Advertisement

Orion: A Generic Model and Tool for Data Mining

  • Cédric BucheEmail author
  • Cindy Even
  • Julien Soler
Chapter
  • 23 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 12060)

Abstract

This paper focuses on the design of autonomous behaviors based on humans behaviors observation. In this context, the contribution of the Orion model is to gather and to take advantage of two approaches: data mining techniques (to extract knowledge from the human) and behavior models (to control the autonomous behaviors). In this paper, the Orion model is described by UML diagrams. More than a model, Orion is an operational tool allowing to represent, transform, visualize and predict data; it also integrates operational standard behavioral models. Orion is illustrated to control a bot in the game Unreal Tournament. Thanks to Orion, we can collect data of low level behaviors through three scenarios performed by human players: movement, long range aiming and close combat. We can easily transform the data and use some data mining techniques to learn behaviors from human players observation. Orion allows us to build a complete behavior using an extension of a Behavior Tree integrating ad hoc features in order to manage aspects of behavior that we have not been able to learn automatically.

References

  1. 1.
    Achtert, E., Kriegel, H.-P., Zimek, A.: ELKI: a software system for evaluation of subspace clustering algorithms. In: Ludäscher, B., Mamoulis, N. (eds.) SSDBM 2008. LNCS, vol. 5069, pp. 580–585. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-69497-7_41CrossRefGoogle Scholar
  2. 2.
    Ankerst, M., Breunig, M.M., Kriegel, H.P., Sander, J.: OPTICS: ordering points to identify the clustering structure. ACM SIGMOD Rec. 28, 49–60 (1999)CrossRefGoogle Scholar
  3. 3.
    Bengio, Y., Frasconi, P.: An input output HMM architecture. In: Advances in Neural Information Processing Systems, pp. 427–434 (1995)Google Scholar
  4. 4.
    Bengio, Y., Frasconi, P.: Input-output HMMs for sequence processing. IEEE Trans. Neural Netw. 7(5), 1231–1249 (1996)CrossRefGoogle Scholar
  5. 5.
    Bentivegna, D.C., Atkeson, C.G., Cheng, G.: Learning from observation and practice using primitives. In: AAAI 2004 Fall Symposium on Real-life Reinforcement Learning (2004)Google Scholar
  6. 6.
    Buche, C.: Adaptive behaviors for virtual entities in participatory virtual environments. Université de Bretagne Occidentale - Brest, Habilitation à diriger des recherches (2012)Google Scholar
  7. 7.
    Buche, C., Even, C., Soler, J.: Autonomous virtual player in a video game imitating human players: the ORION framework. In: International Conference on Cyberworlds, pp. 108–113. IEEE (2018)Google Scholar
  8. 8.
    Demšar, J., et al.: Orange: data mining toolbox in python. J. Mach. Learn. Res. 14(1), 2349–2353 (2013)zbMATHGoogle Scholar
  9. 9.
    Ester, M., Kriegel, H.P., Sander, J., Xu, X.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: Proceedings of the 2nd International Conference on Knowledge Discovery and Data mining, pp. 226–231 (1996)Google Scholar
  10. 10.
    Evans, R.: The Use of AI Techniques in Black & White (2001)Google Scholar
  11. 11.
    Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. Syst. Sci. 55(1), 119–139 (1997)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Fritzke, B.: A growing neural gas network learns topologies. In: Advances in Neural Information Processing Systems, vol. 7, pp. 625–632 (1995)Google Scholar
  13. 13.
    Fritzke, B.: Growing grid - a self-organizing network with constant neighborhood range and adaptation strength. Neural Process. Lett. 2(5), 9–13 (1995)CrossRefGoogle Scholar
  14. 14.
