Advertisement

Methodische Beispiele aus der aktuellen Forschung

  • Marc NaguibEmail author
  • E. Tobias Krause
Chapter
  • 7 Downloads

Zusammenfassung

Das Verhalten von Tieren ist außerordentlich variabel, und zwar sowohl zwischen Arten, zwischen Individuen derselben Art als auch situationsabhängig innerhalb von Individuen. Diese hierarchische Organisation in der Variation von Verhalten lässt sich mit statistischen Verfahren analysieren und verstehen.

Literatur

  1. Allegue H, Araya-Ajoy YG, Dingemanse NJ, Dochtermann NA, Garamszegi LZ, Nakagawa S et al (2017) Statistical Quantification of Individual Differences (SQuID): an educational and statistical tool for understanding multilevel phenotypic data in linear mixed models. Methods Ecol Evol 8:257–267CrossRefGoogle Scholar
  2. Araya-Ajoy YG, Dingemanse NJ (2017) Repeatability, heritability, and age-dependence of seasonal plasticity in aggressiveness in a wild passerine bird. J Anim Ecol 86:227–238CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bell AM, Hankison SJ, Laskowski KL (2009) The repeatability of behaviour: a meta-analysis. Anim Behav 77:771–783CrossRefPubMedPubMedCentralGoogle Scholar
  4. Benson-Amram S, Dantzer B, Stricker G, Swanson EM, Holekamp KE (2016) Brain size predicts problem-solving ability in mammalian carnivores. Proc Natl Acad Sci 113:201505913CrossRefGoogle Scholar
  5. Blumstein DT, Fernández-Juricic E (2010) A primer of conservation behavior. Sinauer Associates, SunderlandGoogle Scholar
  6. Bodden C, von Kortzfleisch V, Karwinkel F, Kaiser S, Sachser N, Richter SH (2019) Heterogenising study samples across testing time improves reproducibility of behavioural data. Sci Rep 9:8247Google Scholar
  7. Boorman E, Parker GA (1976) Sperm (ejaculate) competition in Drosophila melanogaster, and reproductive value of females to males in relation to female age and mating status. Ecol Entomol 1:145–155CrossRefGoogle Scholar
  8. Breedveld MC, Folkertsma R, Eccard JA (2019) Rodent mothers increase vigilance behaviour when facing infanticide risk. Sci Rep 9:12054CrossRefPubMedPubMedCentralGoogle Scholar
  9. Buchholz R (2007) Behavioural biology: an effective and relevant conservation tool. Trends Ecol Evol 22:401–407CrossRefPubMedPubMedCentralGoogle Scholar
  10. Buirski P, Plutchik R, Kellerman H (1978) Sex differences, dominance, and personality in the chimpanzee. Anim Behav 26:123–129CrossRefPubMedPubMedCentralGoogle Scholar
  11. Candolin U, Wong BBM (2012) Behavioral responses to a changing world, 1. Aufl. Oxford University Press, OxfordCrossRefGoogle Scholar
  12. Caspers BA, Krause ET, Hendrix R, Kopp M, Rupp O, Rosentreter K, Steinfartz S (2014) The more the better – polyandry and genetic similarity are positively linked to reproductive success in a natural population of terrestrial salamanders (Salamandra salamandra). Mol Ecol 23:239–250CrossRefPubMedPubMedCentralGoogle Scholar
  13. Caspers BA, Steinfartz S, Krause ET (2015) Larval deposition behaviour and maternal investment of females reflect differential habitat adaptation in a genetically diverging salamander population. Behav Ecol Sociobiol 69:407–413CrossRefGoogle Scholar
  14. Ceballos G, Ehrlich PR, Barnosky AD, García A, Pringle RM, Palmer TM (2015) Accelerated modern human–induced species losses: entering the sixth mass extinction. Sci Adv 1:e1400253CrossRefPubMedPubMedCentralGoogle Scholar
  15. Corral-López A, Bloch N, Kotrschal A, van der Bijl W, Buechel S, Mank JE, Kolm N (2017) Female brain size affects the assessment of male attractiveness during mate choice. Sci Adv 3:e1601990CrossRefPubMedPubMedCentralGoogle Scholar
