Advertisement

The Story of the Poor Public Good Index

  • Manfred J. HollerEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11890)

Abstract

The paper starts from the hypothesis that the public good index (PGI) could be much more successful if it were introduced by a more prominent game theorist. It argues that the violation of local monotonicity, inherent to this measure of a priori voting power, can be an asset – especially if the public good interpretation is taken into consideration and the PGI is (re-)assigned to I-power, instead of P-power.

Keywords

Public good index PGI Banzhaf index Shapley-Shubik index Local monotonicity I-Power P-Power NESS concept 

JEL Classification

D71 C78 

References

  1. 1.
    Alonso-Meijide, J.M., Bowles, C.: Power indices restricted by a priori unions can be easily computed and are useful: a generating function-based application to the IMF. Ann. Oper. Res. 137, 21–44 (2005)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Alonso-Meijide, J.M., Bowles, C., Holler, M.J., Napel, S.: Monotonicity of power in games with a priori unions. Theor. Decis. 66, 17–37 (2009)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Aumann, R.J., Maschler, M.: Some thoughts on the minimax principle. Manag. Sci. 18, 54–63 (1972)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Banzhaf III, J.F.: Weighted voting doesn’t work: a mathematical analysis. Rutgers Law Rev. 19, 317–343 (1965)Google Scholar
  5. 5.
    Barry, B.: Is it better to be powerful or lucky? Parts 1 and 2. Polit. Stud. 28, 183–194 and 338–352 (1980)Google Scholar
  6. 6.
    Braham, M., van Hees, M.: Degrees of causation. Erkenntnis 71, 323–344 (2009)CrossRefGoogle Scholar
  7. 7.
    Brams, S.J.: Game Theory and Politics. Free Press, New York (1975)zbMATHGoogle Scholar
  8. 8.
    Deegan, J., Packel, E.W.: A new index of power for simple n-person-games. Int. J. Game Theory 7, 113–123 (1978)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Felsenthal, D.S.: A well-behaved index of a priori p-power for simple n-person games. Homo Oeconomicus 33, 367–381 (2016)CrossRefGoogle Scholar
  10. 10.
    Felsenthal, D.S., Machover, M.: Postulates and paradoxes of relative voting power - a critical appraisal. Theor. Decis. 38, 195–229 (1995)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Felsenthal, D.S., Machover, M.: The Measurement of Voting Power. Theory and Practice, Problems and Paradoxes. Edward Elgar, Cheltenham (1998)Google Scholar
  12. 12.
    Felsenthal, D.S., Machover, M.: Voting power measurement: a story of misreinvention. Soc. Choice Welfare 25, 485–506 (2005)CrossRefGoogle Scholar
  13. 13.
    Fischer, D., Schotter, A.: The inevitability of the paradox of redistribution in the allocation of voting weights. Public Choice 33, 46–67 (1980)Google Scholar
  14. 14.
    Freixas, J., Kurz, S.: The cost of getting local monotonicity. Eur. J. Oper. Res. 251, 600–612 (2016)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Holler, M.J.: A priori party power and government formation. Munich Soc. Sci. Rev. 1, 25–41 (1978). (republished in: Holler, M.J. (ed.) Power, Voting, and Voting Power. Physica-Verlag, Würzburg and Wien (1982); and Munich Social Science Review, New Series, vol. 2 (2018))Google Scholar
  16. 16.
    Holler, M.J.: Forming coalitions and measuring voting power. Polit. Stud. 30, 262–271 (1982)CrossRefGoogle Scholar
  17. 17.
    Holler, M.J.: The public good index. In: Holler, M.J. (ed.) Coalitions and Collective Action. Physica-Verlag, Würzburg and Vienna (1984)Google Scholar
  18. 18.
    Holler, M.J.: Power, monotonicity and expectations. Control Cybern. 26, 605–607 (1997)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Holler, M.J.: Two stories, one power index. J. Theor. Polit. 10, 179–190 (1998)CrossRefGoogle Scholar
  20. 20.
    Holler, M.J., Napel, S.: Local monotonicity of power: axiom or just a property. Qual. Quant. 38, 637–647 (2004)CrossRefGoogle Scholar
  21. 21.
    Holler, M.J., Napel, S.: Monotonicity of power and power measures. Theor. Decis. 56, 93–111 (2004)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Holler, M.J., Nurmi, H.: Reflections on power, voting, and voting power. In: Holler, M.J., Nurmi, H. (eds.) Power, Voting, and Voting Power: 30 Years After, pp. 1–24. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-35929-3_1CrossRefzbMATHGoogle Scholar
  23. 23.
    Holler, M.J., Nurmi, H.: Pathology or revelation? The public good index. In: Fara, R., Leech, D., Salles, M. (eds.) Voting Power and Procedures. SCW, pp. 247–257. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-05158-1_14CrossRefGoogle Scholar
  24. 24.
    Holler, M.J., Ono, R., Steffen, F.: Constrained monotonicity and the measurement of power. Theor. Decis. 50, 385–397 (2001)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Holler, M.J., Owen, G.: On the present and future of power measures. Homo Oeconomicus 19, 281–295 (2002); republished as Present and future of power measures. In: Kacprzyk, J., Wagner, D. (eds.) Group Decisions and Voting, pp. 31–46. Academicka Oficyna Wydawnicza, Warsaw (2003)Google Scholar
  26. 26.
    Holler, M.J., Packel, E.W.: Power, luck and the right index. Zeitschrift für Nationalökonomie (J. Econ.) 43, 21–29 (1983)CrossRefGoogle Scholar
  27. 27.
    Napel, S.: The holler-packel axiomatization of the public good index completed. Homo Oeconomicus 15, 513–521 (1999)Google Scholar
  28. 28.
    Riker, W.H.: The Theory of Political Coalitions. Yale University Press, New Haven (1962)zbMATHGoogle Scholar
  29. 29.
    Shapley, L.S., Shubik, M.: A method of evaluating the distribution of power in a committee system. Am. Polit. Sci. Rev. 48, 787–792 (1954)CrossRefGoogle Scholar
  30. 30.
    Turnovec, F.: Power, power indices and intuition. Control Cybern. 26, 613–615 (1997)MathSciNetzbMATHGoogle Scholar
  31. 31.
    Turnovec, F.: Power indices: swings or pivots? In: Wiberg, M. (ed.) Reasoned choices. Essays in Honour of Academy Professor Hannu Nurmi on the Occasion of his 60th birthday. Digipaino, Turku (2004)Google Scholar
  32. 32.
    Widgrén, M.: On the probabilistic relationship between the Public Good Index and the Normalized Banzhaf index. In: Holler, M.J., Owen, G. (eds.) Power Measures, vol. 2. Homo Oeconomicus 19, 373–386 (2002)Google Scholar
  33. 33.
    Wright, R.: Causation, responsibility, risk, probability, naked statistics, and proof: Pruning the bramble bush by clarifying the concepts. Iowa Law Rev. 73, 1001–1077 (1988)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.University of HamburgHamburgGermany

Personalised recommendations