Advertisement

Glomerulus

  • A. Werner Mondorf
  • Jürgen E. Scherberich
Chapter

Zusammenfassung

Entwicklungsgeschichtlich entsteht der Glomerulus am Ende der S-förmig gekrümmten Schlinge eines metanephrogenen Tubulus. Hier formiert sich eine konkave zweischichtige Zellage („disc“), die proliferiert und in einen kugelförmigen Zellhaufen transformiert. In Zellkulturen formiert sich die Gerüststruktur eines „Zeltknäuels“, dessen Leitstruktur aus einer bäumchenartig verzweigten Basalmembran (Matrix), bedeckt mit Epithelien, besteht.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. [1]
    Barajas, L.: The ultrastructure of the juxtaglomerular apparatus as disclosed by three-dimensional reconstructions from serial sections. The anatomical relationship between the tubular and vascular components. J. Ultrastruct. Res. 33, 116–147 (1970)PubMedGoogle Scholar
  2. [2]
    Bernstein, J., Cheng, F., Roszka, J.: Glomerular differentiation in metanephric culture. Lab. Invest. 45, 183–190 (1983)Google Scholar
  3. [3]
    Blantz, R.C.: The glomerulus, passive filter or regulatory organ? Klin. Wschr. 58, 957–964 (1980)Google Scholar
  4. [4]
    Bretton, R., Bariety, J.: A comparative ultrastructural localization of Concanavalin A, wheat germ agglutinin and Ricinus communis on glomeruli of the normal rat kidney. J. Histochem. Cytochem. 24, 1098–1100 (1976)Google Scholar
  5. [5]
    Debray, H., Decout, D., Strecker, G., Montreul, J., Monsigny, M.: Studies on the specificity of some lectins. Prot. Biol. Fluids (Pergamon) 27, 451 — 454 (1980)Google Scholar
  6. [6]
    Foldert, V.W., Schlöndorff, D.: Prostaglandin synthesis in isolated glomeruli.. Prostaglandins 17, 79–86 (1979)Google Scholar
  7. [7]
    Gelfand, M.C., Frank, M.M., Green, I.: A receptor for the third component of complement in the human renal glomerulus. J. exp. Med. 142, 1029–1034 (1975)PubMedCentralPubMedGoogle Scholar
  8. [8]
    Holthöfer, H., Virtanen, I., Petterson, E., Tönroth, T., Alfthan, O., Linder, E., Miettinen, A.: Lectins as fluorescence microscopic markers for saccharides in the human kidney. Lab. Invest. 45, 391–399 (1981)PubMedGoogle Scholar
  9. [9]
    Imbert, M., Chabardes, D., Morel, F.: Hormone sensitive adenylate cyclase in isolated rabbit glomeruli. Molec. cell. Endocr. 1, 295–304 (1974)Google Scholar
  10. [10]
    Kolb, C., Klein, P.C., Uhlenbruck, G. (Eds.): 4th Int. Sympos. on Lectins in Cell Biology and Medicine. Europ. J. Cell Biol. 4 (1983)Google Scholar
  11. [11]
    Kreisberg, J.I., Karnovsky, M.J.: Glomerular cells in culture. Kidney int. 23, 439–447 (1983)PubMedGoogle Scholar
  12. [12]
    Kugler, P.: Ultracytochemistry of aminopeptidase A (angiotensinase A) in the kidney glomerulus and juxtaglomerular apparatus. Histochemistry 74, 199–212 (1982)PubMedGoogle Scholar
  13. [13]
    Latta, H.: Ultrastructure of the glomerulus and juxtaglomerular apparatus. In: Geiger, S.R. (Ed.): Handbook of Physiology, Section 8: Renal Physiology. American Physiological Society, 1973, pp. 1–29Google Scholar
  14. [14]
    Madri, J.A., Foellmer, H.G., Furthmayr, H.: Ultrastructural morphology and domain structure of a unique collagenous component of basement membranes. Biochemistry 22, 2797–2804 (1983)PubMedGoogle Scholar
  15. [15]
    Striker, G.E., Striker, L.J.: Biology of Disease; glomerular cell culture. Lab. Invest. 53, 122–131 (1985)PubMedGoogle Scholar
  16. [16]
    Timpl, R., Bruckner, P., Martin, G.R.: Basement membrane collagen. In: Guder, W.G., Schmidt, U. (Eds.): Biochemical Nephrology. Curr. Probl. Clin. Biochem. 8, 20–28 (1978)Google Scholar
  17. [17]
    Velosa, J.A., Shah, S.V., Ou, S.L., Abboud, H.E., Dousa, T.P.: Activities of lysosomal enzymes in isolated glomeruli. Lab. Invest. 45, 522–526 (1981)PubMedGoogle Scholar
  18. [18]
    Weiss, M.A., Ooi, B.S., Ooi, Y.M., Engvall, E., Ruoslahti, E.: Immunofluorescene localization of fibronectin in the human kidney. Lab. Invest. 41, 340 (1979)PubMedGoogle Scholar
  19. [1]
    Kugler, P., Wolf, G., Scherberich, J.E.: Histochemical demonstration of peptidases in the human kidney: Histochemistry 83, 337–341 (1985)PubMedGoogle Scholar
  20. [2]
    Hörl, W.H., Heidland, A. (Edts.): Proteases; protential role in health and disease, Adv. Exp. Med. & Biol. Vol. 167 (1984), Plenum Press, N.Y. Lond.Google Scholar
  21. [3]