    Hall, M., et al.: The WEKA data mining software: an update. SIGKDD Explor. 11(1), 10–18 (2009)CrossRefGoogle Scholar
  15. 15.
    Lim, C.-U., Baumgarten, R., Colton, S.: Evolving behaviour trees for the commercial game DEFCON. In: DI Chio, C., et al. (eds.) EvoApplications 2010. LNCS, vol. 6024, pp. 100–110. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-12239-2_11CrossRefGoogle Scholar
  16. 16.
    Lloyd, S.P.: Least squares quantization in PCM. IEEE Trans. Inf. Theory 28(2), 129–137 (1982)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Nguyen, M.H.: Segment-based SVMs for time series analysis. Ph.D. thesis, Carnegie Mellon University (2012)Google Scholar
  18. 18.
    Quinlan, J.R.: Improved use of continuous attributes in C4.5. J. Artif. Intell. Res. 4(1), 77–90 (1996)CrossRefGoogle Scholar
  19. 19.
    Russel, S., Norvig, P.: Artificial Intelligence: A Modern Approach, 3rd edn. Prentice Hall, Upper Saddle River (2009)Google Scholar
  20. 20.
    Sammon, J.W.: A nonlinear mapping for data structure analysis. IEEE Trans. Comput. C–18(5), 401–409 (1969)CrossRefGoogle Scholar
  21. 21.
    Schölkopf, B., Smola, A., Müller, K.R.: Nonlinear component analysis as a kernel eigenvalue problem. Neural Comput. 10(5), 1299–1319 (1998)CrossRefGoogle Scholar
  22. 22.
    Swayne, D.F., Buja, A.: Exploratory visual analysis of graphs in GGOBI. In: Antoch, J. (ed.) COMPSTAT 2004 — Proceedings in Computational Statistics, pp. 477–488. Physica-Verlag HD, Heidelberg (2004).  https://doi.org/10.1007/978-3-7908-2656-2_39CrossRefzbMATHGoogle Scholar
  23. 23.
    Swayne, D.F., Buja, A., Lang, D.T.: Exploratory Visual Analysis of Graphs in GGobi. In: COMPSTAT, no. Dsc, pp. 477–488 (2004) Google Scholar
  24. 24.
    Tencé, F., Gaubert, L., De Loor, P., Buche, C.: CHAMELEON: a learning virtual bot for believable behaviors in video game. In: International Conference on Intelligent Games and Simulation (GAMEON 2012), pp. 64–70 (2012)Google Scholar
  25. 25.
    Tencé, F., Gaubert, L., Soler, J., De Loor, P., Buche, C.: Stable growing neural gas: a topology learning algorithm based on player tracking in video games. Appl. Soft Comput. 13(10), 4174–4184 (2013)CrossRefGoogle Scholar
  26. 26.
    Tenenbaum, J.B., de Silva, V., Langford, J.C.: A global geometric framework for nonlinear dimensionality reduction. Science (New York, N.Y.) 290(5500), 2319–2323 (2000)CrossRefGoogle Scholar
  27. 27.
    Thurau, C., Sagerer, G., Bauckhage, C.: Imitation learning at all levels of game-AI. In: Proceedings of the International Conference on Computer Games, Artificial Intelligence, Design and Education, pp. 402–408 (2004)Google Scholar
  28. 28.
    Torgerson, W.S.: Multidimensional scaling: I. Theory and method. Psychometrika 17(4), 401–419 (1952)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Vapnik, V., Golowich, S.E., Smola, A.: Support vector method for function approximation, regression estimation, and signal processing. In: Advances in Neural Information Processing Systems, vol. 9, pp. 281–287 (1996)Google Scholar
  30. 30.
    Vondrick, C., Khosla, A., Malisiewicz, T., Torralba, A.: HOGgles: visualizing object detection features. In: 2013 IEEE International Conference on Computer Vision, pp. 1–8, December 2013Google Scholar
  31. 31.
    Welch, L.R.: Hidden Markov Models and the Baum-Welch Algorithm. IEEE Inf. Theory Soc. Newslett. 53(4), 10–13 (2003)Google Scholar
  32. 32.
    Yamamoto, K., Mizuno, S., Chu, C., Thawonmas, R.: Deduction of Fighting-Game Countermeasures Using the k-Nearest Neighbor Algorithm and a Game Simulator, 4, April 2014. Ice.Ci.Ritsumei.Ac.Jp

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Lab-STICC CNRS UMR 6285, ENIBPlouzanéFrance
  2. 2.VirtualysBrestFrance

Personalised recommendations