Advertisement

Risiken der pflanzlichen Gentechnik

  • Frank KempkenEmail author
Chapter
  • 188 Downloads

Zusammenfassung

Während gentechnisch hergestellte Medikamente oder Enzyme akzeptiert werden, bleiben transgene Pflanzen ist vor allem in Europa sehr umstritten und treffen auf breite Ablehnung, obwohl die wissenschaftliche Betrachtung ganz anders ausfällt: Gentechnische Pflanzen werden hinsichtlich ihrer Risiken ähnlich wie konventionelle Pflanzen eingestuft. In diesem Kapitel werden alle wesentlichen sicherheitsrelevanten Aspekte behandelt.

Weiterführende Literatur

  1. Ammann K (2014) Molecular differences between GM- and non-G crops overestimated? PRRI (Public Research & Regulation Initiative) Ask Force-10-2010514. http://www.prri.net/wp-content/uploads/2011/12/AF-9-Differences-GM-non-GM-crops-20100423-web.pdf
  2. Bartsch D, Devos Y, Hails R, Kiss J, Krogh PH, Mestdagh S, Nuti M, Sessitsch A, Sweet J, Gathmann A (2011) Environmental impact of genetically modified maize expressing Cry1 protein. In: Kempken F, Jung C (Hrsg) Genetic modification of plants – agriculture, horticulture and forestry. Springer, Berlin, S 575–614Google Scholar
  3. Baudo MM, Lyons R, Powers S, Pastori GM, Edwards KJ, Holdsworth MJ, Shewry PR (2006) Transgenesis has less impact on the transcriptome of wheat grain than conventional breeding. Plant Biotechnol J 4:369–380CrossRefGoogle Scholar
  4. Benbrook (2016) Trends in glyphosate herbicide use in the United States and globally. Environ Sci Eur 28:3.  https://doi.org/10.1186/s12302-016-0070-0
  5. Brookes G, Barfoot P (2004) GM crops: the global economic and environmental impact. The first nine years 1996–2004. J Agro Biotechnol Manag Econ 8,15 AgBioForum. http://www.agbioforum.org
  6. Chandler S, Dunwell JM (2008) Gene flow, risk assessment and the environmental release of transgenic plants. Crit Rev Plant Sci 27:25–49CrossRefGoogle Scholar
  7. Colquhoun IJ, LeGall G, Elliot KA, Mellon FA, Michael AJ (2006) Shall I compare thee to a GM potato? Trends Genet 22:525–528CrossRefGoogle Scholar
  8. Clark BW, Phillips TA, Coats JR (2005) Environmental fate and effects of Bacillus thuringensis (Bt) proteins from transgenic crops: a review. J Agric Food Chem 53:4643–4653CrossRefGoogle Scholar
  9. Conner AJ, Glare TR, Nap JP (2003) The release of genetically modified crops into the environment. Part II: overview of ecological risk assessment. Plant J 33:19–46CrossRefGoogle Scholar
  10. Dale PJ, Clarke B, Fontes EMG (2002) Potential for the environmental impact of transgenic crops. Nat Biotech 20:567–574CrossRefGoogle Scholar
  11. Daniell H (2002) Molecular strategies for gene containment in transgenic crops. Nat Biotech 20:581–586CrossRefGoogle Scholar
  12. Delaney B, Goodman RE, Ladics GS (2018) Food and feed safety of genetically engineered food crops. Tox Sci 162:361–371CrossRefGoogle Scholar
  13. Eschenbach C, Rinker A, Windhorst D, Windhorst W (2008) Cause effect chains on potential GMO cropping in Schleswig Holstein. In: Brechling B, Reuter H, Verhoeven R (Hrsg) Implications of GM-crop cultivation at large spatial scales. Theorie in der Ökologie 14. Lang, Frankfurt, S 51–55Google Scholar
