Advertisement

Ballistisches Trauma und Verletzungen durch Explosionen

  • Kai-Uwe SchmittEmail author
  • Peter F. Niederer
  • Duane S. Cronin
  • Barclay Morrison III
  • Markus H. Muser
  • Felix Walz
Chapter
  • 10 Downloads

Zusammenfassung

Sowohl im militärischen wie auch im zivilen Umfeld kommt es zu Verletzungen durch Schüsse und Explosionen. Ein ballistisches Trauma beschreibt dabei die Interaktion zwischen einem Projektil und dem menschlichen Körper; penetrierende oder stumpfe Traumata können die Folge sein. Verletzungen durch Explosionen beziehen sich auf die Detonation eines Sprengsatzes und die nachfolgende komplexe Interaktion des Menschen mit der eigentlichen Detonationswelle, etwaigen Splittern des explodierenden Sprengsatzes und umherfliegender Gegenstände bzw. Trümmern. Die Abgrenzung zwischen ballistischem Trauma und Verletzungen durch Explosionen ist nicht immer ganz eindeutig, es bestehen gewisse Überlappungen. Verletzungen der unteren Extremitäten, des Thorax und des Kopfes treten beispielsweise häufig im Zuge von Explosionen auf, obschon auch andere Körperregionen betroffen sein können. Genauso können alle Körperregionen durch Schüsse verletzt werden, obschon hier Schutzausrüstungen zum Einsatz kommen, die sich vor allem auf lebenswichtige Organe wie Hirn, Herz oder Lunge konzentrieren. Forschungsschwerpunkte in diesen Bereichen sind u. a. Kopfverletzungen, der Schutz von Fahrzeuginsassen bei Explosionen und der Schutz von Kopf, Gesicht und Thorax vor Schussverletzungen sowie Verletzungen durch Splitter, wobei dies auch stumpfe Traumata umfasst, die trotz Tragen von Schutzausrüstung entstehen können (z. B. wenn die Schutzausrüstung von außen belastet wird).

