Advertisement

Renale Hämo-, Ultrafiltrationsdynamik

  • A. Werner Mondorf
  • Jürgen E. Scherberich
Chapter

Zusammenfassung

Der renale Blutfluß (RBF) beträgt ca. 20% des Herzminutenvolumens in Ruhe. Die Sauerstoffextraktion liegt bei 1,5 ml%, der 02-Verbrauch zwischen 18 und 20 ml pro Minute [12, 13]. Der RBF und der daraus ableitbare renale Plasmafluß (RPF) sind alters- und geschlechtsabhängig (s. Abschn. 8.2). Während etwa im dritten Lebensjahr die Erwachsenenwerte erreicht sind, liegt der RPF im höheren Alter nur noch bei ca. 1/5 des Wertes, der zwischen dem 20. und 30. Lebensjahr gemessen wird.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. [1]
    Aiken, J.W., Vane, J.R.: Intrarenal prostaglandin release attenuates the renal vasoconstrictor activity of angiotensin. J. Pharmacol. exp. Ther. 184, 678–87 (1973)PubMedGoogle Scholar
  2. [2]
    Allen, J.M., Raine, A.E.G., Ledingham, J.G.G., Bloom, S.R.: Neuropeptide Y: a novel renal peptide with vasoconstrictor and natriuretic activity: Clin. Sci. 68 (1985)Google Scholar
  3. [3]
    Ballermann, B.J., Brenner, B.M.: Biologically active atrial peptides J. Clin. Invest. 76, 2041–2048 (1985)Google Scholar
  4. [4]
    Ballesta, J. et al.: The nerves of the juxtaglomerular apparatus of man and other mammals contain a potent peptide NP Y: Histochemistry: 80, 483 (1984)Google Scholar
  5. [5]
    Baylis, C., Brenner, B.M.: Modulation of prostaglandin synthesis inhibitors of the action of exogenous angiotensin II on glomerular ultrafiltration in the rat. Circulat. Res. 43, 889–98 (1978)PubMedGoogle Scholar
  6. [6]
    Baylis, C., Deen, W.M., Myers, B.D., Brenner, B.M.: Effects of some vasodilator drugs on transcapillary fluid exchange in renal cortex. Amer. J. Physiol. 230, 1148–58 (1976)PubMedGoogle Scholar
  7. [7]
    Baylis, C., Ichikawa, I., Willis, W.T., Wilson, C.B., Brenner, B.M.: Dynamics of glomerular ultrafiltration. IX. Effects of plasma protein concentration. Amer. J. Physiol. 232, 58–71 (1977)Google Scholar
  8. [8]
    Blantz, R.C.• The glomerulus, passive filter or regulatory organ? Klin. Wschr. 58, 957–64 (1980)Google Scholar
  9. [9]
    Blantz, R.C.: The role of alterations of the ultrafiltration coefficient in the control of glomerular filtrate formation. In: Giebisch, J. Purecell, E. (Eds.). Renal Function. Waverly Press, Baltimore 1978, pp. 41–55Google Scholar
  10. [10]
    Blantz, R.C., Konnen, K.S., Tucker, B.J.: Angiotensin II effects upon glomerular microcirculation and ultrafiltration coefficient of the rat. J. clin. Invest. 57, 419–34 (1976)PubMedCentralPubMedGoogle Scholar
  11. [11]
    Brain, S.D., Williams, T.J., Tippins, J.R. et al.: Calcitonin gene related peptide is a potent vasodilator, Nature: 313, 54–56 (1985)PubMedGoogle Scholar
  12. [12]
    Brenner, B.M., Beeuwkes, I.R.: The renal circulations. Hosp. Pract. 13, 35–46 (1978)PubMedGoogle Scholar
  13. [13]
    Brenner, B.M., Ichikawa, I., Deen, W.M.: Glomerular filtration. In: Brenner, B.M., Rector, F.C. (Eds.): The Kidney. W.B. Saunders 1981, vol. 1, pp. 289–327Google Scholar
  14. [14]
    Corder, R., et al.: Comparison of the haemodynamic actions of neuropeptide Y, angiotensin II and noradrenalin in anaesthetised cats: Eur. J. Pharmacol. 121, 25–30 (1986)PubMedGoogle Scholar
  15. [15]
    DiBona, G.F. (Sect. Edt.): Neural control of renal function: Fed. Proceed. 44, pp. 2815 (1985)Google Scholar
  16. [16]
    Dworkin, L.D., Brenner, B.M.: Hormonal influences on glomerular function. Contr. Nephrol. 33, 1–13 (1982)Google Scholar
  17. [17]
    Filep, J., Rigter, B., Frölich, J.C.: Vascular and renal effects of leukotriene C4 in concious rats: Am. J. Physiol. 249 F 739—F 744 (1985)Google Scholar
  18. [18]
    Foidart, J., Sraer, J., Delarue, F., Mathieu, P., Ardaillou, R.: Evidence for mesangial glomerular receptors for angiotensin Il linked to mesangial cell contractility. Fed. Europ. biochem. Soc. Lett. 121, 333–39 (1980)Google Scholar
  19. [19]
    Gade, R., Feinfeld, D.A., Gade, M.F.: A microradiographic study of nephrons in mercuric chloride induced acute renal failure in the rabbit. Invest. Radio!. 18, 183–88 (1983)Google Scholar
  20. [20]