    Zollinger, H.U., Mihatsch, M.J.: Renal Pathology in Biopsy Springer Verlag, Berlin, Heidelberg, New York 1978Google Scholar
  22. [4]
    Scherberich, J.E., Wolf, G., Mauck, J., Hess, H., Haase, V., Schoeppe, W.: Monoclonal antibodies against differentiation antigens of fetal and adult kidney, placenta and renal adenocarcinoma. In: Monoclonal antibodies in clinical oncol. (Eds. Basted, G., Kaul, S.), im Druck 1985Google Scholar
  23. [5]
    Morel-Maroger Striker, L., Killen, P.D., Striker, G.E.: The composition of glomerulosclerosis; studies in focal sclerosis, crescentic glomerulonephritis and membranoproliferative glomerulonephritis: Lab. Invest 51, 181–192 (1984)Google Scholar
  24. [1]
    Bretton, R., Bariety, J.: A comparative ultrastructural localization of Concanavalin A, wheat germ and Ricinus communis on glomeruli of the normal rat kidney. J. Histochem. Cytochem. 24, 1093–1100 (1976)PubMedGoogle Scholar
  25. [2]
    Dietrich, H.J.: Die Struktur der Blutgefäße in der Rattenniere. Norm. path. Anat. 35 (1978)Google Scholar
  26. [3]
    Holthöfer, H., Virtanen, I., Petterson, E., Törnroth, T., Alfthan, 0., Linder, E., Miettinen, A.: Lectins as fluorescence microscopic markers for saccharides in the human kidney. Lab. Invest, 45, 391–399 (1981)Google Scholar
  27. [4]
    Kugler, P.: Ultracytochemistry of aminopeptidase A (Angiotensinase A) in the kidney glomerulus and juxtaglomerular apparatus. Histochemistry 74, 199–212 (1982)PubMedGoogle Scholar
  28. [5]
    Lovett, D.H., Sterzel, R.B., Kashgarian, M., Ryan, J.L.: Neutral proteinase activity produced in vitro by cells of the glomerular mesangium. Kidney int. 23, 342–349 (1983)PubMedGoogle Scholar
  29. [6]
    Macarak, E., Howard, B., Kirby, E., Kefalides, N.: Biosynthesis of basement membrane collagen by cultured endothelial cells. Front. Matrix Biol. 7, 27–36 (1979)Google Scholar
  30. [7]
    Mukai, K., Rosai, J., Burgdorf, W.: Localization of factor VIII related antigen in vascular endothelial cells using an immunoperoxidase method. Amer. J.surg. Path. 4, 273 (1980)Google Scholar
  31. [8]
    Ryan, G.B., Karnovsky, M.J.: Distribution of endogenous albumin in the rat glomerulus: role of hemodynamic factors in glomerular barrier function. Kidney int. 9, 36 (1976)PubMedGoogle Scholar
  32. [9]
    Taugner, R., Ganten, D.: The localization of converting enzyme in kidney vessels of the rat. Histochemistry 75, 191–201 (1982)PubMedGoogle Scholar
  33. [10]
    Tisher, C.C.: Anatomy of the kidney. In: Brenner, B.M., Rector, F.C. (Eds.): The Kidney, 2nd ed. Saunders, Philadelphia 1981, pp. 3–75Google Scholar
  34. [1]
    Ausiello, D.A., Kreisberg, J.I., Roy, C., Karnovsky, M.J.: Contraction of cultured rat glomerular mesangial cells after stimulation with angiotensin II and arginine vasopressin. J. Clin. Invest. 65, 754–60 (1980)PubMedCentralPubMedGoogle Scholar
  35. [2]
    Batsford, S.R., Weghaupt, R., Takamiya, H., Vogt, A.: Studies on the mesangial handling of protein antigens: influence of size, charge and biologic activity: Nephron 41, 146–151 (1985)PubMedGoogle Scholar
  36. [3]
    Bohle, A., Herfarth, C.: Zur Frage eines intercapillären Bindegewebes im Glomerulum der Niere des Menschen. Virchows Arch. (path. Anat.) 331, 573–90 (1958)Google Scholar
  37. [4]
    Border, W.A., Kamil, E.S., Ward, H.J., Cohen, A.H.: Antigenic charge as a determinant of immune complex localization in the rat glomerulus. Lab. Invest. 40, 442–49 (1981)Google Scholar
  38. [5]
    Bretton, R., Bariety, J.: A comparative ultrastructural localization of Concanavalin A, wheat germ and ricinus communis on glomeruli of normal rat kidney. J. Histochem. Cytochem. 24, 1093–1100 (1976)Google Scholar
  39. [6]
    Burkholder, P.M.: Functions and pathophysiology of the glomerular mesangium. Lab. Invest. 46, 239 (1982)PubMedGoogle Scholar
  40. [7]
    Caldicott, W.J.H., Taub, K.J., Margulies, S.S., Hollenberg, N.K.: Angiotensin receptors in glomeruli differ from those in renal arterioles. Kidney int. 19, 687–93 (1981)Google Scholar
  41. [8]
    Camazine, S.M., Ryan, G.B., Unanue, E.R., Karnovsky, M.J.: Isolation of phagocytic cells from the rat renal glomerulus. Lab. Invest. 35, 315–26 (1976)PubMedGoogle Scholar
  42. [9]
    Couser, W.G., Salant, D.J.: In situ immune complex formation and glomerular injury. Kidney int. 17, 1 (1980)PubMedGoogle Scholar