Literatur

  1. 1.
    AIS (2015) The Abbreviated Injury Scale Dictionary 2015 Revision. Association for the Advancement of Automotive Medicine, ChicagoGoogle Scholar
  2. 2.
    Axelsson H, Yelverton JT (1994) Chest wall velocity as a predictor of non-auditory blast injury in a complex wave environment. In: 7th International symposium of weapons traumatology and wound ballistics, St Petersburg, RussiaGoogle Scholar
  3. 3.
    Baker W (1973) Explosions in air. University of Texas Press, AustinGoogle Scholar
  4. 4.
    Bangash M (1993) Impact and explosion: structural analysis and design. Blackwell Scientific Publications, OxfordGoogle Scholar
  5. 5.
    Bass C, Rafaels K, Salzar R (2006a) Pulmonary injury risk assessment for short-duration blasts. In: Personal Armour Systems Symposium (PASS), Leeds, UKGoogle Scholar
  6. 6.
    Bass C, Salzar R, Lucas S, Davis M, Donnellan L, Folk B, Sanderson E, Waclawik S (2006) Injury risk in behind armor blunt thoracic trauma. Int J Occupat Safety and Ergonomics (JOSE) 12(4):429–442CrossRefGoogle Scholar
  7. 7.
    Bergeron D, Walker R, Coffey C (1998) Detonation of 100-gram anti-personnel mine surrogate charges in sand, report number SR 668. Defence Research Establishment Suffield, CanadaGoogle Scholar
  8. 8.
    Bir C (2017) Behind Armor blunt trauma: recreation of field cases for the assessment of backface signature testing. In: Ballistics 30th International Symposium, 11–15 September 2017Google Scholar
  9. 9.
    Bowen I, Fletcher E, Richmond D (1968) Estimate of man’s tolerance to the direct effects of air blast. Technical report, DASA-2113. Defense Atomic Support Agency, Department of Defence, WashingtonGoogle Scholar
  10. 10.
    Bulson P (1997) Explosive loading of engineering structures. Taylor & Francis, New YorkCrossRefGoogle Scholar
  11. 11.
    Cannon L (2001) Behind armour blunt trauma – an emerging problem. J R Army Med Corps 147(1):87–96CrossRefGoogle Scholar
  12. 12.
    Carr D, Horsfall I, Malbon C (2013) Is behind armour blunt trauma a real threat to users of body armour? a systematic review. J R Army Med Corps 162(1):8–11CrossRefGoogle Scholar
  13. 13.
    Clare V, Lewis J, Mickiewicz A, Sturdivan L (1975) Body armor-blunt trauma data. EB-TR-75016. Aberdeen Proving Ground, MD, Edgewood Arsenal. Defense Technical Information Center. http://www.dtic.mil/dtic/tr/fulltext/u2/a012761.pdf. Zugegriffen: 21. Aug. 2018
  14. 14.
    Clemedson C (1956) Blast injury. Physiol Rev 36(3):336–354CrossRefGoogle Scholar
  15. 15.
    Cooper G, Dudley H (1997) Scientific foundations of trauma. Butterworth-Heinemann Publ, OxfordGoogle Scholar
  16. 16.
    Coupland R (1993) War wounds of limbs – surgical management. Butterworth-Heinemann Publ, OxfordGoogle Scholar
  17. 17.
    Coupland R, Korver A (1991) Injuries from antipersonnel mines: the experience of the International Committee of the Red Cross. Brit Med J 303:1509–1512CrossRefGoogle Scholar
  18. 18.
    Croft J, Longhurst D (2007) HOSDB body armour standards for UK police (2007) Part 2: ballistic resistance. Publication No. 39/07/B. http://www.bsst.de/content/PDF/39-07-B_-_HOSDB_Body_Armour1.pdf. Zugegriffen: 22. Sept. 2013
  19. 19.
    Cronin DS, Williams KV, Bass CR, Magnan P, Dosquet F, Bergeron D, van Bree J (2003) Test methods for protective footwear against AP mine blast. In: NATO Joint AVT-HFM Symposium, Koblenz, GermanyGoogle Scholar
  20. 20.
    Cronin DS, Greer A, Williams KV, Salisbury C (2004) Numerical modeling of blast trauma to the human torso. In: Personal Armour Systems Symposium (PASS), The Hague, The NetherlandsGoogle Scholar
  21. 21.
    Cronin DS, Williams KV, Salisbury C (2011) Development and evaluation of a physical surrogate leg to predict landmine injury. J Mil Med 176(12):1408–1416CrossRefGoogle Scholar
  22. 22.
    den Reijer P (1991) Impact on ceramic faced armour. PhD thesis, Technical University Delft, Delft, The NetherlandsGoogle Scholar
  23. 23.
    Dobratz B, Crawford P (1985) Properties of chemical explosives and explosives simulants. LLNL explosives handbook, UCRL-52997. Lawrence Livermore Laboratory, LivermoreGoogle Scholar
  24. 24.
    Fackler M (1987) What’s wrong with wound ballistics literature and why. US Army Medical Research and Development CommandGoogle Scholar
  25. 25.
    Fackler M, Malinowski J (1988) Ordnance gelatin for ballistic studies. Am J Foren Med Pathol 9:218–219CrossRefGoogle Scholar
  26. 26.
    Flynn M (2009) State of the insurgency – trends, intentions and objectives. ISAF, AfghanistanGoogle Scholar
  27. 27.
    Gibbs T, Popolato A (1980) LASL explosive property data. University of California Press, CaliforniaGoogle Scholar