    Ganten, D., Unger, Th., Rascher, W., Fuxe, K., Hökfelt, T., Agnati, L.: Peptidergic and catecholaminergic mechanisms in central blood pressure control. Contr. Nephrol. 23, 93–104 (1980)Google Scholar
  21. [21]
    Girgis, S., Macdonald, D.W.R., Stevenson, J.C. et al.: calcitonin gene-related peptide: potent vasodilator and major product of calcitonin gene, Lancet II, 14–16 (1985)Google Scholar
  22. [22]
    Gotshall, R., Hess, T., Mills, T.: Efficiency of canine renal blood flow autoregulation in kidneys with and with out glomerular filtration: Blood vessels: 22, 25–31 (1985)Google Scholar
  23. [23]
    Healy, D.P., Münzel, P.A., Insel, P.A.: Localization of (3,- and [ß2-adrenergic receptors in rat kidney by autoradiography: Circ. Res. 57, 278–284 (1985)Google Scholar
  24. [24]
    Holdaas, H., Langaard, Q., Eide, I., Kiil, F.: Conditions for enhancement of renin release by isoproterenol, dopamine and glucagon. Amer. J. Physiol. 242 (Renal Fluid Electrolyte Physiol. 11), 267–73 (1982)Google Scholar
  25. [25]
    Ichikawa, I., Brenner, B.M.: Evidence for glomerular actions of ADH and dibutyryl cyclic AMP in the rat. Am. J. Physiol. 233, 102–17 (1977)Google Scholar
  26. [26]
    Ichikawa, I., Humes, H.D., Dousa, T.P., Brenner, B.M.: Influence of parathyroid hormone on glomerular ultrafiltration in the rat. Amer. J. Physiol. 234, 393–401 (1978)Google Scholar
  27. [27]
    Imbert, M., Chabardes, D., Morel, F.: Hormone sensitive adenylate cyclase in isolated rabbit glomeruli. Mol. Cell. Endocrinol. 1, 295–304 (1974)Google Scholar
  28. [28]
    Issues in glomerulonephritis and Renin-system (Edts. E. Ritz, S.G. Massry), Karger. Contr. Nephrol. Vol. 43 (1984)Google Scholar
  29. [29]
    Kaissling, B.: Cellular Heterogeneity of the Distal Nephron and its Relation to Function. Klin. Wochenschr. 63, 868–876 (1985)PubMedGoogle Scholar
  30. [30]
    Kaissling, B., Kriz, W.: Variability of intercellular spaces between macula densa cells: a transmission electron microscopic study in rabbits and rats. Kidney int. 22, Suppl. 12, 9–17 (1982)Google Scholar
  31. [31]
    Kopp, U.C.: Renorenal reflexes: neural and functional responses: Federation Proc. 44, 2834–2839 (1985)Google Scholar
  32. [32]
    Kreisberg, J.I., Karnovsky, M.J., Levine, L.: Prostaglandin production by homogeneous cultures of rat glomerular epithelial and mesangial cells. Kidney int., 22, 355–59 (1982)Google Scholar
  33. [33]
    Langaard, Q., Holdaas, H., Eide, I., Kiil, F.: Conditions for renin release by cyclic AMP. Scand. J. clin. Lab. Invest. 41, 535–42 (1981)Google Scholar
  34. [34]
    Levy, M.: Further observations on the response of the glomerular filtration rate to glucagon: Comparison with secretin. Canad. J. Physiol. Pharmacol. 53, 81–5 (1975)Google Scholar
  35. [35]
    McGrath, B., Bode, K., Luxford, A. et al.: Effects of dopamine on renal function in the rat isolated perfused kidney: Clin. Exp. Pharmacol. and Physiol. 12, 343–352 (1985)Google Scholar
  36. [36]
    Osborn, J.L., DiBona, G.F., Thames, M.D.: Role of renal alpha-adrenoceptors mediating renin secretion. Amer. J. Physiol. 242 (Renal Fluid Electrolyte Physiol. 11), 620–26 (1982)Google Scholar
  37. [37]
    Petrulis, A.S., Aikaw, M., Dunn, M.J.: Prostaglandin and thromboxane synthesis by rat glomerular epithelial cells. Kidney int. 20, 465–74 (1981)Google Scholar
  38. [38]
    Pettinger, W.A., Keeton, T.K., Campbell, W.B., Harper, D.C.: Evidence for a renal alpha-adrenergic receptor inhibiting renin release. Circulat. Res. 38, 338–46 (1976)PubMedGoogle Scholar
  39. [39] Ploth, D.W., Roy, R.N.: Renal and tubuloglomerular feedback effects of (Sar’, Ala8)
    Ploth, D.W., Roy ,R.N.:Renal and tubuloglomerular feedbackeffects of (Sar, Ala)angiotensin II in the rat. Amer. J. Physiol. 242, (Renal Fluid Electrolyte Physiol. 11), 149–157 (1982)Google Scholar
  40. [40]
    Powis, D.A., Donald, D.E.: Involvement of renal alpha-and beta-adrenoceptors in release of renin by carotid baroreflex. Amer. J. Physiol. 236 (Heart Circulat. Physiol. 5), 80–5 (1979)Google Scholar
  41. [41]
