Advertisement

On the boundary layer in liquids

  • M. Z. v. Krzywoblocki
Chapter

Summary

The author discusses differential systems governing the motion of liquids having various equations of state. The resulting equations are ordinary parametric differential equations with two point boundary conditions. The problem of existence of solutions is discussed and the Iglisch proof is adjusted to prove the existence of the flow and of the temperature pattern.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. [1]
    Birkhoff, G.: Dimensional analysis of partial differential equations. Electrical Engineering, 67, 1185–1188, 1948.CrossRefGoogle Scholar
  2. [1a]
    Birkhoff, G.: Hydrodynamics. Princeton University Press, 1950, Chapt. IV.zbMATHGoogle Scholar
  3. [2]
    Falkner, V.M., and Skan, S. W.: Some approximate solutions of the boundary layer equations. Brit. A.R.C., R. and M. 1314, Apr. 1930, and Phil. Mag. 12, 865, 1931.Google Scholar
  4. [3]
    Goldstein, S.: Editor, Modern developments in fluid dynamics. Vol. I and II, Oxford Clarendon Press, 1938.Google Scholar
  5. [4]
    Goldstein, S.: A note on the boundary layer equations. Proc. Cambr. Philos. Soc. 35, 338, 1939.ADSCrossRefGoogle Scholar
  6. [5]
    Hamel, G.: Integralgleichungen. Springer Verlag, Berlin, 1949.CrossRefzbMATHGoogle Scholar
  7. [6]
    Hartree, D. R.: On an equation occuring in Falkner and Skan’s approximate treatment of the equations of the boundary layer. Proc. Cambr. Phil. Soc. 33, Part II, 223, 1937.ADSCrossRefGoogle Scholar
  8. [7]
    Hiemenz, F.: Die Grenzschicht an einem in den gleichförmigen Flüssigkeitsstrom eingetauchten geraden Kreiszylinder. Disser. Göttingen 1911, Dingl. Polytech. Jour. 326, Heft 21–26, 321–326, 1911.Google Scholar
  9. [8]
    Homann, F.: Der Einfluß großer Zähigkeit bei der Strömung um den Zylinder und um die Kugel. ZAMM, 16, 153, 1936.CrossRefzbMATHGoogle Scholar
  10. [9]
    Iglisch, R.: Über das asymptotische Verhalten der Lösung einer nichtlinearen gewöhnlichen Differentialgleichung 3. Ordnung. Veröffentl. des Math. Instit. der Tech. Hochsch. Braunschweig, 1943.Google Scholar
  11. [9a]
    Iglisch, R.: Elementarer Existenzbeweis für die Strömung in der laminaren Grenzschicht zur Potentialströmung Uu 1 x m mit m > 0 bei Absaugen und Ausblasen, ZAMM, 33, 4, 143–147, Apr. 1953.CrossRefzbMATHMathSciNetGoogle Scholar
  12. [10]
    Iglisch, R., and Grohne, D.: Die laminare Grenzschicht an der längsangeströmten ebenen Platte mit schrägem Absaugen und Ausblasen. Veröffentl. des Math. Instit. der Techn. Hochsch. Braunschweig, Bericht 1/45, 1945.Google Scholar
  13. [11]
    Janet, M.: Sur les systèmes d’équations aux dérivées partielles. Journal de Mathématiques pures et appliquées, 85, Ser. 8, 3, 65–151, 1920.Google Scholar
  14. [12]
    Kamke, E.: Differentialgleichungen. I. Gewöhnliche Differentialgleichungen. Akad. Ver-lagsges. Becker and Erler, Leipzig, 1943.Google Scholar
  15. [13]
    Kampier, E.: Physics of liquids and gases. Fiat Review of German Science, 1939–1946. Published by Office of Milit. Government for Germany, Field Inform. Agencies. Printed by I. W. Klemm, Wiesbaden, Germany, 1948.Google Scholar
  16. [14]
    v. Krzywoblocki, M. Z.: On the two dimensional laminar boundary layer equations for hypersonic flow in continuum and in rarefied gases. J. Aer. Soc. India, 5, 1, 1–13, 1953.Google Scholar
  17. [14a]
    v. Krzywoblocki, M. Z.: On the fundamentals of the boundary layer theory. J. Franklin Institute, 255, 4, 289–300, April, 1953.CrossRefGoogle Scholar
  18. [14b]
    v. Krzywoblocki, M. Z.: Possible particular solutions of the laminar boundary layer equations along a flat plate in hypersonic flow in continuum and in rarefied gases. J. Aer. Soc. India, 5, 2, 23–35, 1953.Google Scholar
  19. [14c]
    v. Krzywoblocki, M. Z.: On the generalized theory of the laminar, two-dimensional boundary layer along a flat plate in continuum and slip flow regimes. Bulletin de la Société Mathématique de Grèce (to be published).Google Scholar
  20. [15]
    Mangier, W.: Die „ähnlichen” Lösungen der Prandtlschen Grenzschichtgleichungen, ZAMM, 23, 243, 1943.Google Scholar
  21. [16]
