Advertisement

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Achar MVS: Effects of injection of Locke solution with higher concentration of potassium into femoral artery on blood pressure in cats. J. Physiol. (Lond.) 198: 115–116, 1968Google Scholar
  2. Ahlborg B, Bergstroem J, Eklund LG, Hultman E: Muscle glycogen and muscle electrolytes during prolonged physical work. Acta Physiol. Scand. 70: 129–142, 1967Google Scholar
  3. Alam M, Smirk FH: Obsevations in man upon a blood pressure raising reflex arising from the voluntary muscles. J. Physiol. (Lond.) 89: 372–384, 1937Google Scholar
  4. Alam M, Smirk FH: Observations in man on a pulse accelerating reflex from the voluntary muscles of the legs. J. Physiol. (Lond.) 92: 167–177, 1938Google Scholar
  5. Areekul S: Dynamics of transcapillary fluid exchange in the isolated rabbit ear. Acta Soc. Med. Ups. 74: 118–128, 1969Google Scholar
  6. Asmussen E, Nielsen M, Wieth-Pedersen G: On regulation of circulation during muscular work. Acta Physiol. Scand. 6: 353–358, 1943Google Scholar
  7. Atkins EDT, Phelps CF, Sheehan JK: The conformation of the mucopolysaccharides ; hyaluronates. Biochem. J. 128: 1255–1263, 1972PubMedGoogle Scholar
  8. Aukland K, Nicolaysen G: Interstitial fluid volume: Lokal regulatory mechanisms. Physiol. Rev. 61: 556–643, 1981PubMedGoogle Scholar
  9. Baker CH, Davis DL: Isolated skeletal muscle blood flow and volume changes during contractile activity. Blood Vessels 11: 32–44, 1974PubMedGoogle Scholar
  10. Balazs EA: The physical properties of synovial fluid and the special role on hyaluronic acid. In: Helfet J (ed.): Disorders of the Knee, Philadelphia: Lippincott: 63–75, 1974Google Scholar
  11. Beer G, Yonce LR: Blood flow, oxygen uptake, and capillary filtration in resting skeletal muscle. Am. J. Physiol. 223: 492–498, 1972PubMedGoogle Scholar
  12. Berggren G, Christensen EH: Pulsfrequenz und Körpertemperatur als Indizes der Stoffwechselgröße während der Arbeit. Arbeitsphysiologie 4: 225–261, 1950Google Scholar
  13. Bergström J, Beroniade V, Hultman E, Roch-Narlund AE: Relation between glycogen and electrolyte metabolism in human muscle. In: Krück F (ed.): Symposium über Transport und Funktion intrazellulärer Elektrolyte, Urban and Schwarzenberg, München-Wien 1967Google Scholar
  14. Bergström J, Guarnieri G, Hultman E: Carbohydrate metabolism and electrolyte changes in human muscle tissue during heavy work. J. Appl. Physiol. 30: 122–125, 1971PubMedGoogle Scholar
  15. Bergström J, Guarnieri G, Hultman E: Changes in muscle water and electrolytes during exercise. In: Keul J (ed.): Limiting factors of physical performance, Stuttgart 1973Google Scholar
  16. Bevergard BS, Shepherd JT: Circulatory effects of stimulating the carotis stretch receptors in man at rest and during exercise. J. Clin. Invest. 45: 132–142, 1966Google Scholar
  17. Bill A: Plasma protein dynamics: albumin and IgG capillary permeability, extravascular movement and regional blood flow in unanaethetized rabbits. Acta Physiol. Scand. 101: 28–42, 1977Google Scholar
  18. Brace RA, Guyton AC: Interaction of transcapillary Starling forces in the isolated dog forelimb. Am. J. Physiol. 233: 136–140, 1977Google Scholar
  19. Brendel W: Kreislauf in Hypothermie. Verh. dtsch. Ges. Kreisl. Fo.: 23–33, 1957Google Scholar
  20. Chen HJ, Granger HJ, Taylor AE: Interaction of capillary, interstitial, and lymphatic forces in the canine hindpaw. Circ. Res. 39: 245–254, 1976PubMedGoogle Scholar
  21. Chvapil M: Physiology of connective tissue. London, Butterworths 1967Google Scholar