    Raji, L., Keane, W.F.: Glomerular mesangium: its function and relationship to Angiotensin II: Am. J. Med. 27, (Suppl. 3C), 24–30 (1985)Google Scholar
  42. [42]
    Savi, L., Cardillo, C., Bombardieri, G.: Somatostatin and peripheral blood flow in man: Angiology 36, 511–515 (1985)PubMedGoogle Scholar
  43. [43]
    Scicli, A.G., Carretero, O.A.: Renal kallikrein-kinin system: Kidney Int. 29, 120–130 (1986)PubMedGoogle Scholar
  44. [44]
    Schlöndorff, D., Yeo, P., Albert, B.E.: Stimulation of adenylate cyclase in isolated rat glomeruli by prostaglandins. Amer. J. Physiol. 235, 458–64 (1978)Google Scholar
  45. [45]
    Schlöndorff, D., Ardaillou, R.: Prostaglandins and other arachidonic acid metabolites in the kidney: Kidney Int. 29, 108–119 (1986)Google Scholar
  46. [46]
    Schnermann, J., Briggs, J.: Concentration-dependent sodium chloride transport as the signal in feedback control of glomerular filtration rate. Kidney int. 22, 82–9 (1982)Google Scholar
  47. [47]
    Schnermann, J., Schubert, G., Hermle, M., Herbst, R., Stowe, N.T., Yarimizu, S., Weber, P.C.: The effect of inhibition of prostaglandin synthesis on tubuloglomerular feedback in the rat kidney. Pflügers Arch. 379, 269–79 (1979)PubMedGoogle Scholar
  48. [48]
    Schnermann, J., Persson, E.G., Agerup, B.: Tubuloglomerular feedback: nonlinear relation between glomerular hydrostatic pressure and loop of Henle perfusion rate. J. clin. Invest. 52, 862–69 (1973)PubMedCentralPubMedGoogle Scholar
  49. [49]
    Schor, N., Ichikawa, I., Brenner, B.M.: Mechanisms of action of various hormones and vasoactive substances on glomerular ultrafiltration in the rat. Kidney int. 20, 442–51 (1981)PubMedGoogle Scholar
  50. [50]
    Shohat, J., Boner, G., Rosenfeld, J.: The effect of Angiotensin II on kidney function: Proc. EDTA 22, 871–874 (1985)Google Scholar
  51. [51]
    Spielmann, W.S., Thompson, C.I.: A proposal for adenosine in the regulation of renal hemodynamics and renin release. Amer. J. Physiol. 242 (Renal Fluid Electrolyte Physiol. 11), 423–35 (1982)Google Scholar
  52. [52]
    Sraer, J.D., Sraer, J., Ardaillou, R., Richet, G.: The glomerulus: site of synthesis and target for hormones and chemical mediators: Adv. Nephrol. 10, 293–314 (1981)Google Scholar
  53. [53] Steinhausen, M., Kücherer, H., Snoei, H., Wilhelm, K.-R.: Ein neues tierexperimentelles Modell, Vas afferens, -efferens und das glomeruläre Netzwerk in vivo zu untersuchen (unter besonderer Berücksichtigung von Angiotensin-Wirkungen auf die glomeruläre Mikrozirkulation)
    mit Filmdemonstration. XVI. Sympos. Ges. Nephrologie, Salzburg Sept. 1983 (Abstr.). Nieren-und Hochdruckkrankheiten 12, 349 (1983)Google Scholar
  54. [54]
    Steinhausen, M., Snoel, H., Parekh, N., Baker, R., Johnson, P.C.: Hydronephrosis: a new method to visualize vas afferens, efferens and glomerular network: Kidney Int. 23, 794–806 (1983)PubMedGoogle Scholar
  55. [55]
    Steinhausen, M., Zimmerhackl, B., Thederan, H., Dussel, R., Parekh, N., Eßlinger, H.-U., Hagens v., G., Komitowski, D., Dallenbach, F.D.: Intraglomerular microcirculation: measurements of single glomerular loop flow in rats: Kidney Int. 20, 230–239 (1981)Google Scholar
  56. [56]
    Stephenson, R.K., Sole, M.J., Baines, A.D.: Neural and extra-neural catecholamine production by rat kidney. Amer. J. Physiol. 242 (Renal Fluid Electrolyte Physiol. 11), 261–266 (1982)Google Scholar
  57. [57]
    Struthers, A.D., Brown, M.J., Beacham, J.L. et al.: The acute effect of human calcitonin gene related peptide in man: J. Endocrinol. 104, S. 129 (1985)Google Scholar
  58. [58]
    Taugner, R., Forssmann, W.G., Billich, H., Boll, U., Ganten, D., Seller, H.: Innervation of the juxtaglomerular apparatus and the effect of renal nerve stimulation. In: Coupland, R.E., Forssmann, W.G. (Eds.): Peripheral Neuroendocrine Interaction. Springer, Berlin 1978, pp. 153–63Google Scholar
  59. [59]
    Taugner, R., Hackenthal, E., Rix, E., Nobiling, R., Poulsen, K.: Immunocytochemistry of the renin-angiotensin system: renin, angiotensinogen, angiotensin I, angiotensin II, and converting enzyme in the kidney of mice, rats, and tree shrews. Kidney int. 22, Suppl. 12, 33–43 (1982)Google Scholar
  60. [60]