    Morgan, A. J. A.: The reduction by one of the number of independent variables in some systems of partial differential equations. Quart. J. Math. Oxford Second Series, 3, 250–259, Dec. 1952.ADSCrossRefzbMATHGoogle Scholar
  22. [17]
    Pohlhausen, E.: Der Wärmeaustausch zwischen festen Körpern und Flüssigkeiten mit kleiner Wärmeleitung. ZAMM, 1, 115, 1921.CrossRefzbMATHGoogle Scholar
  23. [18]
    Rellich, F.: Über Lösungen nichtlinearer Differentialgleichungen. Festschrift zur Feier des 200 jähr. Bestehens der Akad. d. Wissensch. in Göttingen, Math. Phys. Klasse, 168–174, 1951.Google Scholar
  24. [19]
    Riquier, C.: Les systèmes d’équations aux dérivées partielles. Gauthier-Villars, Paris, 1910, XVII + 590.Google Scholar
  25. [19a]
    Riquier, C: La méthode des fonctions majorantes et les systèmes d’équations aux dérivées partielles. Mémorial des Sciences Mathématiques, Fascicule 32, 1928, 63 pp.Google Scholar
  26. [20]
    Ritt, J. F.: Differential equations from the algebraic standpoint. Amer. Math. Soc-Collogquium Public. Vol. 14, New York, 1932.Google Scholar
  27. [21]
    Schlichting, H.: Grenzschicht-Theorie. Verlag G. Braun, Karlsruhe, 1951.zbMATHGoogle Scholar
  28. [22]
    Thomas, J. M.: Note on a differential equation, Annals of Math. 28, 240–244, 1926.Google Scholar
  29. [22a]
    Thomas, J. M.: Systems of total differential equations, Annals of Mat. 28, 379–385, 1926.Google Scholar
  30. [22b]
    Thomas, J. M.: Incomplete systems of partial differential equations, Proc. Nation. Acad. Sci. 14, 666–670, 1928.ADSCrossRefzbMATHGoogle Scholar
  31. [22c]
    Thomas, J.M.: Riquier’s existence theorems, Annals of Math. 30, 285–310, 1928.CrossRefGoogle Scholar
  32. [22d]
    Thomas, J. M.: Matrices of integers ordering derivatives, Trans. Am. Math. Soc. 33, 389–410, 1931.CrossRefGoogle Scholar
  33. [22e]
    Thomas, J. M.: The condition for an ortho-nomic differential system, Trans. Am. Math. Soc. 34, 332–338, 1932.CrossRefGoogle Scholar
  34. [22f]
    Thomas, J. M.: Regular differential systems of the first order, Proc. Nat. Acad. Sci. 19, 451–453, 1933.ADSCrossRefGoogle Scholar
  35. [22g]
    Thomas, J. M.: Riquier’s existence theorems, Annals of Math. 35, 306–311, 1934.CrossRefGoogle Scholar
  36. [22h]
    Thomas, J. M.: Differential systems, Amer. Math. Soc. Collogquium Public, 21, New York, 1937.Google Scholar
  37. [23]
    Tifford, A. N.: On certain particular solutions of the laminar boundary layer equations. Proceed. First Midwestern Conf. Fluid Dynamics, Univ. Illinois 1950, publish. J.W. Edwards, Ann. Arbor, Michigan, 1951, p. 81–90.Google Scholar
  38. [24]
    Weyl, H.: Concerning the differential equations of some boundary layer equations. Proc. Nat. Acad. Sci. 27, 578–583, 1941.ADSCrossRefMathSciNetGoogle Scholar
  39. [24a]
    Weyl, H.: II. Ibid, 28, 100–102, 1942.Google Scholar
  40. [24b]
    Weyl, H.: On the differential equations of the simplest boundary layer problems. Annals of Math. 43, 2, 381–407, Apr. 1942.CrossRefzbMATHMathSciNetGoogle Scholar
  41. [25]
    Whyburn, W. M.: On the fundamental existence theorems for differential systems. Annals of Math. Second Ser. 30, 1, 31–38, Dec. 1928.CrossRefzbMATHMathSciNetGoogle Scholar
  42. [26]
    Witting, H.: Über zwei Differenzenverfahren der Grenzschichttheorie. Archiv der Mathem. 4, 3, 247–256, 1953.CrossRefzbMATHMathSciNetGoogle Scholar
  43. [26a]
    Witting, H.: Verbesserung des Differenzenverfahrens von H. Görtier zur Berechnung laminarer Grenzschichten. ZAMP, 4, 5, 376–397, 1953.ADSCrossRefzbMATHMathSciNetGoogle Scholar
  44. [27]
    Görtier, H.: Ein Differenzenverfahren zur Berechnung laminarer Grenzschichten. Ing. Arch. 16, 173–187, 1948.CrossRefMathSciNetGoogle Scholar
  45. [28]
    Ostrowski, M. A.: Sur le rayon de convergence de la série de Blasius. C. R. l’Acad. Sc. Paris, 227, 580–582, Sept. 1948.zbMATHMathSciNetGoogle Scholar
  46. [29]
    Oudart, A.: Les methodes scientifiques de la couche limite laminaire. Publ. Sc. et Tech. du Min. de l’Air, No. 213, 123–127, 1948.Google Scholar

Copyright information

© Springer Fachmedien Wiesbaden 1955

Authors and Affiliations

  • M. Z. v. Krzywoblocki
    • 1
    • 2
  1. 1.University of IllinoisUrbanaUSA
  2. 2.U. S. Naval Ordnance Test StationInyokern, China LakeUSA

Personalised recommendations