  22. Comper WD, Preston BN: Model connective tissue systems: Membrane phenomena of gel membranes containing polyelectrolytes. J. Colloid Interface Sci. 53: 391–401, 1975Google Scholar
  23. Comper WD, Laurent TC: Physiological function of connective tissue polysaccharides. Physiol. Rev. 58: 255–315, 1978PubMedGoogle Scholar
  24. Cotlove E: Mechanism and extent of distribution of inulin and sucrose in chloride space of tissues. Am. J. Physiol. 176: 396–410, 1954PubMedGoogle Scholar
  25. Creese R, D’Silva JL, Shaw DM: Interfibre fluid from guinea-pig muscle. J. Physiol. (Lond.) 162: 44–53, 1962Google Scholar
  26. Davies RE, Keynes RD: A coupled sodium-potassium pump. In: Membrane transport and metabolism, New York, Academic Press 1961Google Scholar
  27. Dea JCM, Moorhouse R, Rees DA, Arnott S, Guss JM, Balazs: Hyaluronic acid: a novel double helical molecule? Science 179: 560–562, 1973PubMedGoogle Scholar
  28. Donald KW, Lind AR, Mc Nicol GW, Humphreys PW, Taylor SH, Staunton HP: Cardiovascular response to sustained static contractions. Circulat. Res. 21: 15–21, 1967Google Scholar
  29. Dost FH: Grundlagen der Phamakokinetik. Georg Thieme Verlag Stuttgart, 2. Aufl., 1968Google Scholar
  30. Douglas CG, Haidane JS: The regulation of the general circulation rate in man. J. Physiol. (Lond.) 56: 69–83, 1922Google Scholar
  31. Everett NB, Simons B, Lasher EP: Distribution of blood (Fe59) and plasma (I131) volumes determined by liquid nitrogen freezing. Circ. Res. 4: 419–424, 1956PubMedGoogle Scholar
  32. Frank JS, Langer GA: The myocardial interstitium: its structure and its role in ionic exchange. J. Cell Biol. 60: 586–601, 1974PubMedGoogle Scholar
  33. Freund PR, Hobbs SF, Rowell LB: Cardiovascular responses to muscle ischemia in man: dependency on muscle mass. J. Appl. Physiol. 45: 762–767, 1978PubMedGoogle Scholar
  34. Friederici HHR: Freeze-etch observations on interstitial connective tissue. J. Ultrastruct. Res. 24: 269–285, 1968PubMedGoogle Scholar
  35. Friedmann MH, Green K: Ion binding and Donnan equilibria in rabbit corneal stroma. Am. J. Physiol. 221: 356–362, 1971Google Scholar
  36. Garetto LP, Hargens AR: Interstitial fluid composition as sampled by wick catheters in skeletal muscle. Physiologist 19: 203, 1976Google Scholar
  37. Gebert G: Messung der K+- und Na+-Aktivität mit Mikro-Glaselek-troden im Extrazellulärraum des Kaninchenskeletmuskels bei Muskelarbeit. Pflügers Arch. 331: 204–214, 1972PubMedGoogle Scholar
  38. Gersh J, Catchpole HR: The nature of ground substance of connective tissue. Perspect. Biol. Med. 3: 282–319, 1960PubMedGoogle Scholar
  39. Gleeson T, Baldwin KM: Cardiovascular response to treadmill exercise in untrained rats. J. Appl. Physiol. 50: 1206–1211, 1981PubMedGoogle Scholar
  40. Green K, Hastings B, Friedman MH: Sodium ion binding in isolated corneal stroma. Am. J. Physiol. 220: 520–525, 1971PubMedGoogle Scholar
  41. Green K, Friedman MH: Potassium and sodium binding in corneal stroma and the effect on sodium binding. Am. J. Physiol. 221: 363–367, 1971PubMedGoogle Scholar
  42. Grob D, Liljestrand A, Johns RJ : Potassium movement in normal subjects. Effect on muscle function. Am. J. Med. 23: 340–355, 1957PubMedGoogle Scholar
  43. Guyton AC: Venous return. Handbook of Physiol. 2: 1099–1133, 1963Google Scholar
  44. Haljamae H, Linde A, Amundson B: Comperative analyses of capsular fluid and interstitial fluid. Am. J. Physiol. 227: 1199–1205, 1974PubMedGoogle Scholar
  45. Haraldsson B, Rippe B: Higher albumin clearance in rat hindquarters perfused with pure albumin solution than with serum as perfusate. Acta Physiol. Scand. 122: 93–95, 1984Google Scholar