  28. 28.
    Glasner J (2007) The halifax explosion: surviving the blast that shook a nation. Altitude Pub, CanmoreGoogle Scholar
  29. 29.
    Gryth D, Drobin D, Persson J, Aborelius U, Hansson K, Malm E, Bursell J, Olsson L, Kjellström B (2003) Severity of behind armour blunt trauma (BABT) de-pends on extent of deformation of body armour – studies in swine. In: NATO Joint AVT-HFM Symposium, Koblenz, Germany, 19–22 May 2003Google Scholar
  30. 30.
    Gupta R, Przekwas A (2013) Mathematical models of blast induced TBI: current status, challenges and prospects. Front Neurol 4:59CrossRefGoogle Scholar
  31. 31.
    Haladuick T, Cronin DS, Lockhart P, Singh D, Bouamoul A, Ouellet S, Dionne JP (2012) Head kinematics resulting from simulated blast loading scenarios. In: Personal Armour Systems Symposium (PASS), Nuremberg, GermanyGoogle Scholar
  32. 32.
    Hanlon E, Gillich P (2012) Origin of the 44-mm behind-armor blunt trauma standard. Mil Med 177(3):333–339CrossRefGoogle Scholar
  33. 33.
    Hetherington J, Smith P (1994) Blast and ballistic loading of structures. Butterworth-Heinemann, BurlingtonGoogle Scholar
  34. 34.
    Hyde D (1998) Microcomputer programs CONWEP and FUNPRO, applications of TM 5–855-1, fundamentals of protective design for conventional weapons (User’s Guide). Report ADA195867. Department of the Army, Waterways Experiment Station, Corps of Engineers, VicksburgGoogle Scholar
  35. 35.
    Jussila J (2004) Preparing ballistic gelatine – review and proposal for a standard method. Foren Sci Int 141:91–98CrossRefGoogle Scholar
  36. 36.
    Kingery C, Bulmash G (1984) Airblast parameters from TNT spherical air burst and hemispherical surface burst, report ARBL-TR-02555, U.S. Army BRL, Aberdeen Proving Ground, MDGoogle Scholar
  37. 37.
    Knudsen P (2010) NATO task group on behind armour blunt trauma (RTO-TR-HFM-024), thoracic response to undefeated body armour, report RTO-TR-IST-999Google Scholar
  38. 38.
    Krug E (Hrsg) (2002) World report on violence and health. World Health Organization, Geneva. http://www.who.int/violence_injury_prevention/violence/en/. Zugegriffen: 22. Sept. 2013
  39. 39.
    Lockhart P, Cronin DS (2015) Helmet foam evaluation to mitigate head response from primary blast exposure. Comp Meth Biomech and Biomed Eng 18(6):635–645CrossRefGoogle Scholar
  40. 40.
    Mahoney PF, Ryan J, Brooks A, Schwab CW (2005) Ballistic trauma: a practical guide, 2. Aufl. Springer, New YorkCrossRefGoogle Scholar
  41. 41.
    Makris A, Dionne JP, Mitric B (2004) Innovative protective helmet for chem-bio/ blast threats. In: International Soldier Systems Conference (ISSC), Boston, MassachusettsGoogle Scholar
  42. 42.
    Manseau J, Williams K, Dionne JP, Levine J (2006) Response of the hybrid III dummy subjected to free-field blasts – focussing on tertiary blast injuries. In: MABSGoogle Scholar
  43. 43.
    Marsh S (1980) LASL shock hugoniot data. University of California Press, CaliforniaGoogle Scholar
  44. 44.
    Mayorga M (1997) The pathology of primary blast overpressure injury. Toxicology 121(1):17–28CrossRefGoogle Scholar
  45. 45.
    Mayorga MA, Anderson I, van Bree JLMJ, Gotts P, Sarron JC, Knudsen PJT (2010) Thoracic response to undefeated body armour. RTO-TR-HFM-024.  https://doi.org/10.14339/rto-tr-hfm-024
  46. 46.
    Metker L, Prather R, Johnson E (1975) A method for determining backface signatures of soft body armors. EB-TR-75029. Aberdeen Proving Ground, MD, Edgewood Arsenal. Defense Technical Information Center http://www.dtic.mil/dtic/tr/fulltext/u2/a012797.pdf. Zugegriffen: 21. Aug. 2018
  47. 47.
    Meyers M (1994) Dynamic behavior of materials. Wiley, TorontoCrossRefGoogle Scholar
  48. 48.
    Molde A, Naevin J, Coupland R (2001) Care in the field for victims of weapons of war. International Committee of the Red Cross, GenevaGoogle Scholar
  49. 49.
    Montanarelli N, Hawkins C, Goldfarb M, Ciurej T (1973) Protective garments for public officials. LWL-TR-30B73. Aberdeen Proving Ground, MD, Edgewood Arsenal. Defense Technical Information Center. http://www.dtic.mil/dtic/tr/fulltext/u2/a089163.pdf. Zugegriffen: 21. Aug. 2018
  50. 50.
    National Research Council (2012) Testing of body armor materials, phase III. National Academies Press.  https://doi.org/10.17226/13390
  51. 51.
    Nechaev E, Gritsanov A, Fomin N, Minnullin I (1995) Mine blast trauma – experience from the war in Afghanistan. Russian Ministry of Public Health and Medical Industry, Russian R.R. Vreden Research Institute of Traumatology, translated from Russian by the Council Communication, Stockholm, SwedenGoogle Scholar
  52. 52.
