Prediction of the Bond Strength of Thermoplastics Welded by Laser Transmission Welding

  • Christian Hopmann
  • Simon BölleEmail author
  • Lorenz Reithmayr
Conference paper


Laser transmission welding is one of various welding techniques used to join thermoplastics. Low heat introduction into the welded parts and a high welding speed are the reasons why laser transmission welding established itself as a joining process in the plastics processing industry. To minimise defective parts and maximise productivity, it is essential to determine a set of ideal welding parameters that allow maximum bond strength at the lowest possible cycle times. To facilitate this process, simulation models provide detailed analysis without the need for destructive and costly part testing. To predict the weld strength of two thermoplastic parts joined by laser transmission welding, the Institute for Plastics Processing has developed a model that combines the simulated thermal properties of the material during and after welding with the molecular behaviour of plastic melts. Based on the results of the thermal modelling of the welding process a mathematical model describing the movement of polymer chains is used to calculate the resulting bond strength depending on material properties as well as heating and cooling rates. The temperature data of nodes situated at the interface of both welding partners are extracted from the simulation for every time increment of the simulation. The model, which is based on the reptation theory of polymer melts, is then used with these data and the bond strength is calculated. The results are validated by tensile tests on welded parts with the same input parameters used in simulation. In first results, the calculated bond strength shows a good agreement with the values measured in tensile tests. Occasional deviations can be explained by the fact that the material decomposition occurring in experimental welds is not considered in the thermal simulation and the reptation theory.


Laser transmission welding Process simulation Tensile strength 



The depicted research has been funded by the Deutsche Foschungsgesellschaft (DFG) as part of the research project “Integrative calculation of the weld strength of plastics parts based on an interdiffusion model presented for laser transmission welding.” We would like to extend our gratitude to the DFG.