  43. [10]
    Dubois, C.H., Goffinet, G., Foidart, J.B., Dechenne, C.A, Foidart, J.M., Mahieu, P.R.: Evidence for a particular binding capacity of rat peritoneal macrophages to rat glomerular mesangial cells in vitro. Europ. J. Clin. Invest. 12, 239–46 (1982)PubMedGoogle Scholar
  44. [11]
    Elema, J.D., Hoyer, J., Vernier, R.L.: The glomerular mesangium: Uptake and transport of intravenously injected colloidal carbon in the rat. Kidney int. 9, 395–406 (1976)PubMedGoogle Scholar
  45. [12]
    Foidart, J., Sraer, J., Delarue, F., Mahieu, P., Ardaillou, R.: Evidence for mesangial glomerular receptors for angiotensin II linked to mesangial cell contractility. FEBS Letters 121, 333–39 (1980)PubMedGoogle Scholar
  46. [13]
    Foidart, J.B., Pirard, Y.S., Winand, R.J., Mathieu, P.R.: Tissue culture of normal rat glomeruli. Glycosaminoglycan biosynthesis by homogeneous epithelial and mesangial cell population. Renal Physiol. 3, 169–73 (1980)PubMedGoogle Scholar
  47. [14]
    Grond, J., Elema, J.D.: Glomerular mesangium; analysis of the increased activity observed in experimental acute amino-nucleoside nephrosis in the rat: Lab. Invest. 45, 400–409 (1981)Google Scholar
  48. [15]
    Holthöfer, H., Virtanen, I., Petterson, E., Törnroth, T., Alfthan, O., Linder, E., Miettinen, A.: Lectins as fluorescence microscopic markers for saccharides in the human kidney. Lab. Invest. 45, 391–99 (1981)PubMedGoogle Scholar
  49. [16]
    Keane, W.F., Raji, L.: Determinants of glomerular mesangial localization of immune complexes; role of endothelial fenestrae. Lab. Invest. 45, 366–71 (1981)PubMedGoogle Scholar
  50. [17]
    Kreisberg, J.I., Karnowski, M.J.: Glomerular cells in culture. Kidney int. 23, 439–47 (1983)PubMedGoogle Scholar
  51. [18]
    Kreisberg, J.I.: Insulin requirement for contraction of cultured rat glomerular mesangial cells in response to angiotensin II (A II): A possible role for insulin in modulating glomerular hemodynamics. Proc. nat. Acad. Sci. USA 79, 4190–4192 (1982)PubMedGoogle Scholar
  52. [19]
    Latta, H., Maunsbach, A.B., Maddden, S.C.: The centrilobular region of the renal glomerulus studied by electron microscopy. J. Ultrastruct. Res. 4, 455–72 (1960)PubMedGoogle Scholar
  53. [20]
    Lee, S., Vernier, R.L.: Immunoelectron microscopy of the glomerular mesangial uptake and transport of aggregated human albumin in the mouse. Lab. Invest. 42, 44–58 (1980)PubMedGoogle Scholar
  54. [21]
    Leiper, J.M., Thomson, D., MacDonald, M.K.: Uptake and transport of Imposil by the glomerular mesangium in the mouse. Lab. Invest. 37, 526–33 (1977)PubMedGoogle Scholar
  55. [22]
    Linder, E., Miettinen, A., Törnroth, T.: Fibronectin as a marker for the glomerular mesangium in immunohistology of kidney biopsies. Lab. Invest. 42, 70 (1980)PubMedGoogle Scholar
  56. [23]
    Lovett, D.H., Sterzel, R.B., Kashgarian, M., Ryan, J.L.: Neutral proteinase activity produced in vitro by cells of the glomerular mesangium. Kidney int. 23, 342–49 (1983)PubMedGoogle Scholar
  57. [24]
    Lovett, D.H., Ryan, J.L., Sterzel, R.B.: A thymocyte activating factor derived from glomerular mesangial cells: J. Immunol. 130, 1796–1801 (1983)PubMedGoogle Scholar
  58. [25]
    Mahieu, P.R., Foidart, J.B., Dubois, C.H., Dechenne, C.A., De Heneffe, J.: Tissue culture of normal rat glomeruli: Contractile activity of the cultured mesangial cells. Invest. Cell. Path. 3, 121–28 (1980)Google Scholar
  59. [26]
    Mancilla-Jimenez, R., Bellon, B., Kuhn, J., Belair, M.F., Rouchon, M., Druet, P., Bariety, J.: Phagocytosis of heat-aggregated immunoglobulins by mesangial cells. An immunoperoxidase and acid phosphatase study. Lab. Invest. 46, 243–53 (1982)PubMedGoogle Scholar
  60. [27]
    McClusky, R.T.: Modification of glomerular immune complex deposits. Lab. Invest. 48, 241–244 (1983)Google Scholar
  61. [28]
    Michael, A.F., Keane, W.F., Rau, L., Vernier, R.L., Mauer, S.M.: The glomerular mesangium. Kidney int. 17, 141–54 (1980)PubMedGoogle Scholar
  62. [29]
    Michael, A.F., Shvil, Y.: Glomerular Mesangium: Introductory Remarks. In: Immune Mechanisms in Renal Disease (eds) Cummings, N.B., Michael, A.F., Wilson, C.B. 129–140, Plenum Medical Book Company New York, London (1983)Google Scholar
  63. [30]