    Needham C, Weiss G, Przekwas A, Tan X, Merkle A, Iyer K (2013) Challenges in measuring and modeling whole body blast effects. http://rta.nato.int/public//PubFullText/RTO/MP/RTO-MP-HFM-207///MP-HFM-207-12.doc. Zugegriffen: 20. Sept. 2013
  53. 53.
    Nelson M (1970) Underwater blast injury – a review of the literature. Report number 646, Bureau of Medicine and Surgery, Navy Department. Research Work Unit MF099Google Scholar
  54. 54.
    Nerenberg J, Dionne JP, Makris A, Fisher G (2002) Evaluation of the ABS-LPU ensemble for compliance with U.S. army advanced bomb suit program, UXO/Countermine Forum, Orlando, FloridaGoogle Scholar
  55. 55.
    NIJ (2008) National Institute of Justice NIJ Standard-0101.06 ballistic resistance of body armor. http://www.nij.gov/nij/pubs-sum/223054.htm. Zugegriffen: 20. Sept. 2013
  56. 56.
    Prather R, Swann C und Hawkins C (1977) Backface signatures of soft body armors and the associated trauma effects. ARCSL-TR-77055. Aberdeen Proving Ground, Md.: Edge-Wood Arsenal. http://www.dtic.mil/dtic/tr/fulltext/u2/a049463.pdf. Zugegriffen: 17. Oct. 2018
  57. 57.
    Rafaels K, Bass C, Panzer M, Salzar R (2010) Pulmonary injury risk assessment for long-duration blasts: a meta-analysis. J Trauma 69(2):368–374CrossRefGoogle Scholar
  58. 58.
    Ritzel D, Parks SA, Roseveare J, Rude G, Sawyer T (2011) Experimental blast simulation for injury studies, HFM-207 NATO, Halifax, CanadaGoogle Scholar
  59. 59.
    Robertson N, Hayhurst C, Fairlie G (1994) Numerical simulation of explosion phenomena. Int. J Comput Appl and Technol 7(3–6):316–329Google Scholar
  60. 60.
    Sellier K, Kneubuehl B (1994) Wound ballistics and the scientific background. Elsevier, London. ISBN 0-444-81511-2Google Scholar
  61. 61.
    Singh D, Cronin DS, Lockhart P, Haladuick T, Bouamoul A, Dionne JP (2012) Evaluation of head response to blast using sagittal and transverse finite element head models. In: Personal Armour Systems Symposium (PASS), Nuremberg, GermanyGoogle Scholar
  62. 62.
    Small Arms Survey (2012) Tracking national homicide rates: generating estimates using vital registration data, armed violence: Issue Brief, Number 1. http://www.smallarmssurvey.org/fileadmin/docs/G-Issue-briefs/SAS-AVD-IB1-tracking-homicide.pdf. Zugegriffen: 20. Sept. 2013
  63. 63.
    Small Arms Survey (2013a) Conflict armed violence, armed violence. http://www.smallarmssurvey.org/armed-violence/conflict-armed-violence.html. Zugegriffen: 20. Sept. 2013
  64. 64.
    Small Arms Survey (2013b) Indirect conflict deaths, armed violence. http://www.smallarmssurvey.org/armed-violence/conflict-armed-violence/indirect-conflict-deaths.html. Zugegriffen: 20. Sept. 2013
  65. 65.
    Sonden A, Rocksen D, Riddez L, Davidsson J, Persson JK, Gryth D, Bursell J, Arborelius UP (2009) Trauma attenuating backing improves protection against behind armor blunt trauma. J Trauma 67(6):1191–1199CrossRefGoogle Scholar
  66. 66.
    Stuhmiller J, Ho K, Vorst M, Dodd K, Fitzpatrick T, Mayorga M (1996) A model of blast overpressure injury to the lung. J Biomech 29:227–234CrossRefGoogle Scholar
  67. 67.
    Thom C, Cronin DS (2009) Shock wave amplification by fabric materials. Shock Waves 19(1):39–48CrossRefGoogle Scholar
  68. 68.
    US Department of the Army (1967) Explosives and demolitions, field manual 5–25. Headquarters Department of the Army, WashingtonGoogle Scholar
  69. 69.
    US Department of the Army (1990) Structures to resist the effects of accidental explosions. Technical manual 5-1300, Nov 1990Google Scholar
  70. 70.
    Wightman J, Gladish S (2001) Explosions and blast injuries. Ann Emerg Med 37(6):664–678CrossRefGoogle Scholar
  71. 71.
    Wilbeck J (1978) Impact behavior of low strength projectiles. Air Force Materials Lab Wright-Patterson AFB OH, 7/1978Google Scholar
  72. 72.
    Wilkins M (1978) Mechanics of penetration and perforation. Int J Eng Sci 16:793–807CrossRefGoogle Scholar
  73. 73.
    World Health Organization (WHO) (2018) World health statistics 2018, monitoring health for the SDGs (Sustainable Development Goals). http://apps.who.int/iris/bitstream/handle/10665/272596/9789241565585-eng.pdf?ua=1. Zugegriffen: 19. Aug. 2018

Copyright information

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2020

Authors and Affiliations

  • Kai-Uwe Schmitt
    • 1
    Email author
  • Peter F. Niederer
    • 2
  • Duane S. Cronin
    • 3
  • Barclay Morrison III
    • 4
  • Markus H. Muser
    • 5
  • Felix Walz
    • 6
  1. 1.AGU ZürichZürichSchweiz
  2. 2.AGU ZürichZürichSchweiz
  3. 3.University of WaterlooWaterlooKanada
  4. 4.Columbia UniversityNew YorkUSA
  5. 5.AGU ZürichZürichSchweiz
  6. 6.AGU ZürichZürichSchweiz

Personalised recommendations