Pathophysiology of Anterior Knee Pain

  • Vicente Sanchis-Alfonso
  • Cristina Ramírez-Fuentes
  • Esther Roselló-Sastre
  • Scott F. Dye
  • Robert A. Teitge


Anterior knee pain (AKP) is the most common reason for adolescents, adults, and physically active people to consult with an orthopedic surgeon who specializes in the knee [1]. Despite the high incidence and prevalence of AKP [2] and an abundance of clinical and basic science research, the etiology of the disorder is often difficult to pinpoint. However, it is typically thought to be multifactorial, which can complicate its treatment [3, 4]. The objective of this paper is to analyze the structural and functional changes that accompany AKP in order to define a logical therapeutic approach. This chapter synthesizes our research and clinical experience on pathophysiology of AKP in the young patient.


  1. 1.
    Sanchis-Alfonso V, McConnell J, Monllau JC, Fulkerson JP. Diagnosis and treatment of anterior knee pain. JISAKOS. 2016; Scholar
  2. 2.
    Boling M, Padua D, Marshall S, et al. Gender differences in the incidence and prevalence of patellofemoral pain syndrome. Scand J Med Sci Sports. 2010;20:725–30.PubMedPubMedCentralGoogle Scholar
  3. 3.
    Sanchis-Alfonso V. Holistic approach to understanding anterior knee pain. Clinical implications. Knee Surg Sports Traumatol Arthrosc. 2014;22(10):2275–85.PubMedPubMedCentralGoogle Scholar
  4. 4.
    Sanchis-Alfonso V, Dye SF. How to deal with anterior knee pain in the active young patient. Sports Health. 2017;9(4):346–51.PubMedGoogle Scholar
  5. 5.
    Büdinger K. Üeber ablösung von gelenkteilen und verwandte prozesse. Dtsch Z Chir. 1906;84:311–65.Google Scholar
  6. 6.
    Dye SF. The pathophysiology of patellofemoral pain: a tissue homeostasis perspective. Clin Orthop Relat Res. 2005;436:100–10.Google Scholar
  7. 7.
    Royle SG, Noble J, Davies DR, et al. The significance of chondromalacic changes on the patella. Arthroscopy. 1991;7(2):158–60.PubMedGoogle Scholar
  8. 8.
    International Statistical Classification of Diseases and Related Health Problems 10th Revision (ICD-10)-WHO Version for; 2016Google Scholar
  9. 9.
    Ficat P, Ficat C, Bailleux A. Syndrome d’hyperpression externe de la rotule (S.H.P.E). Rev Chir Orthop. 1975;61:39–59.PubMedGoogle Scholar
  10. 10.
    Ficat P, Hungerford DS. Disorders of the patello-femoral joint. Baltimore, MD: Williams & Wilkins; 1977.Google Scholar
  11. 11.
    Hughston JC. Subluxation of the patella. J Bone Joint Surg. 1968;50-A:1003–26.Google Scholar
  12. 12.
    Insall J. "Chondromalacia patellae": patellar malalignment syndrome. Orthop Clin North Am. 1979;10:117–27.PubMedGoogle Scholar
  13. 13.
    Merchant AC, Mercer RL. Lateral release of the patella: a preliminary report. Clin Orthop Relat Res. 1974;103:40.Google Scholar
  14. 14.
    Staeubli HU, Bosshard C, Porcellini P, et al. Magnetic resonance imaging for articular cartilage: cartilage-bone mismatch. Clin Sports Med. 2002;21:417–33.PubMedGoogle Scholar
  15. 15.
    James SL. Chondromalacia of the patella in the adolescent. In: Kennedy JC, editor. The injured adolescent knee. Baltimore, MD: The Williams & Wilkins Company; 1979.Google Scholar
  16. 16.
    Teitge RA. Orthopaedic knowledge update 3 home study syllabus American Academy of Orthopaedic Surgeons, Park Ridge, IL. 1990:563–567Google Scholar
  17. 17.
    Meister K, James SL. Proximal tibial derotation osteotomy for anterior knee pain in the miserably malaligned extremity. Am J Orthop (Belle Mead NJ). 1995;24:149–55.Google Scholar
  18. 18.