  46. Haraldsson B, Rippe B: Serum factors other than albumin are needed for the maintenance of normal capillary permselectivity in rat hindlimb muscle. Acta Physiol. Scand. 123: 427–436, 1985Google Scholar
  47. Harris K, Walker PM, Mukle DAG, Harding R, Gatley R, Wilson GJ, Kuzon B, McKee N, Romaschin AD: Metabolie response of skeletal muscle to ischemia. Am. J. Physiol. 250: 213–220, 1986Google Scholar
  48. Hazeyama Y, Sparks HV: A model of potassium ion efflux during exercise of skeletal muscle. Am. J. Physiol. 236: 83–90, 1979Google Scholar
  49. Hegnauer AH, Fenn WO, Cobb DM: The cause of the rise in oxygen consumption of frog muscles in excess of potassium. J. Cell. Comp. Physiol. 4: 505–526, 1934Google Scholar
  50. Hill AV: The state of water in muscle and blood and the osmotic behaviour of muscle. Proceedings of the Royal Society of London, Series B: Biological Sciences 106: 477–505, 1930Google Scholar
  51. Hirche HJ, Schumacher E, Hagemann H: Extrazellular K+ concentration and K+ balance of the gastrocnemius muscle of the dog during exercise. Pflügers Arch. 387: 231–237, 1980PubMedGoogle Scholar
  52. Hnik P, Holas M, Krekule I, Kriz N, Mejsnar S, Smiesko V, Ujec E, Vyskocil F: Work induced potassium changes in skeletal muscle and effluent venous blood assessed by liquid ion exchanger micro-electrodes. Pflügers Arch. 362: 85–94, 1976PubMedGoogle Scholar
  53. Holmgren A: Circulatory changes during muscular work in man: with special reference to arterial and central venous pressures in the systemic circulation. Scand. J. Clin. Lab. Invest. 8, Suppl. 24: 1–97, 1956Google Scholar
  54. Honig CR, Frierson JL, Nelson CN: O2- transport and VO2 in resting muscle: significance for tissue-capillary exchange. Am. J. Physiol. 220: 357–363, 1971PubMedGoogle Scholar
  55. Jennische E, Hagberg H, Haljamäe H: Extracellular potassium concentration and membrane potential in rabbit gastrocnemius muscle during tourniquet ischemia. Pflügers Arch. 392: 335–339, 1982PubMedGoogle Scholar
  56. Johansson B: Circulatory responses to stimulation of somatic afferents. Acta Physiol. Scand. 57: Suppl. 198, 1962Google Scholar
  57. Kaiser RS, Diana JN: Effect of angiotensin and norepinephrine on capillary pressure and filtration coefficient in isolated dog hindlimb. Microvas. Res. 7: 207–228, 1974Google Scholar
  58. Katz J, Bonorris G, Golden S, Sellers AL: Extravascular albumin mass and exchange in rat tissues. Clin. Sci. 39: 705–724, 1977Google Scholar
  59. Kaufman MP, Longhurst JC, Rybicki J, Wallach JH, Mitchell H: Effects of static muscular contraction on impulse activity of group III and IV afferents in cats. J. Appl. Physiol. 55: 105–112, 1983PubMedGoogle Scholar
  60. Kaufman MP, Rybicki J, Waldrop TG, Ordway GA: Effect of ischaemia on responses of group III and IV afferents to contraction. J. Appl. Physiol. 57: 644–650, 1984PubMedGoogle Scholar
  61. Klootvd WG: Potassium stimulated respiration and intracellular calcium release in frog skeletal muscle. J. Physiol. 191: 141–165, 1967Google Scholar
  62. Kniffki KD, Mense S, Schmidt RF: Reponses of group IV afferent units from skeletal muscle to stretch, contraction and chemical stimulation. Exp. Brain Res. 31: 511–522, 1978PubMedGoogle Scholar
  63. Kovanen V, Suominen H, Heikkinen E: Connective tissue of fast and slow skeletal muscle in rats — effects of endurance training. Acta Physiol. Scand. 108:173–180, 1980Google Scholar
  64. Landis EM, Pappenheimer JR: Exchange of substrates through the capillary wall. In: Handbook of Physiology. Circulation. Washington DC: Am. Physiol. Soc. 1963Google Scholar
  65. Laurell H, Pernow B: Effect of exercise on plasma potassium in man. Acta Physiol. Scand. 66: 241–242, 1966Google Scholar