  16. Corral-López A, Kotrschal A, Kolm N (2018) Selection for relative brain size affects context-dependent male preferences, but not discrimination, of female body size in guppies. J Exp Biol 221:jeb175240CrossRefPubMedPubMedCentralGoogle Scholar
  17. Crabbe JC, Wahlsten D, Dudek BC (1999) Genetics of mouse behavior: interactions with laboratory environment. Science 284:1670–1672CrossRefGoogle Scholar
  18. Dall SRX, Bell AM, Bolnick DI, Ratnieks FLW (2012) An evolutionary ecology of individual differences. Ecol Lett 15:1189–1198CrossRefPubMedPubMedCentralGoogle Scholar
  19. de Villemereuil P, Morrissey M, Nakagawa S, Schielzeth H (2018) Fixed effect variance and the estimation of repeatabilities and heritabilities: issues and solutions. J Evol Biol 31:621–632CrossRefPubMedPubMedCentralGoogle Scholar
  20. Dingemanse NJ, Both C, Drent PJ, van Oers K, van Noordwijk AJ (2002) Repeatability and heritability of exploratory behaviour in great tits from the wild. Anim Behav 64:929–938CrossRefGoogle Scholar
  21. Drent PJ, van Oers K, van Noordwijk AJ (2003) Realized heritability of personalities in the great tit (Parus major). Proc R Soc Lond Ser B 270:45–51CrossRefGoogle Scholar
  22. Fleischer T, Gampe J, Scheuerlein A, Kerth G (2017) Rare catastrophic events drive population dynamics in a bat species with negligible senescence. Sci Rep 7:7370CrossRefPubMedPubMedCentralGoogle Scholar
  23. Fleischmann D, Baumgartner IO, Erasmy M, Gries N, Melber M, Leinert V, Parchem M, Reuter M, Schaer P, Stauffer S, Wagner I, Kerth G (2013) Female Bechstein’s bats adjust their group-decisions about communal roosts to the level of conflict of interests. Curr Biol 23:1–5CrossRefGoogle Scholar
  24. Gelman A, Hill J (2007) Data analysis using regression and multilevel/hierarchical models. Cambridge University Press, CambridgeGoogle Scholar
  25. Gosling SD (1996) Personality categorization of humans and animals. Int J Psychol 31:3521Google Scholar
  26. Gross L (2005) Why not the best? How science failed the Florida panther. PLoS Biol 3:e333CrossRefPubMedPubMedCentralGoogle Scholar
  27. Harris S, Cresswell WJ, Forde PG, Trewhella WJ, Woollard T, Wray S (1990) Home-range analysis using radio-tracking data – a review of problems and techniques particularly as applied to the study of mammals. Mammal Rev 20:97–123CrossRefGoogle Scholar
  28. Hendrix R, Schmidt BR, Schaub M, Krause ET, Steinfartz S (2017) Differentiation of movement behaviour in an adaptively diverging salamander population. Mol Ecol 26:6400–6413CrossRefPubMedPubMedCentralGoogle Scholar
  29. Herborn KA, Macleod R, Miles WTS, Schofield ANB, Alexander L, Arnold KE (2010) Personality in captivity reflects personality in the wild. Anim Behav 79:835–843CrossRefGoogle Scholar
  30. Hoffmann J, Schirmer A, Eccard JA (2019) Light pollution affects space use and interaction of two small mammal species irrespective of personality. BMC Ecol 19:26CrossRefPubMedPubMedCentralGoogle Scholar
  31. Hussey NE, Kessel ST, Aarestrup K, Cooke SJ, Cowley PD, Fisk AT, Harcourt RG, Holland KN, Iverson SJ, Kocik JF, Mills Flemming JE, Whoriskey FG (2015) Aquatic animal telemetry: a panoramic window into the underwater world. Science 348:1255642CrossRefPubMedPubMedCentralGoogle Scholar
  32. John OP, Robins RW, Pervin LA (2010) Handbook of personality: theory and research. Guilford Press, New YorkGoogle Scholar
  33. Kays R, Crofoot MC, Jetz W, Wikelski M (2015) Terrestrial animal tracking as an eye on life and planet. Science 348:aaa2478CrossRefGoogle Scholar