    Cooke TD, Price N, Fisher B, et al. The inwardly pointing knee. An unrecognized problem of external rotational malalignment. Clin Orthop Relat. 1990;260:56–60.Google Scholar
  19. 19.
    Dye SF. The knee as a biologic transmission with an envelope of function: a theory. Clin Orthop Relat Res. 1996;325:10–8.Google Scholar
  20. 20.
    Dye SF, Staubli HU, Biedert RM, et al. The mosaic of pathophysiology causing patellofemoral pain: therapeutic implications. Oper Techn Sports Med. 1999;7:46–54.Google Scholar
  21. 21.
    Sanchis-Alfonso V. Anterior knee pain and patellar instability. London: Springer; 2011.Google Scholar
  22. 22.
    Sanchis-Alfonso V, Gastaldi-Orquín E, Martinez-SanJuan V. Usefulness of computed tomography in evaluating the patellofemoral joint before and after Insall’s realignment. Correlation with short-term clinical results. Am J Knee Surg. 1994;7:65–72.Google Scholar
  23. 23.
    Sanchis-Alfonso V, Roselló-Sastre E, Martinez-SanJuan V. Pathogenesis of anterior knee pain syndrome and functional patellofemoral instability in the active young. A review. Am J Knee Surg. 1999;12:29–40.PubMedGoogle Scholar
  24. 24.
    Dye SF. Functional anatomy and biomechanics of the patellofemoral joint. In: Scott WN, editor. The knee. St. Louis: Mosby; 1994. p. 381–9.Google Scholar
  25. 25.
    Dye SF. Forward. In: Fulkerson JP, editor. Disorders of the patellofemoral joint. 4th ed. Philadelphia, PA: Lippincott Williams and Wilkins; 2004. p. xi–xii.Google Scholar
  26. 26.
    Hungerford DS, Barry M. Biomechanics of the patellofemoral joint. Clin Orthop. 1979;144:9–15.Google Scholar
  27. 27.
    Reilly DT, Martens M. Experimental analysis of the quadriceps muscle force and patellofemoral joint reaction force for various activities. Acta Orthop Scand. 1972;73:146–37.Google Scholar
  28. 28.
    Smith AJ. Estimates of muscle and joint force at the knee and ankle during jumping activities. J Hum Mov Stud. 1975;1:78–86.Google Scholar
  29. 29.
    Steinkamp LA, Dillinghan MF, Markel MD, et al. Biomechanical considerations in patellofemoral joint rehabilitation. Am J Sports Med. 1993;21:438–44.PubMedPubMedCentralGoogle Scholar
  30. 30.
    Van Haver A, De Roo K, De Beule M, et al. The effect of trochlear dysplasia on patellofemoral biomechanics: a cadaveric study with simulated trochlear deformities. Am J Sports Med. 2015;43(6):1354–61.PubMedPubMedCentralGoogle Scholar
  31. 31.
    Powers CM. Patellar kinematics, part II: the influence of the depth of the trochlear groove in subjects with and without patellofemoral pain. Phys Ther. 2000;80(10):965–78.PubMedGoogle Scholar
  32. 32.
    Ho KY, Hu HH, Colletti PM, et al. Recreational runners with patellofemoral pain exhibit elevated patella water content. Magn Reson Imaging. 2014;32(7):965–8.PubMedGoogle Scholar
  33. 33.
    Barton RS, Ostrowski ML, Anderson TD, et al. Intraosseous innervation of the human patella: a histologic study. Am J Sports Med. 2007;35:307–11.PubMedGoogle Scholar
  34. 34.
    Teitge RA. Patellofemoral syndrome a paradigm for current surgical strategies. Orthop Clin N Am. 2008;39(3):287–311.Google Scholar
  35. 35.
    Teitge RA. Does lower limb torsion matter? Tech Knee Surg. 2012;11:137–46.Google Scholar
  36. 36.
    van Kampen A, Huiskes R. The three-dimensional tracking pattern of the human patella. J Orthop Res. 1990;8(3):372–82.PubMedGoogle Scholar
  37. 37.
    Sanchis-Alfonso V, Roselló-Sastre E. Anterior knee pain in the young patient – what causes the pain? “Neural model”. Acta Orthop Scand. 2003;74:697–703.PubMedGoogle Scholar
  38. 38.
    Biedert RM, Sanchis-Alfonso V. Sources of anterior knee pain. Clin Sports Med. 2002;21:335–47.PubMedGoogle Scholar
  39. 39.