    Michielsen, P., Creemers, F.: The structure and function of the glomerular mesangium. In: Dalton, A.J., Haguenau, F. (Eds.): Ultrastructure in Biological Systems. Academic Press, New York 1967, vol. 2, pp. 57–72Google Scholar
  64. [31]
    Nörgaard, J.O.R.: Cellular outgrowth from isolated glomeruli; origin and characterization. Lab. Invest. 48, 536–42 (1983)Google Scholar
  65. [32]
    Osborne, M.J., Droz, B., Meyer, P., Morel, F.: Angiotensin II: Renal localization in glomerular mesangial cells by autoradiography. Kidney int. 8, 245–54 (1975)PubMedGoogle Scholar
  66. [33]
    Roll, F.S., Madri, J.A., Albert, J., Furthmayr, H.: Codistribution of collagen types IV and AB2 in basement membranes and mesangium of the kidney. An immunoferritin study of ultrathin frozen sections. J. Cell Biol. 85, 592–616 (1980)Google Scholar
  67. [34]
    Scheinman J.I., Fish, A.J., Brown, D.M., Michael, A.J.: Human glomerular smooth muscle (mesangial) cells in culture. Lab. Invest. 34, 150–58 (1976)Google Scholar
  68. [35]
    Schreiner, G.F., Cotran, R.S.: Localization of an la-bearing glomerular cell in the mesangium. J. Cell Biol. 94, 483–88 (1982)PubMedGoogle Scholar
  69. [36]
    Schreiner, G.F., Kiely, J.-M., Cotran, R.S., Unanue, E.R.: Characterization of resident glomerular cells in the rat expressing la-determinants and manifesting genetically restricted interactions with lymphocytes. J. Clin. Invest. 68, 920–31 (1981)PubMedCentralPubMedGoogle Scholar
  70. [37]
    Sinclair, Bourne, Lancet I, 1448 (1983)Google Scholar
  71. [38]
    Sraer, J., Foidart, J., Chansel, D., Mahieu, P., Kouznetzova, B., Ardaillou, R.: Prostaglandin synthesis by mesangial and epithelial glomerular cultured cells. FEBS Letters 104, 420–24 (1979)PubMedGoogle Scholar
  72. [39]
    Sterzel, R.B., Ehrich, J.H.H., Lucia, H., Thomson, D., Kashgarian, M.: Mesangial disposal of glomerular immune deposits in acute malarial glomerulonephritis. Lab. Invest. 46, 209–14 (1982)PubMedGoogle Scholar
  73. [40]
    Sterzel, R.B., Lovett, D.H., Stein, H.D., Kashgarian, M.: The mesangium and glomerulonephritis. Klin. Wschr. 60, 1077–94 (1982)PubMedGoogle Scholar
  74. [41]
    Sterzel, R.B., Perfetto, M., Biemesderfer, D., Kashgarian, M.: Disposal of ferritin in the glomerular mesangium of the rat. Kidney int. 23, 480–88 (1983)PubMedGoogle Scholar
  75. [42]
    Striker, G.E., Killen, P.D., Farin, F.M., Werny, I., Mannik, M.: Mesangial matrix and inflammatory cells. Proc. 8th Int. Congr. Nephrol., S., KargerA.G., Basel, 1981, pp. 879–87Google Scholar
  76. [43]
    Striker, G.E., Striker, L.J.: Biology of disease: glomerular cell culture Lab. Invest. 53, 122–131 (1985)Google Scholar
  77. [44]
    Striker, G.E., Mannik, M., Tung, M.Y.: Role of marrow-derived monocytes and mesangial cells in removal of immune complexes from renal glomeruli. J. Exp. Med. 149, 127–36 (1979)PubMedGoogle Scholar
  78. [45]
    Takamiya, H., Batsford, S., Kluthe, R., Vogt, A.: Comparison of the handling of ferritin and ferritinprotein conjugates by the glomerular mesangium. Lab. Invest. 40, 18–24 (1979)PubMedGoogle Scholar
  79. [1]
    Avner, E.D., Jaffee, R., Temple, T., Ellis, D., Chung, A.E.: Development of renal basement membrane glycoproteins in metanephric organ culture. Lab. Invest. 48, 263–68 (1983)PubMedGoogle Scholar
  80. [2]
    Brender, B.L., Jaffee, R., Carlin, B., Chung, A.E.: Immunolocalization of entactin, a sulfated basement membrane component, in rodent tissues, and comparison with GP-2 (laminin). Amer. J. Path. 103, 419–26 (1981)Google Scholar
  81. [3]
    Cohen, M., Surma, M.: Renal glomerular basement membrane. Biol. Chem. 255, 167–70 (1980)Google Scholar
  82. [4]
    Courtoy, P.J., Kanwar, Y.S., Hynes, R.O., Farquhar, M.G.: Fibronectin localization in the rat glomerulus. J. Cell Biol. 87, 691–96 (1980)PubMedGoogle Scholar
  83. [5]
    Ekblom, P., Alitalo, K., Vaheri, A., Timpl, R., Saxen, L.: Induction of a basement membrane glycoprotein in embryonic kidney: possible role of laminin in morphogenesis. Proc. nat. Acad. Sci. (USA), 77, 485–89 (1980)Google Scholar
  84. [6]
    Farquhar, M.G., Kanwar, Y.S.: Functional Organization of the Glomerulus: Presence of Glycosaminoglycans (Proteoglycans) in the Glomerular Basement Membrane. In: Cummings, N.B., Michael, A.F., Wilson, C.B. (Eds.): Immune Mechanisms in Renal Disease. Plenum Medical Book Comp., New York, London 1983, pp.. 1–36Google Scholar
  85. [71.