  66. Law RO, Phelps CF: The size of the sucrose, raffinose and inulin spaces in the gastrocnemius muscle of the rat. J. Physiol. 186: 547–557, 1966PubMedGoogle Scholar
  67. Lehninger AL: Biochemie (2. Aufl.) Verlag Chemie. Weinheim, Deerfield Beach, Basel, 1983Google Scholar
  68. Linnarson D: Dynamics of pulmonary gas exchange and heart rate changes at start and end of exercise. Acta Physiol. Scand.: Suppl. 415, 1974Google Scholar
  69. Liu CT, Huggins RA, Hoff HE: Mechanisms of intra-arterial K+-induced cardiovascular and respiratory responses. Am. J. Physiol. 217: 969–973, 1969PubMedGoogle Scholar
  70. Lucas J, Floyer MA: Changes in body fluid distribution and interstitial tissue compliance during the development and reversal of experimental renal hypertension in the rat. Clin. Sci. Mol. Med. 47: 1–11, 1974PubMedGoogle Scholar
  71. Lundvall J, Meilander S, Westling H, White T: Fluid transfer between blood and tissue during exercise. Acta Physiol. Scand. 85:258–269, 1972Google Scholar
  72. Macchia DD, Page E, Polimeni PJ : Interstitial anion distribution in striated muscle determined with 35S-sulfate and 3H sucrose. Am. J. Physiol. 237: 125–130, 1979Google Scholar
  73. Mader A, Heck H, Föhrenbach R, Hollmann W: Das statische und dynamische Verhalten des Laktats und des Säure-Basen-Status im Bereich niedriger bis maximaler Azidosen bei 400-und 800m-Läufern bei beiden Geschlechtern nach Belastungsabbruch. Deutsche Zeitschrift für Sportmedizin 30(7): 203–211 und 30(8): 249–261, 1979Google Scholar
  74. Mader A, Heck H, Hollmann W: A computer simulation model of energy output in relation to metabolic rate and internal environment. In: Knuttgen J, Vogel A, Poortmans J (eds.): Biochemistry of Exercise. International Series on Sport Sciences Vol. 13 Champaign, III, Human Kinetics Publishers, 1983Google Scholar
  75. Mader A, Heck H: A theory of the metabolic origin of “anaerobic threshold”. Int. J. Sports Med. 7: 45–65, 1986PubMedGoogle Scholar
  76. Mathews MB: Binding of calcium by proteoglycan of chondroitin sulphate. In: Balazs EA (ed.): Chemistry and Molecular Biology of the Intercellular Matrix, New York, Academic Press: 1121–1123, 1970Google Scholar
  77. McCloskey DJ, Mitchell JH: Reflex cardiovascular and respiratory responses originating in exercising muscle. J. Physiol. (Lond.) 224: 173–186, 1972Google Scholar
  78. McNamee JE, Gragins FS: Effect of histamine on microvasculature of isolated dog gracilis muscle. Am. J. Physiol. 229: 119–125, 1975PubMedGoogle Scholar
  79. Mellander S: Comparative studies on the adrenergic neuro-hormonal control to resistance and capacitance blood vessels in the cat. Acta Physiol. Scand. 50 : 3–86, 1960Google Scholar
  80. Mense S: Muscular nociceptors. J. Physiol. (Paris) 73: 233–240, 1977Google Scholar
  81. Mense S, Stahnke M: Responses in muscle afferent fibres of slow conduction velocity to contractions and ischaemia in the cat. J. Physiol. (Lond.) 342: 383–397, 1983Google Scholar
  82. Mitchell JH, Mierzwiak DS, Wildenthal K, Willis WD jr.; Schmith AM: Effect on left ventricular performance of stimulation of an afferent nerve from muscle. Circulat. Res. 22: 507–516, 1968PubMedGoogle Scholar
  83. Nose H, Yamada S, Morimoto T: Transvascular fluid shift and thoracic duct lymph: Analysis of lymph formation in the rat. Jap. J. Physiol. 34: 713–729, 1984Google Scholar
  84. Novotny I, Vyskocil F: Possible role of Ca ions in the resting metabolism of frog sartorius muscle during potassium depolarisation. J. Cell. Comp. Physiol. 67: 159–168, 1966Google Scholar
  85. Parent L, Caille JP: Fixed charges of the heart muscle interstitium. Biophys. J. 47: 725–729, 1985PubMedCentralPubMedGoogle Scholar