    Fulkerson JP. The etiology of patellofemoral pain in young active patients: a prospective study. Clin Orthop Relat Res. 1983;179:129–33.Google Scholar
  40. 40.
    Kasim N, Fulkerson JP. Resection of clinically localized segments of painful retinaculum in the treatment of selected patients with anterior knee pain. Am J Sports Med. 2000;28:811–4.PubMedGoogle Scholar
  41. 41.
    Sanchis-Alfonso V, Roselló-Sastre E. Immunohistochemical analysis for neural markers of the lateral retinaculum in patients with isolated symptomatic patellofemoral malalignment. A neuroanatomic basis for anterior knee pain in the active young patient. Am J Sports Med. 2000;28:725–31.PubMedGoogle Scholar
  42. 42.
    Sanchis-Alfonso V, Roselló-Sastre E, Revert F. Neural growth factor expression in the lateral retinaculum in painful patellofemoral malalignment. Acta Orthop Scand. 2001;72:146–9.PubMedGoogle Scholar
  43. 43.
    Sanchis-Alfonso V, Roselló-Sastre E, Revert F, et al. Histologic retinacular changes associated with ischemia in painful patellofemoral malalignment. Orthopedics. 2005;28:593–9.PubMedGoogle Scholar
  44. 44.
    Fulkerson JP, Tennant R, Jaivin JS, et al. Histologic evidence of retinacular nerve injury associated with patellofemoral malalignment. Clin Orthopn Relat Res. 1985;197:196–205.Google Scholar
  45. 45.
    Mori Y, Fujimoto A, Okumo H, et al. Lateral retinaculum release in adolescent patellofemoral disorders: its relationship to peripheral nerve injury in the lateral retinaculum. Bull Hosp Jt Dis Orthop Inst. 1991;51:218–29.PubMedGoogle Scholar
  46. 46.
    Sanchis-Alfonso V, Roselló-Sastre E, Monteagudo-Castro C, et al. Quantitative analysis of nerve changes in the lateral retinaculum in patients with isolated symptomatic patellofemoral malalignment. A preliminary study. Am J Sports Med. 1998;26:703–9.PubMedGoogle Scholar
  47. 47.
    Baker V, Bennell K, Stillman B, Cowan S, Crossley K. Abnormal knee joint position sense in individuals with patellofemoral pain syndrome. J Orthop Res. 2002;20(2):208–14.PubMedGoogle Scholar
  48. 48.
    Grelsamer RP, McConnell J. The patella. A team approach. Gaithersburg, MD: An Aspen Publication; 1998.Google Scholar
  49. 49.
    Jerosch J, Prymka M. Knee joint proprioception in patients with posttraumatic recurrent patella dislocation. Knee Surg Sports Traumatol Arthrosc. 1996;4:14–8.PubMedGoogle Scholar
  50. 50.
    Wilson AS, Lee HB. Hypothesis relevant to defective position sense in a damaged knee. J Neurol Neurosurg Psychiatry. 1986;49:1462–3.PubMedPubMedCentralGoogle Scholar
  51. 51.
    Jensen R, Hystad T, Kvale A, et al. Quantitative sensory testing of patients with long lasting patellofemoral pain syndrome. Eur J Pain. 2007;11:665–76.PubMedGoogle Scholar
  52. 52.
    Ahmed M, Bergstrom J, Lundblad H, et al. Sensory nerves in the interface membrane of aseptic loose hip prostheses. J Bone Joint Surg. 1998;80-B:151–5.Google Scholar
  53. 53.
    Ashton IK, Ashton BA, Gibson SJ, et al. Morphological basis for back pain: the demonstration of nerve fibers and neuropeptides in the lumbar facet joint capsule but not in ligamentum flavum. J Orthop Res. 1992;10:72–8.PubMedGoogle Scholar
  54. 54.
    Ashton IK, Roberts S, Jaffray DC. Neuropeptides in the human intervertebral disc. J Orthop Res. 1994;12:186–92.PubMedGoogle Scholar
  55. 55.
    Ashton IK, Walsh DA, Polak JM, et al. Substance P in intervertebral discs. Binding sites on vascular endothelium of the human annulus fibrosus. Acta Orthop Scand. 1994;65:635–9.PubMedGoogle Scholar
  56. 56.