    Foellmer, H.G., Madri, J.A., Furthmayer, H.: Methods in laboratory investigation: Monoclonal antibodies to type IV collagen: probes for the study of structure and function of basement membranes. Lab. Invest. 48, 639–49 (1983)PubMedGoogle Scholar
  86. [8]
    Foidart, J.M., Foidart, J.B., Mahieu, P.R.: Synthesis of collagen and fibronectin by glomerular cells in culture. Renal Physiol. 3, 183–92 (1980)PubMedGoogle Scholar
  87. [9]
    Greenspon, S.A., Krakower, C.A.: Localization of the nephrotoxic antigen within isolated renal glomeruli. Arch. Path. Lab. Med. 51, 629–39 (1951)Google Scholar
  88. [10]
    Hjelle, J.T., Carlson, E.G., Brendel, K., Meezan, E.: Biosynthesis of basement membrane matrix by isolated rat renal glomeruli. Kidney int. 15, 20–32 (1979)PubMedGoogle Scholar
  89. [11]
    Kanwar, Y.S., Farquhar, M.G.: Isolation of glycosaminoglycans (Heparan sulfate) from glomerular basement membranes. Proc. Nat. Acad. Sci. (USA), 76, 4493–4497 (1979).Google Scholar
  90. [12]
    Kefalides, N.A. (Ed.): Chemistry and metabolism of basement membranes. A composition“ and structure. In: Biology and Chemistry of Basement Membrane. Academic. Press, New York 1978, pp. 215–28Google Scholar
  91. [13]
    Kefalides, N., Alper, R., Clark, C.: Biochemistry and metabolism of basement membranes. Int. Rev. Cytol. 61, 167–228 (1979)PubMedGoogle Scholar
  92. [14]
    Kurtz, S.M., Feldmann, I.D.: Experimental studies on the formation of the glomerular basement membrane. J. Ultrastruct. Res. 6, 19–27 (1962)PubMedGoogle Scholar
  93. [15]
    Langeveld, J.P.M., Veerkamp, J.H., Monnens, L.A.H.: Chemical characterization of glomerular and tubular basement membranes of men of different ages. Proc. 5th Int. Symp. Glycoconjugates. Thieme, Stuttgart 1979, pp. 578–79Google Scholar
  94. [16]
    Lubec, G., Hudson, B.G.: Glomerular basement membrane. John Libbey, London—Paris (1985)Google Scholar
  95. [17]
    Macarak, E., Howard, B., Kirby, E., Kefalides, N.: Biosynthesis of basement membrane collagen by cultured endothelial cells. Front. Matrix. Biol. 7, 27–36 (1979)Google Scholar
  96. [18]
    Mackel, A.M., DeLustro, F., DeLustro, B., Fundenberg, H.H., LeRoy, E.C. Connect. Tiss. Res. 10, 333–43 (1982)Google Scholar
  97. [19]
    Madri, J.A., Roll, F.J., Furthmayr, H., Foidart, J.M.: Ultrastructural localization of fibronectin and laminin in the basement membranes of the murine kidney. J. Cell Biol. 86, 682–87 (1980)PubMedGoogle Scholar
  98. [20]
    Madri, J.A., Foellmer, H.G., Furthmayr: Ultrastructural morphology and domain structure of an unique collagenous component of basement membranes. Biochemistry 22, 2797–2304 (1983)PubMedGoogle Scholar
  99. [21]
    Oberley, T.D., Mosher, D.F., Mills, M.D.: Localization of fibronectin within the rat glomerulus and its production by cultured glomerular cells. Amer. J. Pathol. 96, 651–58 (1979)Google Scholar
  100. [22]
    Pettersson, E.E., Colvin, R.B.: Cold-insoluble globulin (Fibronectin, LETS protein) in normal and diseased human glomeruli Clin. Immunol. Immunopath. 11, 425–36 (1978)Google Scholar
  101. [23]
    Price, R.G., Spiro, R.G.: Studies on the metabolism of the renal glomerular basement membrane. J. Biol. Chem. 252, 8597–8602 (1977)PubMedGoogle Scholar
  102. [24]
    Sakai, L.Y., Engvall, E., Hollister, D.W., Burgeson, R.E.: Production and characterization of a monoclonal antibody to human type IV collagen Amer. J. Path. 8, 310 (1982)Google Scholar
  103. [25]
    Sato, T., Spiro, R.G.: Studies on the subunit composition of renal glomerular basement membrane. J. Biol. Chem. 251, 4062–70 (1976)PubMedGoogle Scholar
  104. [26]
    Scheinman, J.I., Fish, A.J., Matas, A.J., Michael, A.F.: The immunohistopathology of glomerular antigens. Il. The glomerular basement membrane, actomyosin and fibroblast surface antigens in normal, diseased and transplanted human kidney. Amer. J. Path. 90, 71–84 (1978)Google Scholar
  105. [27]
    Scheinman, J.I., Foidart, J.M., Gelron-Robey, P., Fish, A.J., Michael, A.F.: The immunohistology of glomerular antigens. IV. Laminin, a defined noncollagen basement membrane glycoprotein. Clin. Immunol. Immunpath. 15, 175–89 (1980)Google Scholar
  106. [28]
    Scheinman, J.I., Foidart, J.M., Michael, A.F.: The immunohistology of glomerular antigens. V. The collagenous antigens of the glomerulus. Lab. Invest. 43, 373–81 (1980)PubMedGoogle Scholar
  107. [29]
    Spiro, R.G.: Studies on the renal glomerular basement membrane. Preparation and chemical composition. J. Biol. Chem. 242, 1915 (1967)PubMedGoogle Scholar
  108. [30]