  86. Patridge SM: The chemistry of connective tissues, part 1. Biochem. J. 43: 387–397, 1968Google Scholar
  87. Pierson RN, Price DC jr., Wang J, Jain RK: Extracellular water measurements: organ tracer kinetics of bromide and succrose in rats and man. Am. J. Physiol. 235: 254–264, 1978Google Scholar
  88. Preston BN, Snowden JK, Houghton KT: Model connective tissue systems. The effect of proteoglycans on the distribution of small nonelectrolytes and microions. Biopolymers 11: 1654–1659, 1972Google Scholar
  89. Reed RK: Interstitial fluid volume, colloidosmotic and hydrostatic pressures in rat sceletal muscle. Effect of venous stasis and muscle activity. Acta Physiol. Scand. 112: 7–17, 1981Google Scholar
  90. Reed RK, Wiig H: Compliance of the interstitial space in rats. I Studies on hindlimb skeletal muscle. Acta Physiol. Scand. 113: 297–305, 1981Google Scholar
  91. Reed RK: Albumin concentration and colloid osmotic pressure of interstitial fluid collected by wick technique from rat skeletal muscle. Evaluation of the method. Acta Physiol. Scand. 112: 1–5, 1981Google Scholar
  92. Renkin EM: Transport of potassium from blood to tissue in isolated mammalian skeletal muscles. Am. J. Physiol. 197: 1205–1210, 1959PubMedGoogle Scholar
  93. Rhodin JAG: Histology, Oxford University Press, New York, 1974Google Scholar
  94. Rippe B, Folkow B: Capillary permeability to albumine in normotensive and spontaneously hypertensive rats. Acta Physiol. Scand. 101: 72–83, 1977Google Scholar
  95. Rooth G: Acid-base and water changes during tissue hypoxia in rats. Clin. Sci. 30: 417–424, 1966PubMedGoogle Scholar
  96. Rowell LB, Brengelmann GL, Blackmon JR, Bruce RA, Murray JA: Disparities between aortic and peripheral pulse pressures induced by upright exercise and vasomotor changes in man. Circulation 37: 954–964, 1968PubMedGoogle Scholar
  97. Rowell LB, Hermannsen L, Blackmon JR: Human cardiovascular and respiratory responses to graded muscle ischemia. J. Appl. Physiol. 41: 693–701, 1976PubMedGoogle Scholar
  98. Rowell LB: What signals govern the cardiovascular responses to exercise? Med. Sci. Sports and Exerc. 12: 307–315, 1980Google Scholar
  99. Rybicki KJ, Kaufman MP, Kenyon JL, Mitchell JH: Arterial pressure response to increasing interstitial potassium in hindlimb muscles of dogs. Am. J. Physiol. 247: 717–721, 1984Google Scholar
  100. Schad H, Brechteisbauer H: Thoracic duct lymph flow and composition in conscious dogs and the influence of anaesthesia and passive limb movement. Pflügers Arch. 371: 25–31, 1977PubMedGoogle Scholar
  101. Schade H: Physikalische Chemie der Zellen und Gewebe. Berlin 1924Google Scholar
  102. Schatzmann HJ: Transported cations as activators of red cell membrane ATPases. In: Deutsch E, Gerlach E, Moser K (eds.): Metabolism and Membrane Permeability of Erythrozytes and Thrombocytes: 407–415, Georg Thieme Verlag Stuttgart, 1968Google Scholar
  103. Schiein EM, Jensen D, Knochel JP: Effect of plasma water loss on assessment of muscle metabolism during exercise. J. Appl. Physiol. 34: 568–572, 1973Google Scholar
  104. Schmidt RF, Thews G: Physiologie des Menschen. Springer, Berlin/Heidelberg/New York, 1980Google Scholar
  105. Schnizer W, Hinnenberg H, Gebert G, Rieckert H: Versuche zur Anwendung der Pletysmographie als ein indirektes Verfahren zur Beurteilung des lokalen anaeroben Muskelstoffwechsels. Dtsch. Z. Sportmed. 3: 62–66, 1978Google Scholar
  106. Sejersted OM, Medbö JI, Hermansen L: Metabolie acidosis and changes in water and electrolyte balance after maximal exercise. Ciba Found Symp. 87: 153–167,1982PubMedGoogle Scholar
