Magneto-Responsive Nanomaterials for Medical Therapy in Preclinical and Clinical Settings

  • Kheireddine El-BoubbouEmail author


Magneto-responsive nanomaterials proved to be extremely beneficial in a whole bunch of industrial and commercial applications, ranging from catalytic systems, magnetic storage, photonic and electronic devices to biological and biomedical theranostics. In particular, the preparation of magnetic nanoparticles (MNPs), mainly made of iron oxides, for both diagnostics (detection, imaging, biosensing) and therapeutics (hyperthermia, magnetic targeting, and drug delivery) has occupied a privileged position among other nanocomposites. Due to their nanoscale dimensions, unique physiochemical properties, intrinsic magnetic characteristics, biocompatibilities, and abilities to function on the biomolecular and cellular levels, MNPs have been thoroughly investigated in medicine as magnetic imaging contrast-enhancing probes, hyperthermia agents, and magnetic-guided drug delivery carriers for disease theranostics. By avoiding healthy tissues, enabling reduced toxicities, and controlling the delivery of chemotherapeutics to specific locations, MNPs has indeed great potentials to increase drug therapeutic efficacies and minimize their adverse side effects giving promise for next-generation clinical nanomedicines for cancer treatment.



The author would like to thank the continuous support by KSAU-HS, KAIMRC, and Ministry of National Guard Health Affairs. This work was funded by KAIMRC under grant RC13/204/R.

Financial and Competing Interests

The author declares no competing financial interests. No writing assistance was utilized in the production of this book chapter.


  1. 1.
    Mann S (2009) Self-assembly and transformation of hybrid nano-objects and nanostructures under equilibrium and non-equilibrium conditions. Nat Mater 8:781–792CrossRefGoogle Scholar
  2. 2.
    Fan H, Yang K, Boye DM, Sigmon T, Malloy KJ, Xu H et al (2004) Self-assembly of ordered, robust, three-dimensional gold nanocrystal/silica arrays. Science 304:567–571CrossRefGoogle Scholar
  3. 3.
    Wu W, Jiang CZ, Roy VAL (2016) Designed synthesis and surface engineering strategies of magnetic iron oxide nanoparticles for biomedical applications. Nanoscale 8:19421–19474CrossRefGoogle Scholar
  4. 4.
    Xie J, Lee S, Chen X (2010) Nanoparticle-based theranostic agents. Adv Drug Deliv Rev 62:1064–1079CrossRefGoogle Scholar
  5. 5.
    Gupta AK, Gupta M (2005) Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26:3995–4021CrossRefGoogle Scholar
  6. 6.
    Estelrich J, Escribano E, Queralt J, Busquets MA (2015) Iron oxide nanoparticles for magnetically-guided and magnetically-responsive drug delivery. Int J Mol Sci 16:8070–8101CrossRefGoogle Scholar
  7. 7.
    Huang J, Li Y, Orza A, Lu Q, Guo P, Wang L et al (2016) Magnetic nanoparticle facilitated drug delivery for Cancer therapy with targeted and image-guided approaches. Adv Funct Mater 26:3818–3836CrossRefGoogle Scholar
  8. 8.
    Duncan R (2003) The dawning era of polymer therapeutics. Nat Rev Drug Discov 2:347–360CrossRefGoogle Scholar
  9. 9.
    Duncan R (2011) Polymer therapeutics as nanomedicines: new perspectives. Curr Opin Biotechnol 22:492–501CrossRefGoogle Scholar
  10. 10.
    Anselmo AC, Mitragotri S (2016) Nanoparticles in the clinic. Bioeng Transl Med 1:10–29CrossRefGoogle Scholar
  11. 11.
    Kievit FM, Zhang M (2011) Surface engineering of iron oxide nanoparticles for targeted cancer therapy. Acc Chem Res 44:853–862CrossRefGoogle Scholar
  12. 12.
    Ling D, Lee N, Hyeon T (2015) Chemical synthesis and assembly of uniformly sized Iron oxide nanoparticles for medical applications. Acc Chem Res 48:1276–1285CrossRefGoogle Scholar
  13. 13.
    Jin R (2008) Super robust nanoparticles for biology and biomedicine. Angew Chem Int Ed 47:6750–6753CrossRefGoogle Scholar
  14. 14.