    Striker, G.E., Smuckler, E.A.: An ultrastructural study of glomerular basement membrane synthesis. Amer. J. Path. 58, 531–55 (1970)PubMedGoogle Scholar
  109. [31]
    Timpl, R., Bruckner, P., Martin, G.R.: Basement membrane collagen. In: Biochemical Nephrology. Curr. Probl. Clin, Biochem. 8, 20–28 (1978)Google Scholar
  110. [32]
    Timpl, R., Oberbäumer, I., Furthmayr, H., Kuehn, K.: Macro-molecular organization of type IV collagen. In: Kuehn, K., Schoene, H., Timpl, R. (Eds.) New Trends in Basement Membrane Research. Raven Press, New York pp 57–67 (1982)Google Scholar
  111. [33]
    Timpl, R., Wiedemann, H., van Delden, V., Furthmayr, H., Kuehn, K.: A network model for the organization of type IV collagen molecules in basement membranes. Europ. J. Biochem. 120, 203 (1981)PubMedGoogle Scholar
  112. [34]
    Timpl, R., Rohde, H., Robey, P.G., Rennard, S.I., Foidart, J.M., Martin, G.R.: Laminin — a glycoprotein from basement membranes. J. Biol. Chem. 254, 9933–9937 (1979)PubMedGoogle Scholar
  113. [35]
    Timpl, R., Engel, J., Martin, G.R.: Laminin — a multifunctional protein of basement membranes. Trends Biochem. Sci. 8, 207–09 (1983)Google Scholar
  114. [36]
    Walker, F.: The origin, turnover and removal of glomerular basement membrane. J. Pathol. 110, 233–44 (1973)PubMedGoogle Scholar
  115. [37]
    Williams, I.F., Harwood, R., Grant, M.E.: Triple helix formation and disulfide bonding during the biosynthesis of glomerular basement membrane collagen. Biochem. biophys. Res. Commun. 70, 200–06 (1976)Google Scholar
  116. [1]
    Arturson, G., Groth, T., Grotte, G.: Human glomerular membrane porosity and filtration pressure; Dextran clearance data analyzed by theoretical models. Clin. Sci. 40, 137 (1977)Google Scholar
  117. [2]
    Brenner, B.M., Hostetter, T.H., Humes, H.D.: Glomerular Permselectivity: Barrier function based on discrimination of molecular size and charge. Am. J. Physiol 234, F 455–460 (1978)Google Scholar
  118. [3]
    Brenner, B.M., Hostetter, T.H.: Mechanisms of Glomerular Permselectivity. In: Cummings, N.B., Michael, A.F., Wilson, C.B.: (Eds.) Immune Mechanisms in Renal Disease. Plenum Medical Comp. New York, London 1983Google Scholar
  119. [4]
    Bohrer, M.P., Deen, W.M., Robertson, C.R., Troy, J.K., Brenner, B.M.: Influence of molecular configuration on the passage of macromolecules across the glomerular capillary wall. J. Gen. Physiol. 74 583 (1979)PubMedGoogle Scholar
  120. [5]
    Carone, F.A., Peterson, D.R., Oparil, S. Pullman, T.N.: Renal tubular transport and catabolism of proteins and peptides. Kidney int. 16, 271–78 (1979)PubMedGoogle Scholar
  121. [6]
    Chang, R.L.S., Deen, W.M., Robertson, C.R., Brenner, B.M.: Permselectivity of the glomerular capillary wall. III Restricted transport of polyanions. Kidney int. 8, 212–218 (1975)PubMedGoogle Scholar
  122. [7]
    Deen, W.M., Bohrer, M.P., Brenner, B.M.: Macromolecule transport across glomerular capillaries: Application of pore theory. Kidney int. 16, 353–365 (1979)PubMedGoogle Scholar
  123. [8]
    Deen, W.M., Satvat, B.: Determinants of the glomerularfiltration of proteins. Amer. J. Physiol. 10, F162 — F170 (1981)Google Scholar
  124. [9]
    Farquhar, M.G.: The primary glomerular filtration barrier-basement membrane or epithelial slites? Kidney int. 8, 197–211 (1975)PubMedGoogle Scholar
  125. [10]
    Farquhar, M.G., Wissig, S.L., Palade, G.E.: Glomerular permeability: I. Ferritin transfer across the normal glomerular capillary wall. J. exp. Med. 113, 47–65 (1961)PubMedCentralPubMedGoogle Scholar
  126. [11]
    Farquhar, M.G., Kanwar, Y.S.: Functional organization of the glomerulus: presence of glycosaminoglycans (Proteoglycans) in the glomerular basement membrane. In: Cummings, N.B. Michael, A.F., Wilson, C.B. (Eds.) Immune Mechanisms in Renal Disease. Plenum Medical Comp. New York, London 1983, pp. 1–16Google Scholar
  127. [12]
    Galaske, R.G., van Liew, J.B., Feld, L.G.: Filtration and reabsorption of endogenous low-molecular weight protein in the rat kidney. Kidney int. 16, 394–403 (1979)PubMedGoogle Scholar
  128. [13]
    Huttunen, N.-P., Turner, M.W., Barrett, T.M.: Physiochemical characteristics of glomerular basement membrane antigens in urine. Kidney int. 16, 322–28 (1979)PubMedGoogle Scholar
  129. [14]
    Kanwar, Y.S., Farquhar, M.G.: Anionic sites in the glomerular basement membrane: in vivo and vitro localization to the laminae rarae by cationic probes. J. Cell Biol. 81, 137 (1979)PubMedGoogle Scholar
  130. [15]