  14. Gampala SS, Wulfkuhle B, Richey KA (2019) Detection of transgenic proteins by immunoassays. Methods Mol Biol 1864:411–417.  https://doi.org/10.1007/978-1-4939-8778-8_25CrossRefPubMedGoogle Scholar
  15. Goldstein DA (2014) Tempest in a tea pot: how did the public conversation on genetically modified crops drift so far from the facts? J Med Toxicol 10:194–201CrossRefGoogle Scholar
  16. Goodman RE, Vieths S, Sampson H, Hill D, Ebisawa M, Taylor SL, van Ree R (2008) Allergenicity assessment of genetically modified crops – what makes sense? Nat Biotechnol 26:73–81CrossRefGoogle Scholar
  17. Goy PA, Duesing JH (1995) From pots to plots: genetically modified plants on trial. Biotechnol 13:454–458Google Scholar
  18. Johnson KL, Raybould AF, Hudson MD, Poppy GM (2006) How does scientific risk assessment of GM crops fit within the wider risk analysis? Trends Plant Sci 12:1–5CrossRefGoogle Scholar
  19. Mackenzie D (1999) Red flag for a green spray. New Sci 2188:4Google Scholar
  20. Marvier M, McCreedy C, Regetz J, Kareiva P (2007) A meta-analysis of effects of Bt cotton and maize on nontarget invertebrates. Science 316:1475–1477CrossRefGoogle Scholar
  21. Momma K, Hashimoto W, Ozawa S et al (1999) Quality and safety evaluation of genetically engineered rice with soybean glycinin: analysis of the grain composition and digestibility of glycinin in transgenic rice. Biosci Biotechnol Biochem 63:314–318CrossRefGoogle Scholar
  22. Nap JP, Metz PLJ, Escaler M, Conner AJ (2003) The release of genetically modified crops into the environment. Part I. Overview of current status and regulations. Plant J 33:1–18CrossRefGoogle Scholar
  23. National Research Council (U.S.) (2004) Committee on identifying and assessing unintended effects of genetically engineered foods on human health. National Acadamies Press, Washington DC. http://www.nap.edu/openbook.php?record_id=10977&page=R1
  24. Nawaz MA, Mesnage R, Tsatsakis AM, Golokhvast KS, Yang SH, Antoniou MN, Chung G (2019) Addressing concerns over the fate of DNA derived from genetically modified food in the human body: a review. Food Chem Toxicol 124:423–430.  https://doi.org/10.1016/j.fct.2018.12.030CrossRefPubMedGoogle Scholar
  25. Nicolia A, Manzo A, Veronesi F, Rosellini D (2014) An overview of the last 10 years of genetically engineered crop safety research. Crit Rev Biotechnol 34:77–88.  https://doi.org/10.3109/07388551.2013.823595CrossRefPubMedGoogle Scholar
  26. Owen MD (2011) Herbicide resistance. In: Kempken F, Jung C (Hrsg) Genetic modification of plants – agriculture, horticulture and forestry. Springer, Berlin, S 159–176Google Scholar
  27. Owen MD, Young BG, Shaw DR, Wilson RG, Jordan DL, Dixon PM, Weller SC (2011) Benchmark study on glyphosate-resistant crop systems in the United States. Part 2: Perspectives. Pest Manag Sci 67:747–757CrossRefGoogle Scholar
  28. Pan X (2019) Determining pollen-mediated gene flow in transgenic cotton. Methods Mol Biol 1902:309–321.  https://doi.org/10.1007/978-1-4939-8952-2_25CrossRefPubMedGoogle Scholar
  29. Perry ED, Ciliberto F, Hennessy DA, Moschini G (2016) Genetically engineered crops and pesticide use in U.S. maize and soybeans. Sci Adv 2:e1600850Google Scholar
