Advertisement

Grundzüge des maschinellen Lernens

  • Carsten LanquillonEmail author
Chapter

Zusammenfassung

In diesem Kapitel werden Grundzüge des maschinellen Lernens dargestellt. Ziel ist es, ein allgemeines Verständnis dafür zu schaffen, was maschinelle Lernverfahren leisten können. Neben bekannten Definitionen und einem kurzen Abriss über die Entstehung maschineller Lernverfahren werden insbesondere Unterscheidungsmerkmale und Varianten sowie gängige Aufgabentypen erläutert. Erst danach werden beispielhaft verschiedene Lernverfahren vorgestellt, die besonders eingängig oder typisch sind und oft in der Praxis zum Einsatz kommen. In praktischen Anwendungen spielt aufgrund der großen Datenmengen und zusätzlicher Anforderungen zum Datenschutz das verteilte Lernen eine immer wichtigere Rolle. Als Abschluss und gleichermaßen Überleitung zur Verbindung mit Blockchain-Technologie gilt der Ausblick am Ende des Kapitels.

Literatur

  1. 1.
    Aggarwal, C.C.: Outlier Analysis, 2. Aufl. Springer & Incorporated, New York (2016)Google Scholar
  2. 2.
    Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large databases. In: Proceedings of the 20th International Conference on Very Large Data Bases, VLDB ’94, S. 487–499. Morgan Kaufmann Publishers Inc., San Francisco (1994)Google Scholar
  3. 3.
    Banko, M., Brill, E.: Scaling to very very large corpora for natural language disambiguation. In: Proceedings of the 39th Annual Meeting on Association for Computational Linguistics, ACL ’01, S. 26–33. Association for Computational Linguistics, Stroudsburg (2001).  https://doi.org/10.3115/1073012.1073017
  4. 4.
    Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, Berlin (2006)zbMATHGoogle Scholar
  5. 5.
    Boser, B.E., Guyon, I.M., Vapnik, V.N.: A training algorithm for optimal margin classifiers. In: Proceedings of the Fifth Annual Workshop on Computational Learning Theory, COLT ’92, S. 144–152. ACM, New York (1992).  https://doi.org/10.1145/130385.130401. Zugegriffen: 10. Mai. 2019
  6. 6.
    Breiman, L.: Bagging predictors. Mach. Learn. 24(2), 123–140 (1996).  https://doi.org/10.1023/A:1018054314350CrossRefzbMATHGoogle Scholar
  7. 7.
    Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001).  https://doi.org/10.1023/A:1010933404324CrossRefzbMATHGoogle Scholar
  8. 8.
    Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J.: Classification and Regression Trees. Wadsworth & Brooks, Monterey (1984)zbMATHGoogle Scholar
  9. 9.
    Chahal, K.S., Grover, M.S., Dey, K.: A Hitchhiker’s guide on distributed training of deep neural networks. CoRR abs/1810.11787 (2018)Google Scholar
  10. 10.
    Chapman, P., Clinton, J., Kerber, R., Khabaza, T., Reinartz, T., Shearer, C., Wirth, R.: Crisp-dm 1.0 step-by-step data mining guide. Tech. rep., The CRISP-DM consortium (2000). http://www.the-modeling-agency.com/crisp-dm.pdf. Zugegriffen: 5. März 2019
  11. 11.
    Chu, C.T., Kim, S.K., Lin, Y.A., Yu, Y., Bradski, G., Ng, A.Y., Olukotun, K.: Map-reduce for machine learning on multicore. In: Proceedings of the 19th International Conference on Neural Information Processing Systems, NIPS’06, S. 281–288. MIT Press, Cambridge (2006)Google Scholar
  12. 12.
    Cover, T., Hart, P.: Nearest neighbor pattern classification. IEEE Trans Inf Theory 13(1), 21–27 (1967).  https://doi.org/10.1109/TIT.1967.1053964CrossRefzbMATHGoogle Scholar
  13. 13.
    Dietterich, T.G.: Ensemble methods in machine learning. In: Proceedings of the First International Workshop on Multiple Classifier Systems, MCS ’00, S. 1–15. Springer, London (2000)Google Scholar
  14. 14.
    Domingos, P.: A few useful things to know about machine learning. Commun. ACM 55(10), 78–87 (2012).  https://doi.org/10.1145/2347736.2347755CrossRefGoogle Scholar
  15. 15.
    Domingos, P.: The Master Algorithm: How the Quest for the Ultimate Learning Machine Will Remake Our World. Basic Books Inc., New York (2015)Google Scholar
  16. 16.
    Döbel, I., Leis, M., Vogelsang, M.M., Neustroev, D., Petzka, H., Riemer, A., Rüping, S., Voss, A., Wegele, M., Welz, J.: Maschinelles Lernen: Eine Analyse zu Kompetenzen, Forschung und Anwendung (2018). https://www.bigdata.fraunhofer.de/content/dam/bigdata/de/documents/Publikationen/Fraunhofer_Studie_ML_201809.pdf. Zugegriffen: 15. Mai. 2019
  17. 17.
    Ester, M., Kriegel, H.P., Sander, J., Xu, X.: A density-based algorithm for discovering clusters a density-based algorithm for discovering clusters in large spatial databases with noise. In: Proceedings of the Second International Conference on Knowledge Discovery and Data Mining, KDD ’96, S. 226–231. AAAI Press (1996)Google Scholar
  18. 18.
    Geng, J., Li, D., Wang, S.: Horizontal or vertical?: A hybrid approach to large-scale distributed machine learning. In: Proceedings of the 10th Workshop on Scientific Cloud Computing, ScienceCloud ’19, S. 1–4. ACM, New York (2019).  https://doi.org/10.1145/3322795.3331461