    Kanwar, Y.S., Linker, A., Farquhar, M.G.: Increased permeability of the glomerular basement membrane to ferritin after removal of glycosaminoglycans (heparan sulfate) by enzyme digestion. J. Cell Biol. 86, 688–93 (1980)PubMedGoogle Scholar
  131. [16]
    Kefalides, N.A.: The molecular Structure of Basement Membranes as it Relates to Function, In: Cummings, N.B., Michael, A.F., Wilson, C.B. (Eds.): Immune Mechanisms in Renal Disease. Plenum Medical Book Comp., New York, London 1983Google Scholar
  132. [17]
    Langer, K.H.: Biophysikochemische Strukturen des glomerulären Filters: Klin. Wschr. 63, 835–849 (1985)Google Scholar
  133. [18]
    Maack, T., Johnson, V., Kau, T. sen., Figueoredo, J., Sigulem, D.: Renal filtration transport and metabolism of lowmolecular-weight proteins. Kidney int. 16, 251–270 (1979)Google Scholar
  134. [19]
    Maack, T., Camargo, M.J.F., Park, H.C., Sumpio, B.E.: Kinetics selectivity and competition of tubular absorption and metabolism of proteins. Contrib. Nephrol (in Druck)Google Scholar
  135. [20]
    Mogensen, C.E., Christensen, C.K., Christensen, N.J., Gundersen, H.J.G., Jakobsen, F.K., Pedersen, E.B., Vittinghus, E.: Renal protein handling in normal, hypertensive and diabetic men. Contrib Nephrol. 24, 139–52 (1980)Google Scholar
  136. [21]
    Mynderse, L.A., Hassell, J.R., Kleinmann H.K., Martin, G.R., Martinez-Hernandez, A.: Loss of Heparan sulfate proteoglycan from glomerular basement membrane of nephrotic rats. Lab. Invest. 48, 292–302 (1983)PubMedGoogle Scholar
  137. [22]
    Oken, D.E., Kirschbaum, B.B., Landwehr, D.M.: Micropuncture studies of the mechanisms of normal and pathological albuminuria. Contrib. Nephrol. 24, 1–7 (1980)Google Scholar
  138. [23]
    Ota, Makino, H., Miyoshi, A., Hiramatsu, M., Takahashi, K., Ofuji, T.: Molecular sieve in glomerular basement membrane as revealed by electron microscopy, J. Electron Micr. 28, 20–28 (1979)Google Scholar
  139. [24]
    Rennke, H.G., Cotran, R.S., Venkatachalam, M.A.: Role of molecular charge in glomerular permeability. Tracer studies with cationized ferritins. J. Cell Biol. 67, 638–46 (1975)PubMedGoogle Scholar
  140. [25]
    Rennke, H.G., Venkatachalam, M.A.: Glomerular permeability: in vitro tracer studies with polyanionic and polycationic ferritins. Kidney int. 11, 44 (1977)PubMedGoogle Scholar
  141. [26]
    Rennke, H.G., Olson, J.L., Venkatachalam, M.A.: Glomerular filtration of macromolecules: Normal mechanisms and the pathoghenesis of proteinuria. Contrib. Nephrol. 24, 30–41 (1980)Google Scholar
  142. [27]
    Rosenmann, E., Boss, J.H.: Tissue antigenes in normal and pathologic urine samples: A review. Kidney int. 16, 337–344 (1979)PubMedGoogle Scholar
  143. [28]
    Scherberich, J.E., Soler, G., Schoeppe, W.: Noninvasive diagnosis of kidney diseases applying sensitive thin-layer SDSPAA gradient gel electrophoresis, Prot. Biol. Fluids (Perga-mon) Vol. 32, 533–536 (1985)Google Scholar
  144. [29]
    Scherberich, J.E., Wehrheim, W., Weidmann, H.G., Horatz, W., Wehrheim, C., Mondorf, W., Schoeppe, W.: Disturbance in renal handling of proteins in patients with kidney diseases as evaluated by sensitive inverse radial-immunoassay and SDS-polyacryamide electrophoresis: In. Adv. Non invas. Nephrol. (G. Lubec, V. Campese, Eds), J. Libbey Co & Ltd. 1985 im DruckGoogle Scholar
  145. [30]
    Vehaskari, V.M., Root, E.R., Germuth, F.G., Robson, A.M.: Glomerular charge and urinary protein excretion: effects of systemic and intrarenal polycation infusion in the rat: Kidney Int. 22, 127–135 (1982)PubMedGoogle Scholar
  146. [31]
    Venkatachalam, M.A., Rennke, H.: The structural and molecular basis of glomerular filtration. Circulat. Res. 43, 337–47 (1978)PubMedGoogle Scholar
  147. [32]
    Venkatachalam, M.A., Rennke, H.G.: Physical Interactions between Macromolecules and Glomerular Filter, In: Cummings, N.B., Michael, A.F., Wilson, C.B. (Eds.) Immune Mechanisms in Renal Disease. Plenum Medical Book Comp. New York, London 1983Google Scholar
  148. [33]
    Vernier, R.L., Klein, D.J., Sisson, S.P., Mahan, J.D., Oegema, T.R., Brown, D.M.: Heparan sulfate-rich anionic sites in the human glomerular basement membrane; decreased concentration in congenital nephrotic syndrome: New Engl. J. Med. 309, 1001–1009 (1983)Google Scholar
  149. [1]
    Bretton, R., Bariety, J.: A comparative ultrastructural localization of Concanavalin A, wheat germ and ricinus communis on glomeruli of normal rat kidney. J. Histochem. Cytochem. 24, 1093–1100 (1976)PubMedGoogle Scholar
  150. [2]
    Cohen, A.H., Mampaso, F. Zamboni, L.: Glomerular podocyte degeneration in human renal desease. An ultrastructural study. Lab. Invest 37, 30–42 (1977)PubMedGoogle Scholar