    Coppes MH, Marani E, Thomeer RT, et al. Innervation of “painful” lumbar discs. Spine. 1997;22:2342–9.PubMedGoogle Scholar
  57. 57.
    Freemont AJ, Peacock TE, Goupille P, et al. Nerve ingrowth into diseased intervertebral disc in chronic back pain. Lancet. 1997;350:178–81.PubMedGoogle Scholar
  58. 58.
    Grönblad M, Weinstein JN, Santavirta S. Immunohistochemical observations on spinal tissue innervation. A review of hypothetical mechanisms of back pain. Acta Orthop Scand. 1991;62:614–22.PubMedGoogle Scholar
  59. 59.
    Kocher MS, Fu FH, Harner CHD. Neuropathophysiology. In: Fu FH, Harner CD, Vince KG, editors. Knee surgery. Baltimore, MD: Williams and Wilkins; 1994. p. 231–49.Google Scholar
  60. 60.
    Konttinen YT, Grönblad M, Antti-Poika I, et al. Neuroimmunohistochemical analysis of peridiscal nociceptive neural elements. Spine. 1990;15:383–6.PubMedGoogle Scholar
  61. 61.
    Korkala O, Grönblad M, Liesi P, et al. Immunohistochemical demonstration of nociceptors in the ligamentous structures of the lumbar spine. Spine. 1985;10:156–7.PubMedGoogle Scholar
  62. 62.
    Palmgren T, Grönblad M, Virri J, et al. Immunohistochemical demonstration of sensory and autonomic nerve terminals in herniated lumbar disc tissue. Spine. 1996;21:1301–6.PubMedGoogle Scholar
  63. 63.
    Witonski D, Wagrowska-Danielewicz M. Distribution of substance-P nerve fibers in the knee joint in patients with anterior knee pain syndrome. Knee Surg Sports Traumatol Arthrosc. 1999;7:177–83.PubMedGoogle Scholar
  64. 64.
    Wojtys EM, Beaman DN, Glover RA, et al. Innervation of the human knee joint by substance-P fibers. Arthroscopy. 1990;6:254–63.PubMedGoogle Scholar
  65. 65.
    Byers PD. Solitary benign osteoblastic lesions of bone. Osteoid osteoma benign osteoblastoma. Cancer. 1968;22:43–57.PubMedGoogle Scholar
  66. 66.
    Alfredson H, Ohberg L, Forsgren S. Is vasculo-neural ingrowth the cause of pain in chronic Achilles tendinosis?. An investigation using ultrasonography and colour Doppler, immunohistochemistry, and diagnostic injections. Knee Surg Sports Traumatol Arthrosc. 2003;11:334–8.PubMedGoogle Scholar
  67. 67.
    Sanchis-Alfonso V, Roselló-Sastre E, Subías-López A. Neuroanatomic basis for pain in patellar tendinosis (“jumper’s knee”): a neuroimmunohistochemical study. Am J Knee Surg. 2001;14:174–7.PubMedGoogle Scholar
  68. 68.
    Hasegawa T, Hirose T, Sakamoto R, et al. Mechanism of pain in osteoid osteomas: an immunohistochemical study. Histopathology. 1993;22:487–91.PubMedGoogle Scholar
  69. 69.
    Grönblad M, Korkala O, Konttinen YT, et al. Silver impregnation and immunohistochemical study of nerves in lumbar facet joint plical tissue. Spine. 1991;16:34–8.PubMedGoogle Scholar
  70. 70.
    Dicou E, Pflug B, Magazin M, et al. Two peptides derived from the nerve growth factor precursor are biologically active. J Cell Biol. 1997;136:389–98.PubMedPubMedCentralGoogle Scholar
  71. 71.
    Gigante A, Bevilacqua C, Ricevuto A, et al. Biological aspects in patello-femoral malalignment. 11th congress European Society of Sports Traumatology, knee surgery and arthroscopy. Book of abstracts. Athens 5–8 May; 2004Google Scholar
  72. 72.
    Malcangio M, Garrett NE, Cruwys S, et al. Nerve growth factor- and neurotrophin-3-induced changes in nociceptive threshold and the release of substance P from the rat isolated spinal cord. J Neurosci. 1997;17:8459–67.PubMedPubMedCentralGoogle Scholar
  73. 73.
