Advertisement

Preservation Numbers: A New Approach in Soft Computing

  • Wolfgang W. Osterhage
Chapter

Abstract

In this chapter the initial claim is made that a mathematical result in terms of its usefulness to real life applications is both a function of the type of operation and the relative size of the input parameters. To illustrate the meaning of this assumption the concept of “preservation numbers” is introduced. Preservation numbers are useful to classify any numerical operation into three distinct categories—depending on the type of operation and the relative size of the numerical input.

Notes

Glossary

E

efficiency

Ef

fractional efficiency

Em

mean efficiency

Er

relative incremental efficiency

p

any number

Pi

preservation number

po

output value

pr

reference value Δpc accuracy

T

transparency

Z

any mathematical operator

References

  1. 1.
    A. Mayer et al., Fuzzy Logic (Addison-Wesley, 1993)Google Scholar
  2. 2.
    G.J. Klir, B. Yuan, Fuzzy Sets and Fuzzy Logic (1995)Google Scholar
  3. 3.
    J.C. Butcher, The Numerical Analysis of Ordinary Differential Equations: Runge-Kutta and General Linear Methods (1987)Google Scholar
  4. 4.
    E.W. Weisstein, Accuracy, from MathWorld – a Wolfram Web Resource, http://mathworld.com/Accuracy/html. Accessed 08 Aug 2019
  5. 5.
    S. Gililisco, N.H. Crowhurst, Mastering Technical Mathematics (McGraw-Hill Professional, 2007)Google Scholar
  6. 6.
    J.R. Taylor, An Introduction of Error Analysis: The Study of Uncertainties in Physical Measurements (Science Books, 1997), pp. 128–129Google Scholar
  7. 7.
    Clamson University, Physics Lab Tutorial, Accuracy & Precision (Department of Physics & Astronomy, South Carolina, 2000)Google Scholar
  8. 8.
    A. Schrijver, Combinatorical optimization (Springer, 2003)Google Scholar
  9. 9.
    I.K. Argyros, Advances in the Efficiency of Computational Methods and Applications (World Scientific Publishing, 2000)Google Scholar
  10. 10.
    I.N. Bronstein et al., Taschenbuch der Mathematik (Verlag Harri Deutsch, 2005)Google Scholar
  11. 11.
    L. Kreiser et al., Nicht-klassische Logik (Akademie-Verlag, Berlin, 1990)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Authors and Affiliations

  • Wolfgang W. Osterhage
    • 1
  1. 1.Wachtberg-NiederbachemGermany

Personalised recommendations