Nat Struct Mol Biol 16: 1267–1271CrossRefGoogle Scholar
  145. Wegener KL and Campbell ID (2008) Transmembrane and cytoplasmic domains in integrin activation and protein-protein interactions (Review). Mol Membr Biol 25: 376–387CrossRefGoogle Scholar
  146. Yang J, Ma YQ, Page RC, Misra S, Plow EF, Qin J (2009) Structure of an integrin alphaIIb beta3 transmembrane-cytoplasmic heterocomplex provides insight into integrin activation. Proc Natl Acad Sci USA 106: 17729–17734CrossRefGoogle Scholar
  147. Yin H, Slusky JS, Berger BW, Walters RS, Vilaire G, Litvinov RI, Lear JD, Caputo GA, Bennett JS, DeGrado WF (2007) Computational design of peptides that target transmembrane helices. Science 315: 1817–1822CrossRefGoogle Scholar
  148. Yohannan S, Faham S, Yang D, Grosfeld D, Chamberlain AK, Bowie JU (2004) A Calpha-H...O hydrogen bond in a membrane protein is not stabilizing. J Am Chem Soc 126: 2284–2285CrossRefGoogle Scholar
  149. Zhang L, Sato Y, Hessa T, von Heijne G, Lee JK, Kodama I, Sakaguchi M, Uozumi N (2007) Contribution of hydrophobic and electrostatic interactions to the membrane integration of the Shaker K+ channel voltage sensor domain. Proc Natl Acad Sci USA 104: 8263–8268CrossRefGoogle Scholar
  150. Zhou FX, Cocco MJ, Russ WP, Brunger AT, Engelman DM (2000) Interhelical hydrogen bonding drives strong interactions in membrane proteins. Nature Struct Biol 7: 154–160CrossRefGoogle Scholar
  151. Zhou FX, Merianos HJ, Brünger AT, Engelman DM (2001) Polar residues drive association of polyleucine transmembrane helices. Proc Natl Acad Sci USA 98: 2250–2255CrossRefGoogle Scholar
  152. Zviling M, Kochva U, Arkin IT (2007) How important are transmembrane helices of bitopic membrane proteins? Biochim Biophys Acta 1768: 387–392CrossRefGoogle Scholar

Copyright information

© Springer-Verlag/Wien 2010

Authors and Affiliations

  • Dieter Langosch
    • 1
  • Jana R. Herrmann
    • 1
  • Stephanie Unterreitmeier
    • 1
  • Angelika Fuchs
    • 2
  1. 1.Department für biowissenschaftliche GrundlagenTechnische Universität München and Center for Integrated Protein Science (CIPSM)FreisingGermany
  2. 2.Department für biowissenschaftliche GrundlagenTechnische Universität MünchenFreisingGermany

Personalised recommendations