    Thurau, K.: Nature of autoregulation of renal blood flow. Proc. in Congr. Nephrol. (3rd ed.), Washington D.C., 167–73 (1966)Google Scholar
  61. [61]
    Thurau, K., Grüner, A., Mason, J., Dahlheim, H.: Tubular signal for the renin activity in the juxtaglomerular apparatus. Kidney int. 22, 55–62 (1982)Google Scholar
  62. [62]
    Thurau, K., Schnermann, J.: The juxtaglomerular apparatus and the tubuloglomerular feedback mechanism: morphology, biochemistry, and function. Kidney int. 22, Suppl. 12 (1982)Google Scholar
  63. [63]
    Torres, V.E., Northrup, T.E., Edward, R.M., Shan, S.V., Dousa, T.P.: Modulation of cyclic nucleotides in rat glomeruli: role of histamine, acetylcholine, parathyroid hormone, and angiotensin II. J. clin. Invest. 62, 1334–43 (1978)PubMedCentralPubMedGoogle Scholar
  64. [64]
    Tucker, B.J., Blantz, R.C.: Effects of glomerular filtration dynamics on the glomerular permeability coefficient. Amer. J. Physiol. 9, 245–54 (1981)Google Scholar
  65. [65]
    Ulfendahl, H.R., Ericson, A.C., Göransson, A., Källskog, Ö., Sjöquist, M.: The tubuloglomerular feedback mechanism is a determinant for the autoregulation of the glomerular filtration rate in superficial and juxtamedullary nephrons. Klin. Wschr. 60, 1071–6 (1982)PubMedGoogle Scholar
  66. [66]
    Vencatachalam, M.A., Rennke, H.: The structural and molecular basis of glomerular filtration. Circulat. Res. 43, 337–347 (1978)Google Scholar
  67. [67]
    Weber, P.C.: Renal prostaglandins, kidney function and essential hypertension. Contrib. Nephrol. 23, 83–92 (1980)PubMedGoogle Scholar
  68. [68]
    Zimmerhackl, B., Parekh, N., Brinkhus, H., Steinhausen, M.: The use of fluorescent labeled erythrocytes for intravital investigation of flow and local hematocrit in glomerular capillaries in the rat: Int. J. Microcirc: Clin. Exp. 2, 119–129 (1983)Google Scholar
  69. [1]
    Aprile, C., Saponaro, R., Villa, et al.: 99mTc-Aprotinin uptake test and separate kidney function: Proc. EDTA 22, 1178–1182 (1985)Google Scholar
  70. [2]
    Bates, S.B. et al.: Effect of dietary protein on the normal rat kidney (abstr.) Kidney Int. 29, S.p. 297 (1986)Google Scholar
  71. [3]
    Bauer, J.H., Jones, L.B., Gaddy, P.: Effects of Indoramin therapy on BP, renal function, and bodyfluidcomposition. Arch. Int. Med. 144, 308–312 (1984)Google Scholar
  72. [4]
    Bell, A.J., Lindner, A.: Effects of Verapamil and Nifedipine on renal function and hemodynamics in the dog: Renal physiol. 7, 329–343 (1984)Google Scholar
  73. [5]
    Bergström, J., Ahlberg, M., Alverstrand, A.: Influence of protein intake on renal haemodynamics and plasma hormone concentration in normal subjects: Acta. Med. Scand. 217, 189–96 (1985)Google Scholar
  74. [6]
    Bianchi, C.: Measurement of the glomerular filtration rate. In: Blaufox, M.D. (Ed): Evaluation of Renal Function and Disease with Radionuclides. Karger, Basel 1972, ppa. 21–53Google Scholar
  75. [7]
    Bianchi, C.: Noninvasive methods for the measurement of renal function. In: Duarte, C.G. (Ed.): Renal Function Tests. Clinical Laboratory Procedures and Diagnosis. Little, Brown, Boston 1980, pp. 65–84Google Scholar
  76. [8]
    Bianchi, C. Donadia, C. Tramonti, G.: Noninvasive methods for the measurement of total renal function. Nephron 28, 53–7 (1981)PubMedGoogle Scholar
  77. [9]
    Blaufox, M.D., Potchen, E.J., Merill, J.P.: Measurement of effective renal plasma flow in man by external counting methods. J. nucl. Med. 8, 77–85 (1967)PubMedGoogle Scholar
  78. [10]
    Blume, E. (editorial): Promising agents for limiting renal damage: JAMA 249, No. 15 (1983)Google Scholar
  79. [11]
    Bohle, A., Grund, K.E., Mackensen, S., Tolon, M.: Correlations between renal interstitium and level of serum creatinine. Virchows Arch., A. (Path. Anat. Histol.) 373, 15–22 (1977)Google Scholar
  80. [12]
    Brenner, B.M. Goldszer, R.C., Hostetter, T.H.: Glomerular response to renal injury. Contrib. Nephrol. 33, 48–66 (1982)PubMedGoogle Scholar
  81. [13]
    Brenner, B.M. (disc.): Hemodynamically mediated glomerular injury and the progressive nature of kidney disease. Kidney int. 23, 647–55 (1983)PubMedGoogle Scholar
  82. [14]