  34. Kerth G, König B (1996) Transponder and an infrared-videocamera as methods in a fieldstudy on the social behaviour of Bechstein’s bats (Myotis bechsteinii). Myotis 34:27–34Google Scholar
  35. Kerth G, Reckardt K (2003) Information transfer about roosts in female Bechstein’s bats. Proc R Soc Lond B 270:511–515CrossRefGoogle Scholar
  36. Kerth G, van Schaik J (2012) Causes and consequences of living in closed societies: lessons from a long-term socio-genetic study on Bechstein’s bats. Mol Ecol 21:633–646CrossRefGoogle Scholar
  37. Kerth G, Safi K, König B (2002) Mean colony relatedness is a poor predictor of colony structure and female philopatry in the communally breeding Bechstein’s bat (Myotis bechsteinii). Behav Ecol Sociobiol 52:203–210CrossRefGoogle Scholar
  38. Kerth G, Ebert C, Schmidtke C (2006) Group decision-making in fission-fusion societies: evidence from two field experiments in Bechstein’s bats. Proc R Soc Lond B 273:2785–2790CrossRefGoogle Scholar
  39. Kerth G, Perony N, Schweitzer F (2011) Bats are able to maintain long-term social relationships despite the high fission–fusion dynamics of their groups. Proc R Soc B 278:2761–2767CrossRefPubMedPubMedCentralGoogle Scholar
  40. Kerth G, Fleischmann D, van Schaik J, Melber M (2013) Vom Verhalten über die Genetik zum Naturschutz: 20 Jahre Forschung an der Bechsteinfledermaus. In: Dietz M (Hrsg) Populationsökologie und Habitatansprüche der Bechsteinfledermaus Myotis bechsteinii. Beiträge zur Fachtagung in der Trinkkuranlage Bad Nauheim, 25.–26.02.2011. Zarbock GmbH & Co. KG, Frankfurt a. M.Google Scholar
  41. Knipling EF (1955) Possibilities of insect control or eradication through the use of sexually sterile males. J Econ Entomol 48:459–462CrossRefGoogle Scholar
  42. Kotrschal A, Rogell B, Bundsen A, Svensson B, Zajitschek S, Brännström I, Immler S, Maklakov AA, Kolm N (2013) Artificial selection on relative brain size in the guppy reveals costs and benefits of evolving a larger brain. Curr Biol 23:168–171CrossRefPubMedPubMedCentralGoogle Scholar
  43. Kotrschal A, Corral-López A, Amcoff M, Kolm N (2014) A larger brain confers a benefit in a spatial mate search learning task in male guppies. Behav Ecol 26:527–532CrossRefPubMedPubMedCentralGoogle Scholar
  44. Kotrschal A, Buechel SD, Zala SM, Corral-López A, Penn DJ, Kolm N (2015a) Brain size affects female but not male survival under predation threat. Ecol Lett 18:646–652CrossRefPubMedPubMedCentralGoogle Scholar
  45. Kotrschal A, Corral-López A, Szidat S, Kolm N (2015b) The effect of brain size evolution on feeding propensity, digestive efficiency, and juvenile growth. Evolution 69:3013–3020CrossRefPubMedPubMedCentralGoogle Scholar
  46. Kotrschal A, Kolm N, Penn DJ (2016) Selection for brain size impairs innate, but not adaptive immune responses. Proc R Soc Lond B 283:20152857CrossRefGoogle Scholar
  47. Kotrschal A, Corral-López A, Kolm N (2019) Large brains, short life: selection on brain size impacts intrinsic lifespan. Biol Let 15:20190137CrossRefGoogle Scholar
  48. Kowalski GJ, Grimm V, Herde A, Guenther A, Eccard JA (2019) Does animal personality affect movement in habitat corridors? Experiments with common voles (Microtus arvalis) using different corridor widths. Animals 9(6):291CrossRefGoogle Scholar
  49. Lee JJ, McGue M, Iacono WG, Michael AM, Chabris CF (2019) The causal influence of brain size on human intelligence: evidence from within-family phenotypic associations and GWAS modeling. Intelligence 75:48–58CrossRefGoogle Scholar