    Gao J, Gu H, Xu B (2009) Multifunctional magnetic nanoparticles: design, synthesis, and biomedical applications. Acc Chem Res 42:1097–1107CrossRefGoogle Scholar
  15. 15.
    El-Boubbou K, Zhu David C, Vasileiou C, Borhan B, Prosperi D, Li W et al (2010) Magnetic glyco-nanoparticles: a tool to detect, differentiate, and unlock the glyco-codes of cancer via magnetic resonance imaging. J Am Chem Soc 132:4490–4499CrossRefGoogle Scholar
  16. 16.
    El-Boubbou K, Huang X (2011) Glyco-nanomaterials: translating insights from the sugar-code to biomedical applications. Curr Med Chem 18:2060–2078CrossRefGoogle Scholar
  17. 17.
    Jun YW, Huh YM, Choi JS, Lee JH, Song HT, Kim S et al (2005) Nanoscale size effect of magnetic Nanocrystals and their utilization for Cancer diagnosis via magnetic resonance imaging. J Am Chem Soc 127:5732–5733CrossRefGoogle Scholar
  18. 18.
    Gao BJ, Li L, Ho PL, Mak GC, Gu H, Xu B (2006) Combining fluorescent probes and biofunctional magnetic nanoparticles for rapid detection of Bacteria in human blood. Adv Mater 18:3145–3148CrossRefGoogle Scholar
  19. 19.
    Yoo D, Jeong H, Noh S-H, Lee J-H, Cheon J (2013) Magnetically triggered dual functional nanoparticles for resistance-free apoptotic hyperthermia. Angew Chem Int Ed 52:13047–13051CrossRefGoogle Scholar
  20. 20.
    Hathaway HJ, Butler KS, Adolphi NL, Lovato DM, Belfon R, Fegan D et al (2011) Detection of breast cancer cells using targeted magnetic nanoparticles and ultra-sensitive magnetic field sensors. Breast Cancer Res 13:R108CrossRefGoogle Scholar
  21. 21.
    Sun C, Lee JSH, Zhang M (2008) Magnetic nanoparticles in MR imaging and drug delivery. Adv Drug Deliv Rev 60:1252–1265CrossRefGoogle Scholar
  22. 22.
    De Crozals G, Bonnet R, Farre C, Chaix C (2016) Nanoparticles with multiple properties for biomedical applications: a strategic guide. Nano Today 11:435–463CrossRefGoogle Scholar
  23. 23.
    Wahajuddin AS (2012) Superparamagnetic iron oxide nanoparticles: magnetic nanoplatforms as drug carriers. Int J Nanomedicine 7:3445CrossRefGoogle Scholar
  24. 24.
    Lee N, Hyeon T (2012) Designed synthesis of uniformly sized iron oxide nanoparticles for efficient magnetic resonance imaging contrast agents. Chem Soc Rev 41:2575–2589CrossRefGoogle Scholar
  25. 25.
    Peng E, Wang F, Xue JM (2015) Nanostructured magnetic nanocomposites as MRI contrast agents. J Mater Chem B 3:2241–2276CrossRefGoogle Scholar
  26. 26.
    Jun Y-w, Lee J-H, Cheon J (2008) Chemical design of nanoparticle probes for high-performance magnetic resonance imaging. Angew Chem Int Ed 47:5122–5135CrossRefGoogle Scholar
  27. 27.
    Shen Z, Wu A, Chen X (2016) Iron oxide nanoparticle based contrast agents for magnetic resonance imaging. Mol Pharm 14:1352, ASAPCrossRefGoogle Scholar
  28. 28.
    Xie J, Liu G, Eden HS, Ai H, Chen X (2011) Surface-engineered magnetic nanoparticle platforms for Cancer imaging and therapy. Acc Chem Res 44:883–892CrossRefGoogle Scholar
  29. 29.
    National Cancer Institute (2015) Types of treatment.
  30. 30.
    Jackson SE, Chester JD (2015) Personalised cancer medicine. Int J Cancer 137:262–266CrossRefGoogle Scholar
  31. 31.
    Schork NJ (2015) Personalized medicine: time for one-person trials. Nature 520:609–611CrossRefGoogle Scholar
  32. 32.
    Sengupta S (2017) Cancer Nanomedicine: lessons for Immuno-oncology. Trends Cancer 3:551–560CrossRefGoogle Scholar
  33. 33.
    Barenholz Y (2012) Doxil® – the first FDA-approved nano-drug: lessons learned. J Control Release 160:117–134CrossRefGoogle Scholar
  34. 34.