    Brenning, G., Simonsson, B., Källander, C., Ahre, A.: Pretreatment serum t2 microglobulin in multiple myeloma: Brit. J. Haematol. 62, 85–93 (1986)Google Scholar
  83. [15]
    Brod, J.: Prüfung der Nierenfunktion. In: Losse, H., Renner, E. (Eds.): Klinische Nephrologie. Thieme, Stuttgart 1982, pp. 167–87Google Scholar
  84. [16]
    Burke, T.J., Arnold, P.E., Gordon, J.A., Bulger, R.E., Dobyan, D.C.: Protective effect of intrarenal calcium membrane blockers before and after renal ischaemia. Function, morphological, and mitochondrial study. J. Clin. invest. 74, 1830–1841 (1984)PubMedCentralPubMedGoogle Scholar
  85. [17]
    Davies, D.F., Shock, N.W.: Age changes in glomerular filtration rate, effective renal plasma flow, and tubular excretory capacity in adult males. J. Clin. Invest. 29, 496–507 (1950)PubMedCentralPubMedGoogle Scholar
  86. [18]
    Edwards, L.C., Helderman, J.H., Kamm, L.L., Ludwin, D., Gaillunas, P., Jr., Hull, A.R.: Noninvasive monitoring of renal transplant function by analysis of beta2-microglobulin. Kidney Int. 23, 767–70 (1983)PubMedGoogle Scholar
  87. [19]
    Eisenhauer, T., Scholz, K., Scheler, F.: Increase of GFR fol lowing aminoacid infusion is suppressed by indomethacin in normal subjects: Proc. EDTA 22, 1049–1053 (1985)Google Scholar
  88. [20]
    Ganten, D., Ritz, E. (Eds.): Lehrbuch der Hypertonie, Schattauer 1985Google Scholar
  89. [21]
    Gingrich, G.A., Barker, G.L., Stewart, S.L., Wooley, J.L.: Calcium antagonists in the prevention of renal ischemic damage: J. Urol. 133, 129 A (1985)Google Scholar
  90. [22]
    Hashimoto, K., Omo, H., O’Hara, N.: Blockade of renal autoregularory vasoconstriction by calcium antagonists: In: Calciumantagonisten (Eds. A. Fleckenstein, H. Roskamm), Springer, Berlin, Heidetb., N.Y. 1980 p. 221–229Google Scholar
  91. [23]
    Heidland, A., Klütsch, H., Öbek, A.: Myogenbedingte Vasodilatation bei Nierenischaemie: Münch. Med. Wschr. 104, 1636–1637 (1962)Google Scholar
  92. [24]
    Heidland, A., Riegel, Hörl, W.H., Weipert, J., Geiger, Heidbreder, E.: Calcium antagonists: hypotensive and humoral actions in different forms of hypertension: Contr. Nephrol. (1985)Google Scholar
  93. [25]
    Hör, G., Heidenreich, P.: Nierendiagnostik in der Nuklearmedizin. Schnetztor, Konstanz 1980Google Scholar
  94. [26]
    Hör, G., Kretschko, J., Heidenreich, P., Pabst, H.W. Kemp-ken, K., Schwarzendorfer, A.: Bestimmung der renalen Filtrationsfraktion durch simultane Doppelradionuklid-Clearancetechnik, Fortschr. Röntgenstr. 120, 322 (1974)Google Scholar
  95. [27]
    Hör, G., Baum, R.P.: Wandel nuklearmedizinischer Nierendiagnostik — G. Fischer Verlag, 1986 (im Druck)Google Scholar
  96. [28]
    Jones, G., Lee, K., Swaminathan: Glomerular filtration response to acute protein load; Lancet II, 838 (1985)Google Scholar
  97. [29]
    Kenner, C.H., Evan, A.P., Blomgren, P., Aronoff, G.R., Luft, F.C.: Effect of protein uptake on renal function and structure in partially nephrectomized rats: Kidney Int. 27, 739–750 (1985)Google Scholar
  98. [30]
    Klingmüller, D., Neumark, A., Schmidt, S., Kramer, H.J.: Experimentelle Untersuchungen zur protektiven Wirkung von Mannitol und Verapamil beim ischaemischen akuten Nierenversagen (abstr.): Verhdl. Dtsch. Ges. Inn. Med. 91. Tag, Wiesbaden (1984)Google Scholar
  99. [31]
    Kusano, E., Suzuki, M., Asano, Y., Itoh, Y., Takagi, K., Kawai, T.: Human a1-microglobulin and its relation to renal function: Nephron. 41, 320–324 (1985)Google Scholar
  100. [32]
    Langer, K.H.: Biophysikochemische Strukturen des glomerulären Filters. Klin. Wochenschr. 63, 835–849 (1985)PubMedGoogle Scholar
  101. [33]
    Lindeman, R.D., Tobin, J.D., and Shock, N.W.: Association between blood pressure and the rate of decline in renal function with age. Kidney Int. 26, 861–868 (1984)PubMedGoogle Scholar
  102. [34]
    Loutzenhuiser, R., Epstein, M.: Effects of calcium antag-onists on renal hemodynamics: Am. J. Physiol. 249, F 619-F 629 (1985)Google Scholar
  103. [35]
    Mak, R.H.K., Dahhan, J.A., Azzopardi, D., Bosque, M., Chantier, C., Haycock, G.B.: Measurement of glomerular filtration rate in children after renal transplantation. Kidney int. 23, 410–3 (1983)PubMedGoogle Scholar