  19. 19.
    Halevy, A., Norvig, P., Pereira, F.: The unreasonable effectiveness of data. IEEE Intell Syst 24, 8–12 (2009). http://goo.gl/q6LaZ8. Zugegriffen: 7. Apr. 2019CrossRefGoogle Scholar
  20. 20.
    Han, J., Pei, J.: Mining frequent patterns by pattern-growth: methodology and implications. SIGKDD Explor. Newsl. 2(2), 14–20 (2000)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Han, J., Pei, J., Yin, Y.: Mining frequent patterns without candidate generation. SIGMOD Rec. 29(2), 1–12 (2000)CrossRefGoogle Scholar
  22. 22.
    Hawkins, D.: Identification of Outliers. Chapman & Hall, London (1980)Google Scholar
  23. 23.
    Jain, A.K., Dubes, R.C.: Algorithms for Clustering Data. Prentice-Hall Inc., Upper Saddle River (1988)zbMATHGoogle Scholar
  24. 24.
    Konecný, J., McMahan, H.B., Ramage, D., Richtárik, P.: Federated optimization: distributed machine learning for on-device intelligence. CoRR abs/1610.02527 (2016)Google Scholar
  25. 25.
    Konecný, J., McMahan, H.B., Yu, F.X., Richtárik, P., Suresh, A.T., Bacon, D.: Federated learning: strategies for improving communication efficiency. CoRR abs/1610.05492 (2016)Google Scholar
  26. 26.
    Li, M., Andersen, D.G., Park, J.W., Smola, A.J., Ahmed, A., Josifovski, V., Long, J., Shekita, E.J., Su, B.Y.: Scaling distributed machine learning with the parameter server. In: Proceedings of the 11th USENIX Conference on Operating Systems Design and Implementation, OSDI’14, S. 583–598. USENIX Association, Berkeley (2014)Google Scholar
  27. 27.
    Lin, H., Zhang, H., Ma, Y., He, T., Zhang, Z., Zha, S., Li, M.: Dynamic mini-batch SGD for elastic distributed training: learning in the limbo of resources. CoRR abs/1904.12043 (2019)Google Scholar
  28. 28.
    MacQueen, J.: Some methods for classification and analysis of multivariate observations. In: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, Volume 1: Statistics, S. 281–297. University of California Press, Berkeley (1967)Google Scholar
  29. 29.
    Mitchell, T.M.: Machine Learning, 1. Aufl. McGraw-Hill Inc., New York (1997)zbMATHGoogle Scholar
  30. 30.
    Moravec, H.: Mind Children: The Future of Robot and Human Intelligence. Harvard University Press, Cambridge (1988)Google Scholar
  31. 31.
    Nelson, G.: The Analytics Lifecycle Toolkit: A Practical Guide for an Effective Analytics Capability. Wiley & SAS Business Series. Wiley, Incorporated (2018)CrossRefGoogle Scholar
  32. 32.
    Nilsson, A., Smith, S., Ulm, G., Gustavsson, E., Jirstrand, M.: A performance evaluation of federated learning algorithms. In: Proceedings of the Second Workshop on Distributed Infrastructures for Deep Learning, DIDL ’18, S. 1–8. ACM, New York (2018).  https://doi.org/10.1145/3286490.3286559
  33. 33.
    Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers Inc., San Francisco (1993)Google Scholar
  34. 34.
    Samuel, A.L.: Some studies in machine learning using the game of checkers. IBM J. Res. Dev. 3(3), 210–229 (1959).  https://doi.org/10.1147/rd.33.0210MathSciNetCrossRefGoogle Scholar
  35. 35.
    Schapire, R.E., Freund, Y.: Boosting: Foundations and Algorithms. The MIT Press, Cambridge (2012)Google Scholar
  36. 36.
    Schölkopf, B., Smola, A.J.: Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. MIT Press, Cambridge (2001)Google Scholar
  37. 37.
    Shearer, C.: The crisp-dm model: the new blueprint for data mining. J. Data Warehous. 5(4), (2000)Google Scholar
  38. 38.
    Tukey, J.W.: Exploratory Data Analysis. Addison-Wesley series in behavioral science : quantitative methods. Addison-Wesley, Reading, Mass. [u.a.] (1977)Google Scholar
  39. 39.
    Ward, J.H.: Hierarchical grouping to optimize an objective function. J. Am. Stat. Assoc. 58(301), 236–244 (1963).  https://doi.org/10.1080/01621459.1963.10500845MathSciNetCrossRefGoogle Scholar
  40. 40.
    Wolpert, D.H.: The lack of a priori distinctions between learning algorithms. Neural Comput. 8(7), 1341–1390 (1996).  https://doi.org/10.1162/neco.1996.8.7.1341CrossRefGoogle Scholar
  41. 41.
    Wrobel, S., Joachims, T., Morik, K.: Handbuch der Künstlichen Intelligenz, 5. Aufl., chap. Maschinelles Lernen und Data Mining. Oldenbourg, München (2014).  https://doi.org/10.1524/9783486719796zbMATHGoogle Scholar
  42. 42.
    Wu, X., Zhu, X., Wu, G., Ding, W.: Data Mining with Big Data. IEEE Transactions on Knowledge and Data Engineering 26(1), 97–107 (2014)CrossRefGoogle Scholar
  43. 43.
    Yang, Q., Liu, Y., Chen, T., Tong, Y.: Federated machine learning: concept and applications. ACM Trans. Intell. Syst. Technol. 10(2), 12:1–12:19 (2019).  https://doi.org/10.1145/3298981CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2019

Authors and Affiliations

  1. 1.Hochschule HeilbronnHeilbronnDeutschland

Personalised recommendations