Homogenisation of the Wall Thickness Distribution of Thermoformed Cups by using Different Pre-stretch Plugs and Process Parameter Settings to Improve Material Efficiency

  • Dennis BalcerowiakEmail author
  • Christian Hopmann
Conference paper


In thermoforming up to 90% of the product costs are related to the material. For this reason, the efficient use of materials is essential in the production. Material efficiency of thermoformed packaging products, especially cups, can be increased by using pre-stretching plugs. These plugs affect the wall thickness distribution of the product. Thin areas, which can cause problems concerning top-load stability, can be avoided. By adjusting the shape of the pre-stretch plugs and the thermoforming process the wall thickness distribution changes significantly. Thus the distribution can be homogenised and the wall thickness can be increased more than 100% in the thinnest area. The plug design is varied in wall angle and the radius which joints the side wall and the flat top of the plug. Using DoE the effects of different geometry combinations and sheet temperatures are analysed. It can be shown, that the wall angle of the plug and the sheet temperature have a big influence on the homogenisation. Top-load stability is an important feature of packaging cups. By adjusting the wall thickness distribution, the top-load stability can be raised significantly. This high top-load stability in turn allows a reduction of the sheet’s thickness, increasing material efficiency. Additionally, the required plug forces to pre-stretch the sheet are investigated, which can improve the process control or serve as a parameter for quality management.


Material efficiency Plug-assisted thermoforming Wall thickness distribution 



The research project (19342 N) of the Forschungsvereinigung Kunststoffverarbeitung has been sponsored as part of the “industrielle Gemeinschaftsforschung und –entwicklung (IGF)” by the German Bundesministerium für Wirtschaft und Energie (BMWi) due to an enactment of the German Bundestag through the AiF. We would like to extend our thanks to all organisations mentioned. Furthermore we would like to thank Kiefel GmbH, Freilassing, Marbach Werkzeugbau GmbH, Heilbronn, Kiefer Werkzeugbau GmbH, Schwaigern, and W.u.H. Fernholz GmbH & Co.KG, Meinerzhagen for the provision of equipment, mould technology and test materials.


  1. 1.
    Ederleh, L.: Simulative and experimental research on the forming behaviour of thermoplastics during thermoforming. Dissertation, RWTH Aachen, 2014, ISBN: 978-3-95886-026-1Google Scholar
  2. 2.
    Hopmann, C., Michaeli, W.: Einführung in die Kunststoffverarbeitung. Hanser, München (2015)CrossRefGoogle Scholar
  3. 3.
    Moser, A.: Nutzung von Prozesswissen beim Thermoformen von Verpackungen. Dissertation, Universität Duisburg-Essen, 2013Google Scholar
  4. 4.
    Throne, J., Beine, J.: Thermoformen Werkstoffe – Verfahren – Anwendungen. Hanser, München (1999)Google Scholar
  5. 5.
    Hopmann, C., Balcerowiak, D.: Optimierung der Stempelvorstreckung im Thermoformen zur Steigerung der Materialeffizienz. Extrusion 25(5), 38–42 (2019)Google Scholar
  6. 6.
    Illig, A., Schwarzmann, P.: Thermoformen in der Praxis. Hanser, München (2008)Google Scholar
  7. 7.
    Martin, P.J., Duncan, P.: The role of plug design in determining wall thickness distribution in thermoforming. Polym. Eng. Sci.: Wiley Inter Science 17(4), 804–813 (2007)CrossRefGoogle Scholar
  8. 8.
    Schwarzmann, P.: Typisch und unentbehrlich – Durch Vorformen die Wanddickenverteilung beim Thermoformen steuern. Kunststoffe 105(4), 74–77 (2015)Google Scholar
  9. 9.
    Schwarzmann, P.: Wann haben Formteile Schreckmarken? – Ursachen, Einflüsse und Abhilfe bei Schreckmarken. Kunststoffe 105(7), 74–76 (2015)Google Scholar
  10. 10.
    Bernard, C., Correia, J., Bahlouli, N., Ahzi, S.: Numerical simulation of plug-assisted thermoforming: Application to polystyrene. Key Eng. Mat. 554–557, 1602–1610 (2013)CrossRefGoogle Scholar
  11. 11.
    Marathe, D., Rokade, D., Azad, L., Jadhav, K., Mahajan, S., Ahmad, Z., Gupta, S., Kulkarni, S., Juvekar, V., Lele, A.: Effect of plug temperature on the strain and thickness distribution of components made by plug assist thermoforming. Int. Polym. Process. 2(31), 166–178 (2016)CrossRefGoogle Scholar
  12. 12.
    Collins, P., Harkin-Jones, E.M.A., Martin, P.J.: The role of tool/sheet contact in plug-assisted thermoforming. Int. Polym. Process. 17(4), 361–369 (2002)CrossRefGoogle Scholar
  13. 13.
    Haberstroh, E., Wirtz, J.: Helfer für die Becherformung. Kunststoffe 93(12), 52–55 (2003)Google Scholar
  14. 14.
    Martin, P.J., Choo, H.L., O’Connor, C.P.K.: Measurement & modelling of slip during plug-assisted thermoforming. Key Eng. Mater. 504–506, 1105–1110 (2013)Google Scholar
  15. 15.
    McCool, R., Martin, P.J.: The role of process parameters in determining wall thickness distribution in plug-assisted thermoforming. Polym. Eng. Sci. 10(50), 1923–1934 (2010)CrossRefGoogle Scholar
  16. 16.
    McCool, R., Martin, P.J., Harkin-Jones, E.: Process modelling for control of product wall thickness in thermoforming. Plastics, Rubber and Compos. 8(35), 340–347 (2006)CrossRefGoogle Scholar
  17. 17.
    O’Connor, C.P.J., Martin, P.J., Sweeney, J., Menary, G., Cato-Rose, P., Spencer, P.E.: Simulation of the plug-assisted thermoforming of polypropylene using a large strain thermally coupled constitutive model. J. Mater. Process. Technol. 213, 1588–1600 (2013)CrossRefGoogle Scholar
  18. 18.
    Hopmann, C., Balcerowiak, D.: Der Schreckmarke den Kampf angesagt. Kunststoffe 118(11), 81–85 (2018)Google Scholar
  19. 19.
    Kleppmann, W.: Versuchsplanung – Produkte und Prozesse optimieren. Hanser, München (2017)Google Scholar
  20. 20.
    Hopmann, C., Martens, J., Balcerowiak, D.: Analyse der Temperaturprofilierung durch Masken zur Steigerung der Materialeffizienz im Thermoformen. Z. Kunststofftechnik/WAK 13(2), 126–143 (2017)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Institute for Plastics Processing in Industry and Craft, RWTH Aachen UniversityAachenGermany

Personalised recommendations