  104. [36]
    Mandal, A.K., Lightfoot, B.O., Treat, R.C.: Mechanisms of protection in acute renal failure. Circulatory shock 11, 245–253 (1983)PubMedGoogle Scholar
  105. [37]
    Manohar, L., Retuta, E., Jerome, E.: Protection from acute renal failure by Ca++ channel blockers in humans: Kidney Int. 27, 233 (1985)Google Scholar
  106. [38]
    Mansy, H. et al.: Glomerular filtration response to acute protein load: Lancet II, 1360 (1985)Google Scholar
  107. [39]
    McCrorey, H.L., Berl, T., Burke, T.J., Torrente, A., Schrier, R.W.: Effect of calcium transport inhibitors on renal haemodynamics and electrolyte excretion in the dog. In: Hormone regulation of sodium excretion (Dev. Endocrinol.) 10, 113–120 (1980)Google Scholar
  108. [40]
    Meredith, P.A., Elliott, H.L., Pasanisi, F. et al.: Verapamil pharmacokinetics and apparent hepatic and renal blood flow: Br. J. Pharmac. 20, 101–106 (1985)Google Scholar
  109. [41]
    Moran, M.S., Myers, B.D.: Course of acute renal failure stu died by a model of creatinine kinetics: Kidney Int. 27, 928–937 (1985)Google Scholar
  110. [42]
    Nath, K.A. et al.: Regulatory role of prostaglandins in the remnant glomerulus (abstr.) Kidney Int. 29, S. p. 341 (1986)Google Scholar
  111. [43]
    Ogawa, N., Kushida, H., Satoh, S.: Effect of verapamil on renal vasoconstriction induced by Angiotensin II, Norepinephrine of renal nerve stimulation in anesthetized dogs: Arch. in Pharmacodyn. 268, 113–121 (1984)Google Scholar
  112. [44]
    O’Hara, N., Ono, H., Oguro, K., Hashimoto, K.: Vasodilating effects of perhexiline, glycerine trinitrate, and verapamil on the coronary, femoral, renal and mesenteric vasculature of the dog: J. Cardiovasc. Pharmacol. 3, 251–268 (1981)PubMedGoogle Scholar
  113. [45]
    Okuda, T. et al.: Angiotensin II and Vasopressin cause membrane depolarization and contraction of cultured rat mesangial cells (abstr.) Kidney Int. 29, S. p. 341 (1986)Google Scholar
  114. [46]
    Pourrat, J.P., Douste-Blazy, P.: Renal side effects of Nifedipine: Clin. Cardiol. 7, 29–30 (1984)Google Scholar
  115. [47]
    Preuss, H.G. (intr.): Symposium on compensatory renal growth. Kidney int. 23, 4 (1983)Google Scholar
  116. [48]
    Remuzzi, G. et al.: Evidence that diet induced hyperfiltration in experimental glomerulopathy is dependent on glomerular vasodilatory prostaglandins (abstr.) Kidney Int. 29, S. p. 343 (1986)Google Scholar
  117. [49]
    Renkin, E.M., Robinson, R.R.: Glomerular filtration. N. Engl. J. Med. 290, 785–92 (1974)PubMedGoogle Scholar
  118. [50]
    Revillard, J.P., Wibell, L., Hall, P.W., In: Beta2-microglobulin in renal diseases. Phadedoc, diagnostic communications 6. Pharmacia Diagnostics AB, Uppsala (1979)Google Scholar
  119. [51]
    Robitaille, P., Mongeau, J.-G., Lortie, L., Sinnassamy, P.: Long-term follow-up of patients who underwent unilateral nephrectomy in childhood: Lancet I, 1297–1299 (1985)Google Scholar
  120. [52]
    Rodriquez-Iturbe, B., Herrera, J., Garcia, R.: Response to acute protein load in kidney donors and in apparently normal postacute glomerulonephritis patients: evidence for glomerular hyperfiltration Lancet II, 461–464 (1985)Google Scholar
  121. [53]
    Rowe, J.W., Andres, R., Tobin, J.D., Norris, A.H., Shock, N.W.: The effect of age on creatinine clearance in men: A cross-sectional and longitudinal study. J. Gerontol. 31, 155–163 (1976)PubMedGoogle Scholar
  122. [54]
    Schwartz, G., Gauthier, B.: A simple estimate of glomerular filtration rate in adolescent boys: J. Pediatr. 106, 522–526 (1985)PubMedGoogle Scholar
  123. [55]
    Scriabine, A., Anderson, C.L., Janis, R.A. et al.: Some recent pharmacological findings with Nitrendipine: J. Cardiovasc. Pharmacol. 6, S. 937–943 (1984)Google Scholar
  124. [56]
    Scriabine, A., Vanow, S., Deck, K. (Edts.): Nitrendipine, Urban-Schwarzenberg, Baltimore, München 1984Google Scholar
  125. [57]
    Simonsen, O., Grubb, A.,Thysell,H.: The blood serum concentration of cystatin C(y-trace) )as a measure of the glomerular filtration rate. Scand. J. Clin. Lab. Invest. 45, 97–101 (1985)Google Scholar