  1. 1.
    Acherjee, B., Kuar, A.S., Mitra, S., Misra, D.: Modeling of laser transmission contour welding process using FEA and DoE. Opt. Laser Technol. 44(5), 1281–1289 (2012)CrossRefGoogle Scholar
  2. 2.
    Bastien, L.J., Gillepie Jr., J.W.: A non-isothermal healing model for strength and toughness of fusion bonded joints of amorphous thermoplastics. Polym. Eng. Sci. 31(24), 1721–1730 (1991)CrossRefGoogle Scholar
  3. 3.
    Becker, F.: Einsatz des Laserdurchstrahlschweißens zum Fügen von Thermoplasten. Dissertation, Universität Paderborn, Paderborn (2003)Google Scholar
  4. 4.
    Beiss, T.: Einführung, Technologie- und Branchenüberblick. In: Proceeding of Kunststoffe erfolgreich verbinden – Innovative Fügetechnologien für die Praxis. Aachen (2016)Google Scholar
  5. 5.
    Bonefeld, D.: Eigenspannungen, Spaltüberbrückung und Strahloszillation beim Laserdurchstrahlschweissen. Dissertation, Universität Paderborn, Paderborn (2012)Google Scholar
  6. 6.
    Chen, M.: Gap bridging in laser transmission welding of thermoplastics. Dissertation, Queen’s University Ontario, Ontario (2009)Google Scholar
  7. 7.
    Coelho, J.P., Abreu, M.A., Pires, M.C.: High-speed laser welding of plastic films. Opt. Lasers Eng. 34(10), 385–395 (1991)Google Scholar
  8. 8.
    De Gennes, P.G.: Reptation of a polymer chain in the presence of fixed obstacles. J. Chem. Phys. 55(1), 572–579 (1971)CrossRefGoogle Scholar
  9. 9.
    Fargas, M., Wilke, L., Meier, O., Potente, H.: Analysis of weld seam quality for laser transmission welding of thermoplastics based on fluid dynamical processes. In: Proceedings of the 65th Annual Technical Conference (ANTEC). Cincinatti (2007)Google Scholar
  10. 10.
    Fiegler, G.: Ein Beitrag zum Prozessverständnis des Laserdurchstrahlschweißens von Kunststoffen anhand der Verfahrensvarianten Quasi-Simultan- und Simultanschweißen. Dissertation, Universität Paderborn, Paderborn (2007)Google Scholar
  11. 11.
    Frick, T.: Untersuchung der prozessbestimmenden Strahl-Stoff-Wechselwirkungen beim Laserstrahlschweißen von Kunststoffen. Dissertation, Friedrich-Alexander-Universität Erlangen- Nürnberg, Erlangen (2007)Google Scholar
  12. 12.
    Grewell, D., Benatar, A.: Semiempirical, squeeze flow, and intermolecular diffusion model. II. Model verification using laser microwelding. Polym. Eng. Sci. 48(8), 1542–1549 (2008)CrossRefGoogle Scholar
  13. 13.
    Guevara-Morales, A., Figueroa-Lopez, U.: Residual stresses in injection molded products. J. Mater. Sci. 43(13), 4399–4415 (2014)CrossRefGoogle Scholar
  14. 14.
    Gupta, S.K., Pal, P.K.: Analysis of through transmission laser welding of nylon6 by finite element simulation. Manag. Prod. Eng. Rev. 9(4), 56–69 (2018)Google Scholar
  15. 15.
    Hastenberg, C.H.V., Wildervanck, P.C., Leenen, A.J.H., Schennink, G.: The measurement of thermal stress distributions along the flow path in injection-molded flat plates. Polym. Eng. Sci. 32(7), 506–515 (1992)CrossRefGoogle Scholar
  16. 16.
    Hopmann, Ch., Bölle, S., Kreimeier, S.: Modeling of the thermally induced residual stresses during laser transmission welding of thermoplastics. Weld. World 63, 1–13 (2019)CrossRefGoogle Scholar
  17. 17.
    Ilie, M., Kneip, J.C., Mattei, S., Nichici, A., Roze, C., Girasole, T.: Through-transmission laser welding of polymers – Temperature field modeling and infrared investigation. Infrared Phys. Technol. 51(1), 73–79 (2007)CrossRefGoogle Scholar
  18. 18.
    Jänecke, M.: Leichtbau mit technischen Textilien. Kunststoffe 105(2), 26–30 (2015)Google Scholar
  19. 19.
    Jones, I.: Laser welding of plastic components. Assem. Autom. 22(2), 129–135 (2002)CrossRefGoogle Scholar
  20. 20.
    Juhl, T.B., Christiansen, J.D., Jensen, E.A.: Investigation on high strength laser welds of polypropylene and high-density polyethylene. J. Appl. Polym. Sci. 1289(5), 2679–2685 (2013)CrossRefGoogle Scholar
  21. 21.
    Klein, H.M.: Laserschweißen von Kunststoffen in der Mikrotechnik. Dissertation, RWTH Aachen, Aachen (2001)Google Scholar
  22. 22.
    Kreimeier, S.: Thermische Simulation des Laserdurchstrahlschweißprozesses von teilkristallinen Thermoplasten. Dissertation, RWTH Aachen, Aachen (2017)Google Scholar
  23. 23.
    Lakemeier, P., Schoeppner, V.: Simulation-based investigation of the temperature influence during laser transmission welding of thermoplastics. In: Proceedings of the 75th Annual Technical Conference (ANTEC), Anaheim (2017)Google Scholar
  24. 24.
    Labeas, G.N., Moraitis, G.A., Katsiropoulos, Ch.V: Optimization of laser transmission welding process for thermoplastic composite parts using thermo-mechanical simulation. J. Compos. Mater. 44(1), 113–130 (2010)CrossRefGoogle Scholar
  25. 25.
    Mayboudi, L.S.: Heat transfer modelling and thermal imaging experiments in laser transmission welding of thermoplastics. Dissertation, Queen’s University Ontario, Ontario (2008)Google Scholar
  26. 26.
    Mayboudi, L.S., Birk, A.M., Zak, G., Bates, P.J.: Infrared observations and finite element modeling of a laser transmission welding process. J. Laser Appl. 21(3), 111–118 (2009)CrossRefGoogle Scholar
  27. 27.
    Messner, R.W.: Joining composite materials and structures: some thought-provoking possibilities. J. Thermoplast. Compos. Mater. 17(1), 51–75 (2004)CrossRefGoogle Scholar
  28. 28.
    N.N.: PlasticsEurope Annual Review 2017–2018. Annual report, Plastics Europe AISBL, Brussels (2018)Google Scholar
  29. 29.
    Osswald, T.A.: Rudolph, N.: Polymer rheology – fundamentals and applications, 1st edn. Hanser, München (2015)Google Scholar
  30. 30.
    Potente, H., Wilke, L., Ridder, H., Mahnken, R., Shaben, A.: Simulation of the residual stresses in the contour laser welding of thermoplastics. Polym. Eng. Sci. 48(4), 767–773 (2008)CrossRefGoogle Scholar
  31. 31.
    Reinl, S., Rau, A.: Laserkunststoffschweißen in der industriellen Serienproduktion. Laser Mag. 28(2), 17–21 (2011)Google Scholar
  32. 32.
    Sparks, J.A.: Low cost technologies for aerospace applications. Microprocess. Microsyst. 20(8), 449–454 (1997)CrossRefGoogle Scholar
  33. 33.
    Wang, C., Yan, T., Liu, H., Zhong, H.: Temperature field and fluid field simulation of laser transmission welding polycarbonate. In: Proceedings of the 76th Annual Technical Conference (ANTEC), Orlando (2018)Google Scholar
  34. 34.
    Zoubeir, T., Elhem, G.: Numerical study of laser diode transmission welding of a polypropylene mini-tank: temperature field and residual stresses distribution. Polym. Test. 30(1), 23–34 (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Authors and Affiliations

  • Christian Hopmann
    • 1
  • Simon Bölle
    • 1
    Email author
  • Lorenz Reithmayr
    • 1
  1. 1.Institute for Plastics ProcessingRWTH Aachen UniversityAachenGermany

Personalised recommendations