  151. [3]
    Farquhar, M.G., Kanwar, Y.S.: Functional organization of the glomerulus: presence of Glycosaminoglycans (Proteoglycans) in the glomerular basement membrane. In: Cummings, N.B., Michael, A.F., Wilson, C.B. (Eds.): Immune Mechanisms in Renal Disease. Plenum Medical Book Comp., New York, London 1983, pp. 1–36Google Scholar
  152. [4]
    Foidart, J.B., Pirard, Y.S., Winand, R.J., Mahieu, P.R.: Tissue culture of normal rat glomeruli. Glycosaminoglycan biosynthesis by homogeneous epithelial and mesangial cell populations. Renal Physiol 3, 169–73 (1980)PubMedGoogle Scholar
  153. [5]
    Kerjaschki, D.: Molekularpathologie des glomerulären Sialoglycoproteins Podocalyxin, dem Hauptbestandteil des „glomerulären Polyanions“, in der experimentellen und humanen glomerulären Minimalveränderung: Klirr. Wschr. 63, 850–861 (1985)Google Scholar
  154. [6]
    Klein, P.J., Bulla, M., Newman, R.A., Müller, P., Uhlenbruck, G., Schäfer, H.E., Krüger, G., Fischer, R.: Significance of the Thomsen-Friedenreich-antigen in hemolytic-uremic-Syndrom. Lancet II, 1024–1025 (1977)Google Scholar
  155. [7]
    Klein, P.J., Newman, R.A., Müller, P., Uhlenbruck, G., Schäfer, H.E., Lennartz, Fischer, R.: Histochemical methods for the demonstration of the Thomsen-Friedenreich-antigen in cell suspensions and tissue sections. Klirr. Wschr. 56, 761–65 (1978)Google Scholar
  156. [8]
    Klein, P.J., Vierbuchen, M., Farrar, G., Ortmann, M., Uhlenbruck, G.: Histochemische Charakterisierung erythrozytärer und glomerulärer Membranantigene mittels Lectinen und Antikörpern im Hinblick auf die Pathogenese des hämolytischurämischen Syndroms (HUS). Acta histochemie 28, 149–55 (1983)Google Scholar
  157. [9]
    Koehler, C.: Immune adherence in renal glomeruli. Complement receptor sites on glomerular capillary epithelial cells. Amer. J. Path. 86, 635–54 (1977)PubMedGoogle Scholar
  158. [10]
    Kreisberg, H., Hoover, R.L., Karnovsky, M.J.: Isolation and characterization of rat glomerular epithelial cells in vitro. Kidney int. 14, 21–30 (1978)PubMedGoogle Scholar
  159. [11]
    Kugler, P., Wolf, G., Scherberich, J.E.: Histochemical demonstration of peptidases in the human kidney: Histochemistry 83, 337–41 (1985)PubMedGoogle Scholar
  160. [12]
    Kunz, A., Brown, D., Orci, L.: Appearance of Helix pomatia lectin-binding sites on podocyte plasma membrane during glomerular differentiation Lab. Invest. 51, 317–324 (1984)Google Scholar
  161. [13]
    Nörgaad, J.O.: Cellular outgrowth from isolated glomeruli-origin and characterization. Lab. Invest. 48, 526–42 (1983)Google Scholar
  162. [14]
    Scheinman, J.I., Fish, [13] A.J., Kim, Y., Michael, A.F.: C3b receptors on human glomeruli in vitro. Amer. J. Path. 92, 147–54 (1978)Google Scholar
  163. [15]
    Schneeberger, E.E., Levey, R.H., McClusky, R.T., Karnovsky, M.J.: The isoporous substructure of the human glomerular diaphragma. Kidney int. 8, 48 (1975)PubMedGoogle Scholar
  164. [16]
    Seiler, M.W., Venkatachalam, M.A., Cotran, R.S.: Glomerular epithelium alterations induced bei polycations. Science 189, 390–93 (1975)PubMedGoogle Scholar
  165. [17]
    Seiler, M.W., Rennke, H.G., Venkatachalam, M.A., Cotran, R.S.: Pathogenesis of polycation-induced alterations („fusion”) of glomerular epithelium. Lab. Invest 36, 48–61 (1977)PubMedGoogle Scholar
  166. [18]
    Sraer, J., Foidart, J., Chansel, D., Mahieu, P., Kouznetzova, B., Ardaillou, R.: Prostaglandin synthesis by mesangial and epithelial glomerular cultured cells. FEBS letters 104, 420–24 (1979)PubMedGoogle Scholar
  167. [19]
    Stoward, P.J., Spicer, S.S., Miller, R.L.: Histochemical reactivity of peanut lectin-horseradish peroxidase conjugate. Histochem. Cytochem. 28, 979–90 (1980)Google Scholar
  168. [20]
    Trenchev, P., Dorling, J., Webb, J., Holborow, E.J.: Localization of smooth muscle-like contractile proteins in kidney by immunoelectron microsopy. J. Anat. 121, 85–95 (1976)PubMedGoogle Scholar
  169. [21]
    Uhlenbruck, G.: The Thomsen-Friedenreich (TF) receptor: an old history with new mystery. Immunol. Commun. 10, 251–64 (1981)PubMedGoogle Scholar

Copyright information

© Friedr. Vieweg & Sohn Verlagsgesellschaft mbH, Braunschweig 1986

Authors and Affiliations

  • A. Werner Mondorf
    • 1
  • Jürgen E. Scherberich
    • 2
  1. 1.Klinikum der Johann Wolfgang Goethe-UniversitätFrankfurt am MainDeutschland
  2. 2.Abt. Nephrologie; OA am Zentrum der Inneren MedizinKlinikum der Johann Wolfgang Goethe-UniversitätFrankfurt am MainDeutschland

Personalised recommendations