  50. Liefting M, Hoedjes KM, Lann CL, Smid HM, Ellers J (2018) Selection for associative learning of colour stimuli reveals correlated evolution of this learning ability across multiple stimuli and rewards. Evolution 72:1449–1459CrossRefGoogle Scholar
  51. MacLean EL, Hare B, Nunn CL, Addessi E, Amici F, Anderson RC, Aureli F, Baker JM et al (2014) The evolution of self-control. Proc Natl Acad Sci 111:E2140–E2148CrossRefPubMedPubMedCentralGoogle Scholar
  52. Magris M, Wignall AE, Herberstein ME (2015) The sterile male technique: irradiation negatively affects male fertility but not male courtship. J Insect Physiol 75:85–90CrossRefPubMedPubMedCentralGoogle Scholar
  53. Nakagawa S, Schielzeth H (2010) Repeatability for Gaussian and non-Gaussian data: a practical guide for biologists. Biol Rev 85:935–956PubMedPubMedCentralGoogle Scholar
  54. Nessler SH, Uhl G, Schneider JM (2007) Genital damage in the orb-web spider Argiope bruennichi (Araneae: Araneidae) increases paternity success. Behav Ecol 18:174–181CrossRefGoogle Scholar
  55. Niemelä PT, Dingemanse NJ (2018) On the usage of single measurements in behavioural ecology research on individual differences. Anim Behav 145:99–105CrossRefGoogle Scholar
  56. Parker GA (1970) Sperm competition and its evolutionary consequences in the insects. Biol Rev 45:525–567Google Scholar
  57. Parker GA (1984) Sperm competition and the evolution of animal mating strategies. In: Smith RL (Hrsg) Sperm competition and the evolution of animal mating systems. Academic Press, London, S 2–60Google Scholar
  58. Petelle MB, Martin JG, Blumstein DT (2015) Heritability and genetic correlations of personality traits in a wild population of yellow-bellied marmots (Marmota flaviventris). J Evol Biol 28:1840–1848CrossRefPubMedPubMedCentralGoogle Scholar
  59. Primack RB (2010) Essentials of conservation biology. Sinauer, SunderlandGoogle Scholar
  60. Réale D, Reader SM, Sol D, McDougall PT, Dingemanse NJ (2007) Integrating animal temperament within ecology and evolution. Biol Rev 82:291–318CrossRefPubMedPubMedCentralGoogle Scholar
  61. Reusch C, Gampe J, Scheuerlein A, Meier F, Grosche L, Kerth K (2019) Differences in seasonal survival suggest species-specific reactions to climate change in two sypatric bat species. Ecol Evol 9(14):7957–7965 (im Druck)CrossRefPubMedPubMedCentralGoogle Scholar
  62. Richter SH (2017) Systematic heterogenization for better reproducibility in animal experimentation. Lab Anim 46:343–349CrossRefGoogle Scholar
  63. Richter SH (2018) Never replicate a successful experiment – Gedanken über Unschärfe im Tierversuch. In: Freitag S, Geierhos M, Asmani R, Haug JI (Hrsg) Unschärfe – der Umgang mit fehlender Eindeutigkeit. Erschienen in der Reihe: Nordrhein-Westfälische Akademie der Wissenschaften und der Künste – Junges Kolleg, Ferdinand Schöningh Verlag, Paderborn, S. 93–110Google Scholar
  64. Richter SH, Garner JP, Würbel H (2009) Environmental standardization: cure or cause of poor reproducibility in animal experiments? Nat Methods 6:257–261CrossRefPubMedPubMedCentralGoogle Scholar
  65. Richter SH, Auer C, Kunert J, Garner JP, Würbel H (2010) Systematic variation improves reproducibility of animal experiments. Nat Methods 7:167–168CrossRefGoogle Scholar
  66. Rushton JP (1999) Brain size and cognitive ability: a review with new evidence. Am J Phys Anthropol 108: 237–238Google Scholar
  67. Schielzeth H, Nakagawa S (2013) Nested by design: model fitting and interpretation in a mixed model era. Methods Ecol Evol 4:14–24CrossRefGoogle Scholar