  30. Pfeilstetter E, Matzk A, Schiemann J, Feldmann SD (1998) Untersuchungen zum Auskreuzverhalten von Liberty-tolerantem Winterraps auf nicht-transgenen Raps. In: Schiemann J (Hrsg) Freisetzungsbegleitende Sicherheitsforschung mit gentechnisch veränderten Pflanzen und Mikroorganismen. BEO, Braunschweig, pp l75–184Google Scholar
  31. Pilcher CD, Obrycki JJ, Rice ME, Lewis LC (1997) Premaginal development, survival and field abundance of insect predators on transgenic Bacillus thuringensis com. Environ Entomol 26:446–454CrossRefGoogle Scholar
  32. Prescott VE, Campbell PM, Moore A et al (2005) Transgenic expression of bean a-amylase inhibitor in peas results in altered structure and immunogenicity. J Agric Food Chem 53:9023–9030CrossRefGoogle Scholar
  33. Ricroch A, Bergé JB, Kuntz M (2010) Is the German suspension of MON810 maize cultivation scientifically justified? Transgenic Res 19:1–12CrossRefGoogle Scholar
  34. Ricroch AE, Berge JB, Kuntz M (2011) Evaluation of genetically engineered crops using transcriptomic, proteomic, and metabolomic profiling techniques. Plant Physiol 155:1752–1761CrossRefGoogle Scholar
  35. Saxena D, Flores S, Stotzky G (1999) Insecticidal toxin in root exudates from Bt corn. Nature 402:480CrossRefGoogle Scholar
  36. Schuler TH, Poppy GM, Kerry BR, Denholm I (1999) Potential side effects of insect-resistant transgenic plants on arthropod natural enemies. Tibtech 17:210–216CrossRefGoogle Scholar
  37. Selb R, Wal JM, Lovik M, Mills C, Hoffmann-Sommergruber K, Fernandez A (2017) Assessment of endogenous allergenicity of genetically modified plants exemplified by soybean – where do we stand? Food Chem Toxicol 101:139–148CrossRefGoogle Scholar
  38. Shaw DR, Owen MD, Dixon PM, Weller SC, Young BG, Wilson RG, Jordan DL (2011) Benchmark study on glyphosate-resistant cropping systems in the United States. Part 1: introduction to 2006–2008. Pest Manag Sci 67:741–746CrossRefGoogle Scholar
  39. Shelton AM, Roush RT (1999) False reports and the ears of men. Nat Biotechnol 17:832–219CrossRefGoogle Scholar
  40. Smirnoff N (1998) Plant resistance to environmental stress. Curr Opin Biotechnol 9:214–219CrossRefGoogle Scholar
  41. Snell C, Bernheim A, Berge JB, Kuntz M, Pascal G, Paris A, Ricroch AE (2012) Assessment of the health impact of GM plant diets in long-term and multigenerational animal feeding trials: a literature review. Food Chem Toxicol 50:1134–1146CrossRefGoogle Scholar
  42. Syvanen M (1999) In search of horizontal gene transfer. Nat Biotechnol 17:833CrossRefGoogle Scholar
  43. Thaca NY, Jorgensen RB, Hauser T, Mikkelsen TR, Ästergärd H (1996) Transfer of engineered genes from crop to wild plants. Trends Plant Sci 1:356–358CrossRefGoogle Scholar
  44. Trewavas A (1999) Gene flow and GM questions. Trends Plant Sci 4:339CrossRefGoogle Scholar
  45. Wackernagel W, Blum S, Meier P, Meier P (1998) DNA-Entlassung aus transgenen Zuckerrüben während der Vegetations- und Überwinterungsphase und horizontaler Gentransfer im Boden. In: Schiemann (Hrsg) Freisetzungsbegleitende Sicherheitsforschung mit gentechnisch veränderten Pflanzen und Mikroorganismen. BEO, Braunschweig, S 111–120Google Scholar

Copyright information

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2020

Authors and Affiliations

  1. 1.Botanisches InstitutUniversität KielKielDeutschland

Personalised recommendations