    Miele E, Spinelli GP, Miele E, Tomao F, Tomao S (2009) Albumin-bound formulation of paclitaxel (Abraxane(®) ABI-007) in the treatment of breast cancer. Int J Nanomedicine 4:99–105Google Scholar
  35. 35.
    Harisinghani MG, Saksena M, Ross RW, Tabatabaei S, Dahl D, McDougal S et al (2005) A pilot study of lymphotrophic nanoparticle-enhanced magnetic resonance imaging technique in early stage testicular cancer: a new method for noninvasive lymph node evaluation. Urology 66:1066–1071CrossRefGoogle Scholar
  36. 36.
    Min Y, Caster JM, Eblan MJ, Wang AZ (2015) Clinical translation of nanomedicine. Chem Rev 115:11147–11190CrossRefGoogle Scholar
  37. 37.
    Freeman MW, Arrot A, Watson HHL (1960) Magnetism in medicine. J Appl Phys 31:S404CrossRefGoogle Scholar
  38. 38.
    Widder KJ, Morris RM, Poore GA, Howard DP, Senyei AE (1983) Selective targeting of magnetic albumin microspheres containing low-dose doxorubicin: total remission in Yoshida sarcoma-bearing rats. Eur J Cancer Clin Oncol 19:135–139CrossRefGoogle Scholar
  39. 39.
    Alexiou C, Arnold W, Klein RJ, Parak FG, Hulin P, Bergemann C et al (2000) Locoregional cancer treatment with magnetic drug targeting. Cancer Res 60:6641–6648Google Scholar
  40. 40.
    Alexiou C, Schmid RJ, Jurgons R, Kremer M, Wanner G, Bergemann C et al (2006) Targeting cancer cells: magnetic nanoparticles as drug carriers. Eur Biophys J 35:446–450CrossRefGoogle Scholar
  41. 41.
    Goodwin SC, Bittner CA, Peterson CL, Wong G (2001) Single-dose toxicity study of hepatic intra-arterial infusion of doxorubicin coupled to a novel magnetically targeted drug carrier. Toxicol Sci 60:177–183CrossRefGoogle Scholar
  42. 42.
    Lübbe AS, Bergemann C, Huhnt W, Fricke T, Riess H, Brock JW et al (1996) Preclinical experiences with magnetic drug targeting: tolerance and efficacy. Cancer Res 56:4694–4701Google Scholar
  43. 43.
    Koda J, Venook A, Walser E (2002) A multicenter, phase I/II trial of hepatic intra-arterial delivery of doxorubicin hydrochloride adsorbed to magnetic targeted carriers in patients with hepatocellular carcinoma. Eur J Cancer 38:S18Google Scholar
  44. 44.
    Wilson MW, Kerlan RK, Fidelman NA, Venook AP, LaBerge JM, Koda J et al (2004) Hepatocellular carcinoma: regional therapy with a magnetic targeted carrier bound to doxorubicin in a dual MR imaging/ conventional angiography suite – initial experience with four patients. Radiology 230:287–293CrossRefGoogle Scholar
  45. 45.
    Lübbe AS, Bergemann C, Riess H, Schriever F, Reichardt P, Possinger K et al (1996) Clinical experiences with magnetic drug targeting: a phase I study with 4′-Epidoxorubicin in 14 patients with advanced solid tumors. Cancer Res 56:4686–4693Google Scholar
  46. 46.
    Krukemeyer MG, Krenn V, Jakobs M, Wagner W (2012) Magnetic drug targeting in a rhabdomyosarcoma rat model using magnetite-dextran composite nanoparticle-bound mitoxantrone and 0.6 tesla extracorporeal magnets − sarcoma treatment in progress. J Drug Target 20:185–193CrossRefGoogle Scholar
  47. 47.
    Kumar M, Yigit M, Dai G, Moore A, Medarova Z (2010) Image-guided breast tumor therapy using a small interfering RNA nanodrug. Cancer Res 70:7553–7561CrossRefGoogle Scholar
  48. 48.
    Krukemeyer MG, Krenn V, Jakobs M, Wagner W (2012) Mitoxantrone-iron oxide biodistribution in blood, tumor, spleen, and liver-magnetic nanoparticles in cancer treatment. J Surg Res 175:35–43CrossRefGoogle Scholar
  49. 49.