    Abe T, Morgan DA, Gutterman DD. Protective role of nerve growth factor against postischemic dysfunction of sympathetic coronary innervation. Circulation. 1997;95:213–20.PubMedGoogle Scholar
  74. 74.
    Lee TH, Kato H, Kogure K, et al. Temporal profile of nerve growth factor-like immunoreactivity after transient focal cerebral ischemia in rats. Brain Res. 1996;713:199–210.PubMedGoogle Scholar
  75. 75.
    Isaacson LG, Crutcher KA. The duration of sprouted cerebrovascular axons following intracranial infusion of nerve growth factor. Exp Neurol. 1995;13:174–9.Google Scholar
  76. 76.
    Kawaja MD. Sympathetic and sensory innervation of the extracerebral vasculature: roles for p75NTR neuronal expression and nerve growth factor. J Neurosci Res. 1998;52:295–306.PubMedGoogle Scholar
  77. 77.
    Society for Ultrastructural Pathology. Handbook of diagnostic electron microscopy for pathologists-in-training. New York/Tokyo: Igaku-Shoin Medical Publishers Committee; 1995.Google Scholar
  78. 78.
    Shweiki D, Itin A, Soffer D, et al. Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature. 1992;359:843–5.PubMedGoogle Scholar
  79. 79.
    Liu Y, Cox SR, Morita T, et al. Hypoxia regulates vascular endothelial growth factor gene expression in endothelial cells. Identification of a 5′ enhancer. Circ Res. 1995;77:638–43.PubMedGoogle Scholar
  80. 80.
    Minchenko A, Bauer T, Salceda S, et al. Hypoxic stimulation of vascular endothelial growth factor expression in vitro and in vivo. Lab Investig. 1994;71:374–9.PubMedGoogle Scholar
  81. 81.
    Nagashima M, Yoshino S, Ishiwata T, et al. Role of vascular endothelial growth factor in angiogenesis of rheumatoid arthritis. J Rheumatol. 1995;22:1624–30.PubMedGoogle Scholar
  82. 82.
    Yamada T, Sawatsubashi M, Yakushiji H, et al. Localization of vascular endothelial growth factor in synovial membrane mast cells: examination with “multilabelling subtraction immunostaining”. Virchows Arch. 1998;433:567–70.PubMedGoogle Scholar
  83. 83.
    Jackson JR, Minton JAL, Ho ML, et al. Expression of vascular endothelial growth factor in synovial fibroblasts is induced by hypoxia and interleukin 1ß. J Rheumatol. 1997;24:1253–9.PubMedGoogle Scholar
  84. 84.
    Pufe T, Petersen W, Tillmann B, et al. The splice variants VEGF121 and VEGF189 of the angiogenic peptide vascular endothelial growth factor are expressed in osteoarthritic cartilage. Arthritis Rheum. 2001;44:1082–8.PubMedGoogle Scholar
  85. 85.
    Calzà L, Giardino L, Giuliani A, et al. Nerve growth factor control of neuronal expression of angiogenetic and vasoactive factors. Proc Natl Acad Sci U S A. 2001;98:4160–5.PubMedPubMedCentralGoogle Scholar
  86. 86.
    Woolf CJ, Allchorne A, Safieh-Garabedian B, et al. Cytokines, nerve growth factor and inflammatory hyperalgesia: the contribution of tumour necrosis factor alpha. Br J Pharmacol. 1997;121:417–24.PubMedPubMedCentralGoogle Scholar
  87. 87.
    Sandow MJ, Goodfellow JW. The natural history of anterior knee pain in adolescents. J Bone Joint Surg. 1985;67-B:36–8.Google Scholar
  88. 88.
    Selfe J, Karki A, Stevens D. A review of the role of circulatory deficit in the genesis of patellofemoral pain. Phys Ther Rev. 2002;7:169–72.Google Scholar
  89. 89.
    Selfe J, Harper L, Pedersen I, et al. Cold legs: a potential indicator of negative outcome in the rehabilitation of patients with patellofemoral pain syndrome. Knee. 2003;10:139–43.PubMedGoogle Scholar
  90. 90.