  126. [58]
    Sorkin, E.M., Clissold, S.P., Brogden, R.N.: Nifedipine; a review...: Drugs, 30, 182–274 (1985)PubMedGoogle Scholar
  127. [59]
    Steele, T.H., Chaloner-Hue, L.: Renal interactions between norepinephrine and calcium antagonists. Kidney Intern. 26, 719–724 (1984)Google Scholar
  128. [60]
    Thompson, I.M., Boineau, F.G., Evans, B.B. Schlegel, J.U.: The renal quantitative scintillation camera study for determination of renal function. J. Urol. 129, 461–5 (1983)PubMedGoogle Scholar
  129. [61]
    Uthmann, U., Dreikorn, K., Geisen, H.P.: Der Stellenwert von beta-2-Mikroglobulin-Bestimmungen im Serum und Urin bei der Diagnostik von Funtionsstörungen nach Nierentransplantation. Nieren-u. Hochdruckkrankheiten 11, 84–94 (1982)Google Scholar
  130. [62]
    Valtin, H.: Funktion der Niere. F.K. Schattauer, Stuttgart, New York 1978Google Scholar
  131. [63]
    Wagner, K., Neumayer, H.-H.: Prevention of delayed graft function in cadaver kidney transplants by Diltiazem (Letter), Lancet II, 1355 (1985)Google Scholar
  132. [64]
    Watkin, D.M., Shock, N.W.: Agewise standard value for C, Cpah, and TmPAH in adult males: J. Clin. Invest. 34, 969 (1955)Google Scholar
  133. [65]
    Weber, M.H., Scholz, P., Scheler, F.: The role of a1-microglobulin in the evaluation of tubular impairment and as a parameter superior to creatinine in the estimation of GFR: Proc. EDTA 22, 1173–77 (1985)Google Scholar
  134. [66]
    Wetzel, D., Weidinger, G., Koppenhagen, K.: Zentrale Hämodynamik der Antihypertensiva; Untersuchungen mit Co-Dergocrinmesylat: Dtsch. Med. Wschr. 109, 1064–1066 (1984)Google Scholar
  135. [67]
    Wright, F.S.: Intrarenal regulation of glomerular filtration rate J. Hypertens. 2, 105–113 (1984)Google Scholar
  136. [1]
    Arendt, R.M., Ritter, D., Gerbes, A.L., Zähringer, J.: Differential processing of atrial natriuretic factor in cardiovascular disease: Clin. Res. (im Druck)Google Scholar
  137. [2]
    Atarashi, K., Mulrow, P.J., Franco-Saenz, R., Snaijdar, R., Rapp: Inhibition of aldosterone production by an atrial extract: Science 224, 992–94 (1984)PubMedGoogle Scholar
  138. [3]
    Atarashi, K., Mulrow, P.J., Franco-Saenz, R.: Effect of atrial peptides on aldosterone production: J. Clin. Invest. 76, 1807–1811 (1985)PubMedCentralPubMedGoogle Scholar
  139. [4]
    Ballermann, B.J., Brenner, B.M.: Biologically active atrial peptides J. Clin. Invest. 76, 2041–2048 (1985)Google Scholar
  140. [5]
    Ballermann, B.J., Hoover, R.L., Karmovsky, M.J., Brenner, B.M.: Physiologic regulation of ANP receptors in rat renal glomeruli: J. Clin. Invest. 76, 2049–2056 (1985)PubMedCentralPubMedGoogle Scholar
  141. [6]
    Briggs, J.P., Marin-Grez, M., Steipe, B. et al.: Inactivation of ANF by kallikrein, Am. J. Physiol. 247, F 480—F 484 (1984)Google Scholar
  142. [7]
    Cantin, M., Gutkowska, J., Thibault, G. et al.: Immunocytochemical localization of atrial natriuretic factor in the heart and salivary glands: Histochem. 80, 113–127 (1984)Google Scholar
  143. [8]
    Cole, B.R., Needleman, P.: Atriopeptins: volume regulatory hormones: Clin. Research 33, 389–394 (1985)Google Scholar
  144. [9]
    Cole, B.R., Kuhnline, M.A., Needleman, P.: Atriopeptin III. A potent natriuretic, diuretic, and hypotensive agent in rats with chronic renal failure: J. Clin. Invest. 76, 2413–2415 (1985)PubMedCentralPubMedGoogle Scholar
  145. [10]
    de Bold, A.J.: Tissue fractionation studies on the relationship between an atrial natriuretic factor and specific atrial granules Can. J. Physiol. Pharmacol. 60, 324–330 (1982)Google Scholar
  146. [11]
    Forssmann, W.G., Hock, D., Lottspeich, F. et al.: The right auricle of the heart is an endocrine organ: Cardiodilatin as a peptide hormone candidate: Anat. Embryol. 168, 307–313 (1983)Google Scholar
  147. [12]
    Forssmann, W.G., Birr, C., Carlquist, M. et al.: The auricular myocardiocytes of the heart constitute an endocrine organ: Cell Tissue Res. 238, 425–430 (1984)PubMedGoogle Scholar
  148. [13]
    Forssmann, W.G., Hock, D., Kirchheim, F., Metz, J., Mutt, V., Reinecke, M.: Cardiac hormones: morphological and functional aspects: Clin. and Exp. Theor. and Practice; A6 (10 and 11), Marcel Dekker Inc. pp. 1873–1878 (1984)Google Scholar