    Li Z, Dong K, Huang S, Ju E, Liu Z, Yin M et al (2014) A smart Nanoassembly for multistage targeted drug delivery and magnetic resonance imaging. Adv Funct Mater 24:3612–3620CrossRefGoogle Scholar
  50. 50.
    Muthana M, Kennerley AJ, Hughes R, Fagnano E, Richardson J, Paul M et al (2015) Directing cell therapy to anatomic target sites in vivo with magnetic resonance targeting. Nat Commun 6:8009CrossRefGoogle Scholar
  51. 51.
    Bañobre-López M, Teijeiro A, Rivas J (2013) Magnetic nanoparticle-based hyperthermia for cancer treatment. Rep Pract Oncol Radiother 18:397–400CrossRefGoogle Scholar
  52. 52.
    Kumar CSSR, Mohammad F (2011) Magnetic nanomaterials for hyperthermia-based therapy and controlled drug delivery. Adv Drug Deliv Rev 63:789–808CrossRefGoogle Scholar
  53. 53.
    Derfus AM, von Maltzahn G, Harris TJ, Duza T, Vecchio KS, Ruoslahti E et al (2007) Remotely triggered release from magnetic nanoparticles. Adv Mater 19:3932–3936CrossRefGoogle Scholar
  54. 54.
    Young JH, Wang M, Brezovich IA (1980) Frequency/depth-penetration considerations in hyperthermia by magnetically induced currents. Electron Lett 16:358–359CrossRefGoogle Scholar
  55. 55.
    Kennedy JE (2005) High-intensity focused ultrasound in the treatment of solid tumours. Nat Rev Cancer 5:321CrossRefGoogle Scholar
  56. 56.
    Ziegelberger G (2006) ICNIRP statement on far infrared radiation exposure. Health Phys 91:630–645CrossRefGoogle Scholar
  57. 57.
    Salunkhe AB, Khot VM, Pawar SH (2014) Magnetic hyperthermia with magnetic nanoparticles: a status review. Curr Top Med Chem 14:572–594CrossRefGoogle Scholar
  58. 58.
    Jeon MJ, Ahn C-H, Kim H, Chung IJ, Jung S, Kim Y-H et al (2014) The intratumoral administration of ferucarbotran conjugated with doxorubicin improved therapeutic effect by magnetic hyperthermia combined with pharmacotherapy in a hepatocellular carcinoma model. J Exp Clin Cancer Res 33:57CrossRefGoogle Scholar
  59. 59.
    Giustini AJ, Petryk AA, Cassim SM, Tate JA, Baker I, Hoopes PJ (2010) Magnetic nanoparticle hyperthermia in cancer treatment. Nano Life 1:10CrossRefGoogle Scholar
  60. 60.
    Revia RA, Zhang M (2016) Magnetite nanoparticles for cancer diagnosis, treatment, and treatment monitoring: recent advances. Mater Today 19:157–168CrossRefGoogle Scholar
  61. 61.
    Jordan A, Scholz R, Wust P, Fähling H, Krause J, Wlodarczyk W et al (1997) Effects of magnetic fluid hyperthermia (MFH) on C3H mammary carcinoma in vivo. Int J Hyperth 13:587–605CrossRefGoogle Scholar
  62. 62.
    Jordan A, Scholz R, Wust P, Schirra H, Schiestel T, Schmidt H et al (1999) Endocytosis of dextran and silan-coated magnetite nanoparticles and the effect of intracellular hyperthermia on human mammary carcinoma cells in vitro. J Magn Magn Mater 194:185–196CrossRefGoogle Scholar
  63. 63.
    Maier-Hauff K, Ulrich F, Nestler D, Niehoff H, Wust P, Thiesen B et al (2011) Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme. J Neuro-Oncol 103:317–324CrossRefGoogle Scholar
  64. 64.
    Johannsen M, Gneveckow U, Taymoorian K, Thiesen B, Waldöfner N, Scholz R et al (2007) Morbidity and quality of life during thermotherapy using magnetic nanoparticles in locally recurrent prostate cancer: results of a prospective phase I trial. Int J Hyperth 23:315–323CrossRefGoogle Scholar
  65. 65.
    Johannsen M, Thiesen B, Wust P, Jordan A (2010) Magnetic nanoparticle hyperthermia for prostate cancer. Int J Hyperth 26:790–795CrossRefGoogle Scholar
  66. 66.
