Advertisement

The influence of fatigue and rest period on the circadian variation of error frequency in shift workers (engine drivers)

  • G. Hildebrandt
  • W. Rohmert
  • J. Rutenfranz
Chapter
Part of the Forschungsberichte Des Landes Nordrhein-Westfalen book series (FOLANW)

Abstract

It has been well-known for a long time that “vigilance” functions undergo a circadian variation. Fig. 1 shows as an example (top curve) the daily course of auditory reaction time in healthy subjects. There is a predominant 24-hour-period with optima of performance in the forenoon and in the early evening, with a slight indication of a “post-lunch dip” in between. The second curve shows the daily course of error frequency obtained by Bjerner and Swensson (1953) in industrial shift workers. Besides the usual nightly maximum there is also a quite distinct secondary maximum in the early afternoon, indicating the additional presence of a 12-hour-period. When the potential extent of performance deficit is so marked that you may even fall asleep when driving a car, the amplitude of this secondary maximum in the early afternoon can be as great as the night one (Prokop and Prokop, 1955); this is shown in the third curve.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aanonsen, A. Shift work and health. Universitetsforlaget Oslo 1964Google Scholar
  2. Aschoff, J. The phase-angle difference in circadian periodicity. In: J. Aschoff (Ed.): Circadian clocks, pp. 262–276 S. Karger, Basel — New York 1965Google Scholar
  3. Aschoff, J. Human circadian rhythms in activity, body temperature, and other functions. Life Sciences and Space Research North-Holland, Amsterdam 1967Google Scholar
  4. Bjerner, B. and Swensson, A. Schichtarbeit und Rhythmus. Verh. 3. Konf. Int. Ges. f. Biol. Rhythmusforschung, Hamburg 1949 Acta Med. Scand., Suppl. 278, 102–107 (1953)Google Scholar
  5. Gautherie, M. Influence of ambient temperature on circadian rhythms in rectal temperature, blood pressure, and catecholamines excretion in man. In: Biometeorol. Congress, Nordwijk, pp. 54–55 Swets & Zeitlinger N.V., Amsterdam 1972Google Scholar
  6. Halhuber, J. Aus der medizinischen “Wissenschaft vom Urlaub”. Homburg-Informationen für den Werksarzt 7, 26 (1960)Google Scholar
  7. Hildebrandt, G. Reaktive Perioden und Spontanrhythmik. Reports VII. Conf. Soc. for Biological Rhythm, Siena 1960, pp. 75–82 Panminerva Medica, Torino 1962 aGoogle Scholar
  8. Hildebrandt, G. Biologische Rhythmen und ihre Bedeutung für die Bäder- und Klimaheilkunde. In: W. Amelung und A. Evers (Eds.): Handbuch der Bäder- und Klimaheilkunde, pp. 730–785 Schattauer Verlag, Stuttgart 1962 bGoogle Scholar
  9. Hildebrandt, G. Probleme des Kurverlaufs bei Bäder- und Klimakuren. Balneol. Beiblätter d. Ärztl. Mitt. Nr. 5/6 (1963)Google Scholar
  10. Hildebrandt, G. Störungen der biologischen Rhythmik. Heilkunst 80, 272–282 (1967 a)Google Scholar
  11. Hildebrandt, G. Die Koordination rhythmischer Funktionen beim Menschen. Verh. Dtsch. Ges. Inn. Med. 73, 922–941 (1967 b)Google Scholar
  12. Hildebrandt, G., Rohmert, W. and Rutenfranz, J. 12 & 24 h rhythms in error frequency of locomotive drivers and the influence of tiredness. Intern. J. Chronobiol. 2, 175–180 (1974)Google Scholar
  13. Hittmair, A. Freizeit und Urlaub als Therapie und Prophylaxe. Monatskurse f. Ärztl. Fortbildung 10, Nr. 6 (1960)Google Scholar
  14. Hoffmann, K. Zur Beziehung zwischen Phasenlage und Spontanfrequenz bei der endogenen Tagesperiodik. Z. Naturforsch. 18 b, 154–157 (1963)Google Scholar
  15. Mann, H., Rutenfranz, J., Aschoff, J. Untersuchungen zur Tagesperiodik der Reaktionszeit bei Nachtarbeit. I. Die Phasenlage des positiven Scheitelwertes und Einflüsse des Schlafs auf die Schwingungsbreite. Intern. Arch. Arbeitsmed. 29, 159–174 (1972)CrossRefGoogle Scholar
  16. Menzel, W. Therapie unter dem Gesichtspunkt biologischer Rhythmen. In: H. Lampert et al. (Eds.): Ergebnisse der physikalischdiätetischen Therapie 5, 1–38 Steinkopff Verlag, Dresden-Leipzig 1955Google Scholar
  17. Östberg, O. Interindividual differences in circadian fatigue patterns of shift workers. Brit. J. industr. Med. 30, 341–351 (1973)PubMedGoogle Scholar
  18. Östberg, O., McKnicholl, A.G. The preferred thermal conditions for “morning” and “evening” types of subjects during day and night. Build International 6, 147–157 (1973)Google Scholar
  19. Pátkai, P. Diurnal differences between habitual morning workers and evening workers in some psychological functions. Reports from the Psychological Laboratories of Stockholm University, No. 311 (1970)Google Scholar
  20. Prokop, O. und Prokop, L. Ermüdung und Einschlafen am Steuer. Dtsch. Z. gerichtl. Med. 44, 343–355 (1955)Google Scholar
  21. Voigt, E.-D., Engel, P. und Klein, H. Über den Tagesgang der körperlichen Leistungsfähigkeit. Int. Z. angew. Physiol. 25, 1–12 (1968)PubMedGoogle Scholar

Copyright information

© Springer Fachmedien Wiesbaden 1975

Authors and Affiliations

  • G. Hildebrandt
  • W. Rohmert
  • J. Rutenfranz

There are no affiliations available

Personalised recommendations