Advertisement

On the solution of the laminar boundary layer equations

  • Itiro Tani
Chapter

Summary

In the first part of paper, the momentum equation of the incompressible laminar boundary layer is solved for the velocity distribution outside the boundary layer of the form U = U 0 — bxn. It is found from results of solution that the frequently used parameter λ = (θ2/v) (d U/d x) cannot exactly fix the velocity profile, its value at separation becoming less negative as d2 U/x2 becomes more positive. In the second part, a simple approximate method of solution is developed, in which the velocity profile is expressed as a member of a family of curves, with the parameter α different from λ. It is found that results of sufficient accuracy can be obtained by calculating λ from a quadrature formula and determining the relation between λ and α from the momentum and energy integrals of the boundary layer. The method of solution can easily be extended to the boundary layer of a compressible fluid.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Pohlhausen, K.: Zur näherungsweisen Integration der Differentialgleichung der laminaren Grenzschicht. Z.A.M.M., vol. 1 (1921), pp. 252–268.zbMATHGoogle Scholar
  2. [2]
    Schlichting, H., and Ulrich, A.: Zur Berechnung des Umschlages laminar-turbulent. Jahrbuch der deutschen Luftfahrtforschung, 1—8 (1942), pp. 8—36.Google Scholar
  3. [3]
    Howarth, L.: On the Solution of the Laminar Boundary Layer Equations. Proc. Boy. Soc, London, A, vol. 164 (1938), pp. 547–579.CrossRefzbMATHADSGoogle Scholar
  4. [4]
    Falkner, V. M., and S. Jcan S. W.: Some Approximate Solutions of the Boundary Layer Equations. A. R. C, R. & M. no. 1314 (1930).Google Scholar
  5. [5]
    Hartree, D. R.: On the Equation Occurring in Falkner and Skan’s Approximate Treatment of the Equations of the Boundary Layer. Proc. Cambridge Phil. Soc, vol. 33 (1937), pp. 223–239.CrossRefADSGoogle Scholar
  6. [6]
    Tani, I.: On the Solution of the Laminar Boundary Layer Equations. Jour. Phys. Soc, Japan, vol. 4 (1949), pp. 149–154.CrossRefMathSciNetADSGoogle Scholar
  7. [7]
    Hudimoto, B.: An Approximate Method for Calculating the Laminar Boundary Layer (in Japanese). Jour. Soc. Aero. Sci., Japan, vol. 8 (1941), pp. 279—282.Google Scholar
  8. [8]
    Tani, I.: A Simple Method for Determining the Laminar Separation Point (in Japanese). Jour. Aero. Res. Inst., Tokyo Imp. Univ., no. 199 (1941).Google Scholar
  9. [9]
    Young, A. D., and Winterbottom, N. E.: Note on the Effect of Compressibility on the Profile Drag of Aerofoils in the Absence of Shock Waves. A. R. C. Report no 4697 (1940).Google Scholar
  10. [10]
    Walz, A.: Ein neuer Ansatz für das Geschwindigkeitspröfil der laminaren Grenzschicht. Lilienthal-Bericht no! 141 (1941).Google Scholar
  11. [11]
    Thwaites, B.: Approximate Calculation of the Laminar Boundary Layer. Aero. Quart., vol. 1 (1949), pp. 245–280.MathSciNetGoogle Scholar
  12. [12]
    Tani, I., and, Tsuji, H.: On the Solution of the Laminar Boundary Layer Equations (in Japanese; abstract only). Proc. Phys. Soc, Japan, vol. 2 (1947), p. 86.Google Scholar
  13. [13]
    Wieghardt, K.: Über einen Energiesatz zur Berechnung laminarer Grenzschichten. Ingenieur-Archiv, vol. 16 (1948), pp. 231—242.CrossRefzbMATHMathSciNetGoogle Scholar
  14. [14]
    Timman, B.: A One-Parameter Method for the Calculation of Laminar Boundary Layers. Report F-35, Nationaal Luchtvaartlaboratorium (1949).Google Scholar
  15. [15]
    Morduchow, M., and Clarke, J. H.: Method for Calculation of Compressible Laminar Boundary-Layer Characteristics in Axial Pressure Gradient with Zero Heat Transfer. N. A. C. A. Tech. Note no. 2784 (1952).Google Scholar
  16. [16]
    Walz, A.: Anwendung des Energiesatzes von Wieghardt auf einparametrige Geschwindigkeitsprofile in laminaren Grenzschichten. Ingenieur-Archiv, vol. 16 (1948), pp. 243—248.CrossRefzbMATHMathSciNetGoogle Scholar
  17. [17]
    Truckeribrodt, E.: Ein Quadraturverfahren zur Berechnung der laminaren und turbulenten Reibungsschicht bei ebener und rotationssymmetrischer Strömung. Ingenieur-Archiv, vol. 20 (1952), pp. 211–228.CrossRefGoogle Scholar
  18. [18]
    Tani, I.: On the Approximate Solution of the Laminar Boundary Layer Equations. Jour. Aero. Sci., vol. 21 (1954), pp. 487–495.CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer Fachmedien Wiesbaden 1955

Authors and Affiliations

  • Itiro Tani
    • 1
  1. 1.Institute of Science and TechnologyUniversity of TokyoJapan

Personalised recommendations