    Sanson C, Diou O, Thévenot J, Ibarboure E, Soum A, Brûlet A et al (2011) Doxorubicin loaded magnetic polymersomes: theranostic nanocarriers for MR imaging and magneto-chemotherapy. ACS Nano 5:1122–1140CrossRefGoogle Scholar
  67. 67.
    Chang P, Purushotham S, Rumpel H, Kee I, Ng R, Chow P et al (2014) Novel dual magnetic drug targeting and hyperthermia therapy in hepatocellular carcinoma with thermosensitive polymer-coated nanoparticles. J Gastrointest Dig Syst 4:198Google Scholar
  68. 68.
    Gewirtz DA, Bristol ML, Yalowich JC (2010) Toxicity issues in Cancer drug development. Curr Opin Investig Drugs 11:612–614Google Scholar
  69. 69.
    Li S-D, Huang L (2008) Pharmacokinetics and biodistribution of nanoparticles. Mol Pharm 5:496–504CrossRefGoogle Scholar
  70. 70.
    Maeda H, Wu J, Sawa T, Matsumura Y, Hori K (2000) Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Control Release 65:271–284CrossRefGoogle Scholar
  71. 71.
    Hobbs SK (1998) Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment. Proc Natl Acad Sci USA 95:4607–4612CrossRefGoogle Scholar
  72. 72.
    Adiseshaiah PP, Hall JB, McNeil SE (2009) Nanomaterial standards for efficacy and toxicity assessment. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2:99–112CrossRefGoogle Scholar
  73. 73.
    Cortajarena AL, Ortega D, Ocampo SM, Gonzalezgarcía A, Couleaud P, Miranda R et al (2014) Engineering iron oxide nanoparticles for clinical settings. Nanobiomedicine 1:58841CrossRefGoogle Scholar
  74. 74.
    Kaminski MS, Tuck M, Estes J, Kolstad A, Ross CW, Zasadny K et al (2005) 131I-Tositumomab therapy as initial treatment for follicular lymphoma. N Engl J Med 352:441–449CrossRefGoogle Scholar
  75. 75.
    Torchilin VP, Lukyanov AN, Gao Z, Papahadjopoulos-Sternberg B (2003) Immunomicelles: targeted pharmaceutical carriers for poorly soluble drugs. Proc Natl Acad Sci USA 100:6039CrossRefGoogle Scholar
  76. 76.
    Cheever MA, Allison JP, Ferris AS, Finn OJ, Hastings BM, Hecht TT et al (2009) The prioritization of Cancer antigens: a National Cancer Institute pilot project for the acceleration of translational research. Clin Cancer Res 15:5323–5337CrossRefGoogle Scholar
  77. 77.
    Ross JS, Slodkowska EA, Symmans WF, Pusztai L, Ravdin PM, Hortobagyi GN (2009) The HER-2 receptor and breast cancer: ten years of targeted anti-HER-2 therapy and personalized medicine. Oncologist 14:320–368CrossRefGoogle Scholar
  78. 78.
    Sugahara KN (2010) Coadministration of a tumor-penetrating peptide enhances the efficacy of cancer drugs. Science 328:1031–1035CrossRefGoogle Scholar
  79. 79.
    Yang W, Luo D, Wang S, Wang R, Chen R, Liu Y et al (2008) TMTP1, a novel tumor-homing peptide specifically targeting metastasis. Clin Cancer Res 14:5494CrossRefGoogle Scholar
  80. 80.
    Zhang C, Jugold M, Woenne EC, Lammers T, Morgenstern B, Mueller MM et al (2007) Specific targeting of tumor angiogenesis by RGD-conjugated ultrasmall superparamagnetic iron oxide particles using a clinical 1.5-T magnetic resonance scanner. Cancer Res 67:1555–1562CrossRefGoogle Scholar
  81. 81.
    Farokhzad OC, Jon S, Khademhosseini A, Tran T-NT, LaVan DA, Langer R (2004) Nanoparticle-Aptamer Bioconjugates. Cancer Res 64:7668CrossRefGoogle Scholar
  82. 82.
    Wang Z, Zhou C, Xia J, Via B, Xia Y, Zhang F et al (2013) Fabrication and characterization of a triple functionalization of graphene oxide with Fe3O4, folic acid and doxorubicin as dual-targeted drug nanocarrier. Colloids Surf B: Biointerfaces 106:60–65CrossRefGoogle Scholar
  83. 83.