  68. Schirmer A, Herde A, Eccard JA, Dammhahn M (2019) Individuals in space: personality-dependent space use, movement and microhabitat use facilitate individual spatial niche spezialisation. Oecologia.  https://doi.org/10.1007/s00442-019-04365-5CrossRefPubMedPubMedCentralGoogle Scholar
  69. Schneider JM, Lesmono K (2009) Courtship raises male fertilization success through post-mating sexual selection in a spider. Proc R Soc B 276:3105–3111CrossRefPubMedPubMedCentralGoogle Scholar
  70. Schneider JM, Gilberg S, Fromhage L, Uhl G (2006) Sexual conflict over copulation duration in a sexually cannibalistic spider. Anim Behav 71:781–788CrossRefGoogle Scholar
  71. Snijders L, van Rooij EP, Burt JM, Hinde CA, van Oers K, Naguib M (2014) Social networking in territorial great tits: slow explorers have the least central social network positions. Anim Behav 98:95–102CrossRefGoogle Scholar
  72. Snijders L, Naguib M, van Oers K (2017) Dominance rank and boldness predict social attraction in great tits. Behav Ecol 28:398–406Google Scholar
  73. Steinfartz S, Weitere M, Tautz D (2007) Tracing the first step to speciation – ecological and genetic differentiation of a salamander population in a small forest. Mol Ecol 16:4550–4561CrossRefPubMedPubMedCentralGoogle Scholar
  74. Stockley P (1997) Sexual conflict resulting from adaptations to sperm competition. Trends Ecol Evol 12:154–159CrossRefPubMedPubMedCentralGoogle Scholar
  75. Stumpf M, Meier F, Grosche L, Halczok TK, van Schaik J, Kerth G (2017) How do young bats find suitable swarming and hibernation sites? Assessing the plausibility of the maternal guidance hypothesis using genetic maternity assignment for two European bat species. Acta Chiropterologica 19:319–327CrossRefGoogle Scholar
  76. Szorkovszky A, Kotrschal A, Herbert-Read JE, Buechel SD, Romenskyy M, Rosén E, van der Bijl W, Pelckmans K, Kolm N, Sumpter DJ (2018) Assortative interactions revealed by sorting of animal groups. Anim Behav 142:165–179CrossRefGoogle Scholar
  77. Ullmann W, Fischer C, Kramer-Schadt S, Pirhofer-Walzl K, Eccard JA, Wevers P, Hardert A, Sliwinski K, Blaum N (2019) The secret life of wild animals revealed by accelerometer data: how landscape diversity and seasonality influence the behaviour of European hares. ManuskriptGoogle Scholar
  78. van de Pol MV, Wright J (2009) A simple method for distinguishing within- versus between-subject effects using mixed models. Anim Behav 77:753–758CrossRefGoogle Scholar
  79. van Oers K, Naguib M (2013) Avian personality. In: Carere C, Maestripieri D (Hrsg) Animal personalities: behavior, physiology, and evolution. The University of Chicago Press, Chicago, S 66–95CrossRefGoogle Scholar
  80. Voelkl B, Vogt L, Sena ES, Würbel H (2018) Reproducibility of preclinical animal research improves with heterogeneity of study samples. PLoS Biol 16:e2003693CrossRefPubMedPubMedCentralGoogle Scholar
  81. Wilson DS, Clark AB, Coleman K, Dearstyne T (1994) Shyness and boldness in humans and other animals. Trends Ecol Evol 9:442–446CrossRefGoogle Scholar
  82. Würbel H (2000) Behaviour and the standardization fallacy. Nat Genet 26:263CrossRefGoogle Scholar
  83. Zeus V, Puechmaille S, Kerth G (2017) Con- and heterospecific social groups affect each other’s resource use: a study on roost sharing among bat colonies. Anim Behav 123:329–338CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2020

Authors and Affiliations

  1. 1.Behavioural Ecology GroupWageningen University & ResearchWageningenNiederlande
  2. 2.Institut für Tierschutz und TierhaltungFriedrich-Loeffler-InstitutCelleDeutschland

Personalised recommendations