Advertisement

Continuous Chemical Recycling of Polystyrene with a Twin – Screw Extruder

  • Philipp SchäferEmail author
  • Christian Hopmann
  • Martin Facklam
  • Laura Hollerbach
  • Tristan Kolb
  • Andreas Schedl
  • Hans-Werner Schmidt
  • Franziska Nosić
  • Bianca Wilhelmus
Conference paper
  • 44 Downloads

Abstract

The increasing scarcity of resources and growing environmental awareness require higher recycling rates for plastic waste. Common techniques to do that are mechanical recycling, thermal recycling and chemical recycling, which is also called feedstock recycling. From all three techniques, chemical recycling is the only one which can produce new materials that correspond to the quality of conventional virgin material. However, the technique is limited to suitable polymers, e.g. polystyrene, which can be depolymerised at elevated temperatures. For an efficient industrial scale-up, a continuous process is desirable. In our work, we present such a continuous process for the recycling of polystyrene from post-industrial waste. A co-rotating, tightly intermeshing twin-screw extruder in high-temperature design is used together with a vacuum separation system with three degassing openings. By determining a stable process point a continuous depolymerisation of polystyrene is technically realised.

The atmospheric oxygen and moisture are removed via the first degassing opening of the extruder. The degradation products of the depolymerisation process are then degassed through the second and third opening. The degradation products are passed through a water-cooled condenser where they are liquefied. The styrene yield is maximised by tuning the process parameters barrel temperature, screw speed and configuration, mass throughput and degassing design. Analysis of the products reveals a considerable influence on increasing recovery rates with increasing barrel temperature, decreasing throughput and longer residence time. A longer residence time is realised by a lower throughput and an optimised screw configuration. We anticipate our process as a very promising technique to efficiently and economically scale-up the chemical recycling of poly-styrene waste.

Keywords

Polystyrene Chemical recycling Twin-screw extruder 

Notes

Acknowledgements

The investigations set out in this report received financial support from Germany’s Federal Ministry of Education and Research within the initiative “Plastics in the Envi-ronment – Sources. Sinks. Solutions.” of the BMBF-framework programme “Research for Sustainable Development” (No. 033R194C), to whom we extend our thanks.

References

  1. 1.
    PlasticsEurope Homepage: Plastics – the Facts 2018: https://www.plasticseurope.org/download_file/force/2387/319. Accessed 5 May 2019
  2. 2.
    Menges, G., Michaeli, W., Bittner, M.: Recycling von Kunststoffen. Hanser, München (1992)Google Scholar
  3. 3.
    Menges, G., Haberstroh, E., Michaeli, W., Schmachtenberg, E.: Werkstoffkunde Kunststoffe. Hanser, München (2014)Google Scholar
  4. 4.
    Sasse, F., Emig, G., 10: Chemical recycling of polymer materials. Chem. Eng. Technol.: Ind. Chem.‐Plant Equipment‐Bioprocess. Eng.‐Biotechnol. 21, 777–789 (1998)CrossRefGoogle Scholar
  5. 5.
    Elias, H.G.: Makromoleküle: Chemische Struktur und Synthesen. Wiley, Weinheim (1999)CrossRefGoogle Scholar
  6. 6.
    Achilias, S.: Chemical recycling of polymers. The case of poly (methyl methacrylate). In Proceedings of the International Conference on Energy & Environmental Systems, Chalkida, Greece, pp. 8–10 (2006)Google Scholar
  7. 7.
    Kaminsky, W., Predel, M., Sadiki, A.: Feedstock recycling of polymers by pyrolysis in a fluidised bed. Polym. Degrad. Stab. 85(3), 1045–1050 (2004)CrossRefGoogle Scholar
  8. 8.
    Yang, M., Shibasaki, Y.: Mechanisms of thermal degradation of polystyrene, polymethacrylonitrile, and their copolymers on flash pyrolysis. J. Polym. Sci., Part A: Polym. Chem. 36(13), 2315–2330 (1998)CrossRefGoogle Scholar
  9. 9.
    Audisio, G., Bertini, F., Beltrame, P.L., Carniti, P.: Catalytic degradation of polymers: Part III—Degradation of polystyrene. Polym. Degrad. Stab. 29(2), 191–200 (1990)CrossRefGoogle Scholar
  10. 10.
    Michaeli, W., K. Breyer: Chemisches Recycling von PMMA–Depolymerisation durch Extrusion. Achema Mag. 97(53) (1997)Google Scholar
  11. 11.
    Hottinger, A.: Konstruktion, Aufbau und Erprobung eines Laborstandes zur Depolymerisation von Polymethylmethacrylat (PMMA). Institut für Kunststoffverarbeitung, RWTH Aachen, Diplomarbeit (1993)Google Scholar
  12. 12.
    Schwarz, R.: Aufbau und Inbetriebnahme einer Extrusionsanlage zur kontinuierlichen Depolymerisation von PMMA. Studienarbeit am Institut für Kunststoffverarbeitung, RWTH Aachen (1995)Google Scholar
  13. 13.
    Born, M., Carl, C., Schneider, G.: Fachkunde Gefahrstoffe. Storck Verlag, Hamburg (2017)Google Scholar
  14. 14.
    N.N.: Entgasen beim Erstellen und Aufbereiten von Kunststoffen. VDI-Verlag, Düsseldorf (1991)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Authors and Affiliations

  • Philipp Schäfer
    • 1
    Email author
  • Christian Hopmann
    • 1
  • Martin Facklam
    • 1
  • Laura Hollerbach
    • 2
  • Tristan Kolb
    • 3
  • Andreas Schedl
    • 3
  • Hans-Werner Schmidt
    • 4
  • Franziska Nosić
    • 5
  • Bianca Wilhelmus
    • 5
  1. 1.Institute for Plastics ProcessingRWTH Aachen UniversityAachenGermany
  2. 2.Department of Processing and RecyclingRWTH Aachen UniversityAachenGermany
  3. 3.Neue Materialien Bayreuth GmbHBayreuthGermany
  4. 4.Macromolecular Chemistry and Bavarian Polymer Institute, University of BayreuthBayreuthGermany
  5. 5.INEOS Styrolution Group GmbHFrankfurt am MainGermany

Personalised recommendations