    Lu AH, Salabas EL, Schuth F (2007) Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew Chem Int Ed 46:1222–1244CrossRefGoogle Scholar
  84. 84.
    Laurent S, Forge D, Port M, Roch A, Robic C, Vander Elst L et al (2008) Magnetic iron oxide nanoparticles: synthesis, stabilization, Vectorization, physicochemical characterizations, and biological applications. Chem Rev 108:2064–2110CrossRefGoogle Scholar
  85. 85.
    Sun J, Zhou S, Hou P, Yang Y, Weng J, Li X et al (2007) Synthesis and characterization of biocompatible Fe3O4 nanoparticles. J Biomed Mater Res A 80:333–341CrossRefGoogle Scholar
  86. 86.
    Qiao R, Yang C, Gao M (2009) Superparamagnetic iron oxide nanoparticles: from preparations to in vivo MRI applications. J Mater Chem 19:6274–6293CrossRefGoogle Scholar
  87. 87.
    Li J, He Y, Sun W, Luo Y, Cai H, Pan Y et al (2014) Hyaluronic acid-modified hydrothermally synthesized iron oxide nanoparticles for targeted tumor MR imaging. Biomaterials 35:3666–3677CrossRefGoogle Scholar
  88. 88.
    Aubery C, Solans C, Prevost S, Gradzielski M, Sanchez-Dominguez M (2013) Microemulsions as reaction media for the synthesis of mixed oxide nanoparticles: relationships between microemulsion structure, reactivity, and nanoparticle characteristics. Langmuir 29:1779–1789CrossRefGoogle Scholar
  89. 89.
    El-Boubbou K, Zhu DC, Vasileiou C, Borhan B, Prosperi D, Li W et al (2010) Magnetic glyco-nanoparticles: a tool to detect, differentiate, and unlock the glyco-codes of cancer via magnetic resonance imaging. J Am Chem Soc 132:4490–4499CrossRefGoogle Scholar
  90. 90.
    El-Boubbou K, El-Dakdouki MH, Kamat M, Huang R, Abela GS, Kiupel M et al (2014) CD44 targeting magnetic glyconanoparticles for atherosclerotic plaque imaging. Pharm Res 31:1426–1437CrossRefGoogle Scholar
  91. 91.
    Calero M, Gutiérrez L, Salas G, Luengo Y, Lázaro A, Acedo P et al (2014) Efficient and safe internalization of magnetic iron oxide nanoparticles: two fundamental requirements for biomedical applications. Nanomedicine 10:733–743CrossRefGoogle Scholar
  92. 92.
    Massart R (1981) Preparation of aqueous magnetic liquids in alkaline and acidic media. IEEE Trans Magn 17:1247–1248CrossRefGoogle Scholar
  93. 93.
    Cheng FY, Su CH, Yang YS, Yeh CS, Tsai CY, Wu CL et al (2005) Characterization of aqueous dispersions of Fe3O4 nanoparticles and their biomedical applications. Biomaterials 26:729–738CrossRefGoogle Scholar
  94. 94.
    Itoh H, Sugimoto T (2003) Systematic control of size, shape, structure, and magnetic properties of uniform magnetite and maghemite particles. J Colloid Interface Sci 265:283–295CrossRefGoogle Scholar
  95. 95.
    Weissleder R, Elizondo G, Wittenberg J, Rabito CA, Bengele HH, Josephson L (1990) Ultrasmall superparamagnetic iron oxide: characterization of a new class of contrast agents for MR imaging. Radiology 175:489–493CrossRefGoogle Scholar
  96. 96.
    Tassa C, Shaw SY, Weissleder R (2011) Dextran-coated iron oxide nanoparticles: a versatile platform for targeted molecular imaging, molecular diagnostics, and therapy. Acc Chem Res 44:842–852CrossRefGoogle Scholar
  97. 97.
    Hahn PF, Stark DD, Lewis JM, Saini S, Elizondo G, Weissleder R et al (1990) First clinical trial of a new superparamagnetic iron oxide for use as an oral gastrointestinal contrast agent in MR imaging. Radiology 175:695–700CrossRefGoogle Scholar
  98. 98.
    Wang YX, Hussain SM, Krestin GP (2001) Superparamagnetic iron oxide contrast agents: physicochemical characteristics and applications in MR imaging. Eur Radiol 11:2319–2331CrossRefGoogle Scholar
  99. 99.