    Gelfer Y, Pinkas L, Horne T, et al. Symptomatic transient patellar ischemia following total knee replacement as detected by scintigraphy. A prospective, randomized, double-blind study comparing the mid-vastus to the medial para-patellar approach. Knee. 2003;10:341–5.PubMedGoogle Scholar
  91. 91.
    Naslund J. Patellofemoral pain syndrome. Clinical and pathophysiological considerations. Thesis. Karolinska Institutet, Stockholm; 2006Google Scholar
  92. 92.
    Moayedi M. All roads lead to the insula. Pain. 2014;155(10):1920–1.PubMedGoogle Scholar
  93. 93.
    Greenwald JD, Shafritz KM. An integrative neuroscience framework for the treatment of chronic pain: from cellular alterations to behavior. Front Integr Neurosci. 2018;12:1–16.Google Scholar
  94. 94.
    Thorp SL, Suchy T, Vadivelu N, Helander EM, Urman RD, Kaye AD. Functional connectivity alterations: novel therapy and future implications in chronic pain management. Pain Physician. 2018;21(1):E207–14.PubMedGoogle Scholar
  95. 95.
    Flodin P, Martinsen S, Altawil R, Waldheim E, Lampa J, Kosek E, et al. Intrinsic brain connectivity in chronic pain: a resting-state fMRI study in patients with rheumatoid arthritis. Front Hum Neurosci. 2016;10:107.PubMedPubMedCentralGoogle Scholar
  96. 96.
    Martí-Bonmatí L, Lull JJ, García-Martí G, et al. Chronic auditory hallucinations in schizophrenic patients: MR analysis of the coincidence between functional and morphologic abnormalities. Radiology. 2007;244:549–56.PubMedGoogle Scholar
  97. 97.
    Pool EM, Rehme AK, Eickhoff SB, et al. Functional resting-state connectivity of the human motor network: differences between right- and left-handers. NeuroImage. 2015;109:298–306.PubMedPubMedCentralGoogle Scholar
  98. 98.
    Xiao X, Zhang YQ. A new perspective on the anterior cingulate cortex and affective pain. Neurosci Biobehav Rev. 2018;90:200–11.PubMedGoogle Scholar
  99. 99.
    Lloyd DM, Helbig T, Findlay G, et al. Brain areas involved in anticipation of clinically relevant pain in low back pain populations with high levels of pain behavior. J Pain. 2016;17(5):577–87.PubMedGoogle Scholar
  100. 100.
    Watanabe K, Hirano S, Kojima K, et al. Altered cerebral blood flow in the anterior cingulate cortex is associated with neuropathic pain. J Neurol Neurosurg Psychiatry. 2018;89(10):1082–7.PubMedGoogle Scholar
  101. 101.
    Cabeza R, Ciaramelli E, Moscovitch M. Cognitive contributions of the ventral parietal cortex: an integrative theoretical account. Trends Cogn Sci. 2012;16(6):338–52.PubMedPubMedCentralGoogle Scholar
  102. 102.
    Humphreys GF, Lambon Ralph MA. Fusion and fission of cognitive functions in the human parietal cortex. Cereb Cortex. 2015;25(10):3547–60.PubMedGoogle Scholar
  103. 103.
    Ioannidis JPA. The proposal to lower P value threshold to.005. JAMA. 2018;319:1429–30.PubMedGoogle Scholar
  104. 104.
    Damasio AR, Grabowky TJ, Bechara A, Damasio H, Ponto LLB, Parvizi J, Hichwa RD. Subcortical and cortical brain activity during the feeling of self-generated emotions. Nat Neurosci. 2000;3:1049–56.PubMedGoogle Scholar
  105. 105.
    Rathleff MS, Petersen KK, Arendt-Nielsen L, Thorborg K, Graven-Nielsen T. Impaired conditioned pain modulation in young female adults with long-standing patellofemoral pain: a single blinded cross-sectional study. Pain Med. 2016;17(5):980–8.PubMedGoogle Scholar
  106. 106.
    De Oliveira SD, Rathleff MS, Petersen K, Azevedo FM, Barton CJ. Manifestations of pain sensitization across different painful knee disorders: a systematic review including meta-analysis and metaregression. Pain Med. 2019;20(2):335–58. Scholar
  107. 107.