  107. Sjögaard G, Saltin B: Inulin spaces in “red” and “white” skeletal muscles of man. Acta Physiol. Scand. 105: 74, 1979Google Scholar
  108. Sjögaard G, Adams RP, Saltin B: Water and ion shifts in skeletal muscle of humans with intense dynamic knee extension. Am. J. Physiol. 248: 190–196, 1985Google Scholar
  109. Smith TL, Hutchins PM: Anesthetic effects on hemodynamics of spontaneously hypertensive and Wistar Kyoto rats. Am. J. Physiol. 238: 539–544, 1980Google Scholar
  110. Stacey MJ: Free nerve endings in skeletal muscle of the cat. J. Anat. 105: 231–254, 1969PubMedGoogle Scholar
  111. Stegemann J: Zum Mechanismus der Pulsfrequenzeinstellung durch den Stoffwechsel. Pflügers Arch. ges. Physiol. 276: 481–537 Mitteilungen a-d, 1963Google Scholar
  112. Stegemann J, Kenner TH: A theory on heart rate control by muscular metabolic receptors. Arch. Kreisl. Fo. 64: 185–214, 1971Google Scholar
  113. Steinhagen C, Hirche HJ, Nestle HW, Bovenkamp U, Hosselmann J: The interstitial pH of the working gastrocnemius muscle of the dog. Pflügers Arch. 367: 151–156, 1976PubMedGoogle Scholar
  114. Swann DA: On the state of hyaluronic acid in a connective tissue matrix. In: Balazs EA (ed.): Chemistry and Molecualr Biology of the Intercellular Matrix, New York: Academic Press, 1970Google Scholar
  115. Thimm F, Carvalho M, Babka M, Meier zu Verl, E: Reflex increases in heart rate induced by perfusing the hind leg of the rat with solutions containing lactic acid. Pflügers Arch. 400: 286–293, 1984PubMedGoogle Scholar
  116. Tibes U, Hemmer B, Schweigart U, Boning D, Fotescu D: Exercise acidosis as cause of electrolyte changes in femoral venous blood of trained and untrained man. Pflügers Arch. 347: 145–158, 1974PubMedGoogle Scholar
  117. Tibes U, Hemmer B, Böning D, Schweigart U: Relationships of femoral venous K+, H+, pO2 , osmolality, and orthophosphate with heart rate, ventilation and leg blood flow during bicycle exercise in athletes and non-athletes. Europ. J. Appl. Physiol. 35: 201–214, 1976Google Scholar
  118. Tibes U, Groth HH: Interaction of K+ , Osmolality (OSM), Orthophosphate (Pi), Lactic acid (Lac) and adrenaline at C-fiber receptors in skeletal muscle. Pflügers Arch. 368: Suppl. R40, 1977Google Scholar
  119. Tibes U: Kreislauf und Atmung bei Arbeit und Sport: Spiegel des Muskelstoffwechsels. Sankt Augustin, Richarz 1981Google Scholar
  120. Wallace GB, Brodie BB: The distribution of administered bromide in comparison with chloride and its relation to body fluids. J. Pharmacol. Exptl. Therap. 65: 214–219, 1939Google Scholar
  121. Wendell NS, Otis AB: Blood flow, blood oxygen tension, oxygen uptake and oxygen transport in skeletal muscle. Am. J. Physiol. 206: 858–866, 1964Google Scholar
  122. White HL, Rolf D: Whole body and tissue inulin and sucrose spaces in the rat. Am. J. Physiol. 188: 151–155, 1957PubMedGoogle Scholar
  123. Wiederhielm C, Fox JR, Lee DR: Ground substance mucopolysaccharides and plasma proteins: their role in capillary water balance. Am. J. Physiol. 230: 1121–1125, 1976PubMedGoogle Scholar
  124. Wiig H, Reed RK: Interstitial compliance and transcapillary starling pressures in cat skin and skeletal muscle. Am. J. Physiol. 248: 666–673, 1985Google Scholar
  125. Wildenthal K, Mierzwiak DS, Skinner NS jr, Mitchell JH: Potassium-induced cardiovascular and ventialtory reflexes from the dog hindlimb. Am. J. Physiol. 215: 542–548, 1968PubMedGoogle Scholar

Copyright information

© Springer Fachmedien Wiesbaden 1987

Authors and Affiliations

  • Klaus Baum
    • 1
  • Jürgen Stegemann
  1. 1.Physiologisches InstitutDeutschen Sporthochschule KölnDeutschland

Personalised recommendations