    Smith EA, Chen W (2008) How to prevent the loss of surface functionality derived from aminosilanes. Langmuir 24:12405–12409CrossRefGoogle Scholar
  100. 100.
    Yamaura M, Camilo RL, Sampaio LC, Macêdo MA, Nakamura M, Toma HE (2004) Preparation and characterization of (3-aminopropyl)triethoxysilane-coated magnetite nanoparticles. J Magn Magn Mater 279:210–217CrossRefGoogle Scholar
  101. 101.
    Bruce IJ, Sen T (2005) Surface modification of magnetic nanoparticles with alkoxysilanes and their application in magnetic bioseparations. Langmuir 21:7029–7035CrossRefGoogle Scholar
  102. 102.
    Mahdavi M, Ahmad M, Haron M, Namvar F, Nadi B, Rahman M et al (2013) Synthesis, surface modification and characterisation of biocompatible magnetic iron oxide nanoparticles for biomedical applications. Molecules 18:7533–7548CrossRefGoogle Scholar
  103. 103.
    Yee C, Kataby G, Ulman A, Prozorov T, White H, King A et al (1999) Self-assembled monolayers of alkanesulfonic and -phosphonic acids on amorphous iron oxide nanoparticles. Langmuir 15:7111–7115CrossRefGoogle Scholar
  104. 104.
    Sahoo Y, Pizem H, Fried T, Golodnitsky D, Burstein L, Sukenik CN et al (2001) Alkyl phosphonate/phosphate coating on magnetite nanoparticles: a comparison with fatty acids. Langmuir 17:7907–7911CrossRefGoogle Scholar
  105. 105.
    Basuki JS, Jacquemin A, Esser L, Li Y, Boyer C, Davis TP (2014) A block copolymer-stabilized co-precipitation approach to magnetic iron oxide nanoparticles for potential use as MRI contrast agents. Polym Chem 5:2611–2620CrossRefGoogle Scholar
  106. 106.
    Lu X, Niu M, Qiao R, Gao M (2008) Superdispersible PVP-coated Fe3O4 Nanocrystals prepared by a “One-Pot” reaction. J Phys Chem B 112:14390–14394CrossRefGoogle Scholar
  107. 107.
    Lee H-Y, Lee S-H, Xu C, Xie J, Lee J-H, Wu B et al (2008) Synthesis and characterization of PVP-coated large core iron oxide nanoparticles as an MRI contrast agent. Nanotechnology 19:165101–165106CrossRefGoogle Scholar
  108. 108.
    Park J, An K, Hwang Y, Park J-G, Noh H-J, Kim J-Y et al (2004) Ultra-large-scale syntheses of monodisperse nanocrystals. Nat Mater 3:891–895CrossRefGoogle Scholar
  109. 109.
    Park J, Lee E, Hwang N-M, Kang M, Kim SC, Hwang Y et al (2005) One-nanometer-scale size-controlled synthesis of monodisperse magnetic Iron oxide nanoparticles. Angew Chem Int Ed 44:2872–2877CrossRefGoogle Scholar
  110. 110.
    Hyeon T, Lee SS, Park J, Chung Y, Na HB (2001) Synthesis of highly crystalline and Monodisperse Maghemite Nanocrystallites without a size-selection process. J Am Chem Soc 123:12798–12801CrossRefGoogle Scholar
  111. 111.
    Kim BH, Lee N, Kim H, An K, Park YI, Choi Y et al (2011) Large-scale synthesis of uniform and extremely small-sized iron oxide nanoparticles for high-resolution T1 magnetic resonance imaging contrast agents. J Am Chem Soc 133:12624–12631CrossRefGoogle Scholar
  112. 112.
    Sun S, Zeng H (2002) Size-controlled synthesis of magnetite nanoparticles. J Am Chem Soc 124:8204–8205CrossRefGoogle Scholar
  113. 113.
    Sun S, Murray CB, Weller D, Folks L, Moser A (2000) Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science 287:1989–1992CrossRefGoogle Scholar
  114. 114.
    Sun S, Zeng H, Robinson DB, Raoux S, Rice PM, Wang SX et al (2004) Monodisperse MFe2O4 (M = Fe, Co, Mn) nanoparticles. J Am Chem Soc 126:273–279CrossRefGoogle Scholar
  115. 115.
    Dong A, Ye X, Chen J, Kang Y, Gordon T, Kikkawa JM et al (2011) A generalized ligand-exchange strategy enabling sequential surface functionalization of colloidal nanocrystals. J Am Chem Soc 133:998–1006CrossRefGoogle Scholar
  116. 116.