    Rathleff MS, Roos EM, Olesen JL, Rasmussen S, Arendt-Nielsen L. Lower mechanical pressure pain thresholds in female adolescents with patellofemoral pain syndrome. J Orthop Sports Phys Ther. 2013;43(6):414–21.PubMedGoogle Scholar
  108. 108.
    Rathleff MS, Roos EM, Olesen JL, Rasmussen S, Arendt-Nielsen L. Self-reported recovery is associated with improvement in localized hyperalgesia among adolescent females with patellofemoral pain: results from a cluster randomized trial. Clin J Pain. 2016;32(5):428–34.PubMedGoogle Scholar
  109. 109.
    Lefaucheur JP, Drouot X, Ménard-Lefaucheur I, Keravel Y, Nguyen JP. Motor cortex rTMS restores defective intracortical inhibition in chronic neuropathic pain. Neurology. 2006;67:1568–74.PubMedGoogle Scholar
  110. 110.
    Young NA, Sharma M, Deogaonkar M. Transcranial magnetic stimulation for chronic pain. Neurosurg Clin N Am. 2014;25(4):819–32.PubMedGoogle Scholar
  111. 111.
    Domenech J, Sanchis-Alfonso V, López L, Espejo B. Influence of kinesiophobia and catastrophizing on pain and disability in anterior knee pain patients. Knee Surg Sports Traumatol Arthrosc. 2013;21(7):1562–8.PubMedGoogle Scholar
  112. 112.
    Doménech J, Sanchis-Alfonso V, Espejo B. Changes in catastrophizing and kinesiophobia are predictive of changes in disability and pain after treatment in patients with anterior knee pain. Knee Surg Sports Traumatol Arthrosc. 2014;22(10):2295–300.PubMedGoogle Scholar
  113. 113.
    Sanchis-Alfonso V, Montesinos-Berry E, Domenech J. Catastrophic thinking is a new puzzle piece in understanding anterior knee pain. Orthopaedics Today Europe, The Official Newspaper of EFORT. 2014;17(2):44–50Google Scholar
  114. 114.
    Gracely RH. Pain catastrophizing and neural responses to pain among persons with fibromyalgia. Brain. 2004;127:835–43.PubMedGoogle Scholar
  115. 115.
    Powers CM, Bolgla LA, Callaghan MJ, et al. Patellofemoral pain: proximal, distal, and local factors, 2nd international research retreat. J Orthop Sports Phys Ther. 2012;42:A1–54.PubMedGoogle Scholar
  116. 116.
    Soifer TB, Levy HJ, Soifer FM, et al. Neurohistology of the subacromial space. Arthroscopy. 1996;12:182–6.PubMedGoogle Scholar
  117. 117.
    Solomonow M, D’Ambrosia R. Neural reflex arcs and muscle control of knee stability and motion. In: Scott WN, editor. Ligament and extensor mechanism injuries of the knee: diagnosis and treatment. Mosby-Year Book: St. Louis, MO; 1991. p. 389–400.Google Scholar
  118. 118.
    Nilsson G, Forsberg-Nilsson K, Xiang Z, et al. Human mast cells express functional TrkA and are a source of nerve growth factor. Eur J Immunol. 1997;27:2295–301.PubMedGoogle Scholar
  119. 119.
    Sherman BE, Chole RA. A mechanism for sympathectomy-induced bone resorption in the middle ear. Otolaryngol Head Neck Surg. 1995;113:569–81.PubMedGoogle Scholar
  120. 120.
    Woolf CJ. Pain: moving from symptom control toward mechanism-specific pharmacologic management. Ann Intern Med. 2004;140:441–51.PubMedGoogle Scholar

Copyright information

© ESSKA 2020

Authors and Affiliations

  • Vicente Sanchis-Alfonso
    • 1
  • Cristina Ramírez-Fuentes
    • 2
  • Esther Roselló-Sastre
    • 3
  • Scott F. Dye
    • 4
  • Robert A. Teitge
    • 5
  1. 1.Department of Orthopaedic SurgeryHospital Arnau de VilanovaValenciaSpain
  2. 2.Department of RadiologyHospital Universitario y Politécnico La FeValenciaSpain
  3. 3.Department of PathologyHospital General de CastellónCastellónSpain
  4. 4.University of California San FranciscoSan FranciscoUSA
  5. 5.Department of Orthopaedic SurgeryDetroit Medical CenterDetroitUSA

Personalised recommendations