  149. [14]
    Gerzer, R., Witzgall, H., Tremblay, J., Gutkowska, Hamet, P.: Rapid increase in plasma and urinary cyclic GMP after bolus injection of atrial natriuretic factor in man: J. Clin. Endocrin. Metab. (im Druck)Google Scholar
  150. [15]
    Hirata, Y., Ishii, M., Sugimoto, T. et al.: The effects of human atrial 28-aminoacid peptide on systemic and renal hemodynamics in anaestetized rats: Circ. Res. 37, 634–639 (1985)Google Scholar
  151. [16]
    Kurbayashi, T., Nakazato, M., Tanaka, M. et al.: Renal effects of human a-atrial natriuretic polypeptide: N. Engl. J. Med. 312, 1456–57 (1985)Google Scholar
  152. [17]
    Lang, R.E., Tholkens, H., Ganten, D., Luft, F.C., Ruskoaho, H., Unger, T.: Atrial natriuretic factor-a circulating hormone stimulated by volume loading: Nature 314, 264–266 (1985)PubMedGoogle Scholar
  153. [18]
    Lang, R.E.: Atriales natriuretisches Peptid: Munch. Med. Wschr. 127, 1105–8 (1985)Google Scholar
  154. [19]
    Laragh, J.H.: Atrial natriuretic hormone, the renin-aldosterone axis, and blood pressure-electrolyte homeostasis: N. Engl. J. Med. 313, 1330–1340 (1985)PubMedGoogle Scholar
  155. [20]
    Maak, T., Marion ,D.N. Camargo, M.J.F. et al: Effects of auriculin (ANF) on blood pressure, renal function, and the reninaldosterone system in dogs. Am. J. Med. 77, 1069–75 (1984)Google Scholar
  156. [21]
    McKenzie, J.C., Tanaka, I., Misono, K.S., Inagami, T.: Immunocytochemic localization of atrial natriuretic factor in the kid-ney, adrenal medulla, pituitary and atrium of rat: J. Histochem. Cytochem. 33, 828–832 (1985)PubMedGoogle Scholar
  157. [22]
    Rascher, W., Tulassay, T., Lang, R.E.: Atrial natriuretic peptide in plasma of volume-overloaded children with chronic renal failure, Lancet II, 303–07 (1985)Google Scholar
  158. [23]
    Richards, A.M., Nicholls, M.G., Ikram, H. et al.: Renal, haemodynamic, and hormonal effects of human alpha-atrial natriuretic peptide in healthy volunteers: Lancet I, 545–49 (1985)Google Scholar
  159. [24]
    Sagnella, G.A. et al.: Effects of changes in dietary sodium intake and saline infusion on immunoreactive ANP in human plasma: Lancet II, 1208–1210 (1985)Google Scholar
  160. [25]
    Sagnella, G.A., Markandu, N.D., Shore, A.C., MacGregor, G.A.: Raised circulating levels of ANP in essential hypertension: Lancet I, 179–181 (1986)Google Scholar
  161. [26]
    Shenker, Y., Sider, R.S., Ostafin, E.A., Grekin, R.J.: Plasma levels of immunoreactive atrial natriuretic factor in healthy subjects and in patients with edema. J. Clin. Invest. 76, 1684–1687 (1985)PubMedCentralPubMedGoogle Scholar
  162. [27]
    Sonnenberg, H.: ANF- a new hormone affecting kidney function: Klin. Wschr. 63, 886–890 (1985)Google Scholar
  163. [28]
    Tikkanen, I., Fyhrquist, F., Metsärinne, K., Leidenius, R.: Plasma ANP in cardiac disease and during infusion in healthy volunteers: Lancet II, 66–69 (1985)Google Scholar
  164. [30]
    Tunny, T.J., Gordon, R.D.: Plasma ANP in primary aldosteronism (before and after treatment)and in Bartter’s and Gor-don’s syndromes: Lancet I, 272–273 (1986)Google Scholar
  165. [30]
    Witzgall, H., Gerzer, R., Hamet, P.: Akute hormonale and haemodynamische Wirkungen des ANF beim Menschen (abstr.) Nieren-u. Hochdruckkh. 14, 369 (1985)Google Scholar
  166. [31]
    Yamaji, T., Ishibashi, M., Takaku, F.: Atrial natriuretic factor in human blood: J. Clin. Invest. 76, 1705–1709 (1985)PubMedCentralPubMedGoogle Scholar
  167. [32]
    Yasujima, M., Abe, K., Kohzuki, M. et al.: ANF inhibits the hypertension induced by chronic infusion of norepinephrine in conscious rats: Circ. Res. 57, 470–474 (1985)Google Scholar

Copyright information

© Friedr. Vieweg & Sohn Verlagsgesellschaft mbH, Braunschweig 1986

Authors and Affiliations

  • A. Werner Mondorf
    • 1
  • Jürgen E. Scherberich
    • 2
  1. 1.Klinikum der Johann Wolfgang Goethe-UniversitätFrankfurt am MainDeutschland
  2. 2.Abt. Nephrologie; OA am Zentrum der Inneren MedizinKlinikum der Johann Wolfgang Goethe-UniversitätFrankfurt am MainDeutschland

Personalised recommendations