    Zhang T, Ge J, Hu Y, Yin Y (2007) A general approach for transferring hydrophobic nanocrystals into water. Nano Lett 7:3203–3207CrossRefGoogle Scholar
  117. 117.
    El-Dakdouki MH, El-Boubbou K, Zhu DC, Huang X (2011) A simple method for the synthesis of hyaluronic acid coated magnetic nanoparticles for highly efficient cell labelling and in vivo imaging. RSC Adv 1:1449–1452CrossRefGoogle Scholar
  118. 118.
    De Palma R, Peeters S, Van Bael MJ, Van den Rul H, Bonroy K, Laureyn W et al (2007) Silane ligand exchange to make hydrophobic superparamagnetic nanoparticles water-dispersible. Chem Mater 19:1821–1831CrossRefGoogle Scholar
  119. 119.
    Kwon SG, Hyeon T (2011) Formation mechanisms of uniform nanocrystals via hot-injection and heat-up methods. Small 7:2685–2702CrossRefGoogle Scholar
  120. 120.
    Park J, Joo J, Kwon SG, Jang Y, Hyeon T (2007) Synthesis of monodisperse spherical nanocrystals. Angew Chem Int Ed 46:4630–4660CrossRefGoogle Scholar
  121. 121.
    Cheon J, Kang N-J, Lee S-M, Lee J-H, Yoon J-H, Oh SJ (2004) Shape evolution of single-crystalline iron oxide nanocrystals. J Am Chem Soc 126:1950–1951CrossRefGoogle Scholar
  122. 122.
    Jana NR, Chen Y, Peng X (2004) Size- and shape-controlled magnetic (Cr, Mn, Fe, co, Ni) oxide nanocrystals via a simple and general approach. Chem Mater 16:3931–3935CrossRefGoogle Scholar
  123. 123.
    Lee Y, Lee J, Bae CJ, Park J-G, Noh H-J, Park J-H et al (2005) Large-scale synthesis of uniform and crystalline magnetite nanoparticles using reverse micelles as nanoreactors under reflux conditions. Adv Funct Mater 15:503–509CrossRefGoogle Scholar
  124. 124.
    Li Z, Chen H, Bao H, Gao M (2004) One-pot reaction to synthesize water-soluble magnetite nanocrystals. Chem Mater 16:1391–1393CrossRefGoogle Scholar
  125. 125.
    Li Z, Sun Q, Gao M (2005) Preparation of water-soluble magnetite nanocrystals from hydrated ferric salts in 2-pyrrolidone: mechanism leading to Fe3O4. Angew Chem Int Ed 44:123–126CrossRefGoogle Scholar
  126. 126.
    Ge J, Hu Y, Biasini M, Beyermann WP, Yin Y (2007) Superparamagnetic magnetite colloidal nanocrystal clusters. Angew Chem Int Ed 46:4342–4345CrossRefGoogle Scholar
  127. 127.
    Ge J, Hu Y, Biasini M, Dong C, Guo J, Beyermann WP et al (2007) One-step synthesis of highly water-soluble magnetite colloidal nanocrystals. Chem Eur J 13:7153–7161CrossRefGoogle Scholar
  128. 128.
    El-Boubbou K, Al-Kaysi RO, Al-Muhanna MK, Bahhari HM, Al-Romaeh AI, Darwish N et al (2015) Ultra-small fatty acid-stabilized magnetite nanocolloids synthesized by in situ hydrolytic precipitation. J Nanomater 2015:620672. 11 pagesCrossRefGoogle Scholar
  129. 129.
    El-Boubbou K (2017) Usacid-stabilized iron-based metal oxide colloidal nanoparticles, and methods thereof. US Patent 20170110228 A1Google Scholar
  130. 130.
    Jaffer Farouc A, Nahrendorf M, Sosnovik D, Kelly Kimberly A, Aikawa E, Weissleder R (2006) Cellular imaging of inflammation in atherosclerosis using magnetofluorescent nanomaterials. Mol Imaging 5:85–92Google Scholar
  131. 131.
    Thorek Daniel LJ, Chen Antony K, Czupryna J, Tsourkas A (2006) Superparamagnetic iron oxide nanoparticle probes for molecular imaging. Ann Biomed Eng 34:23–38CrossRefGoogle Scholar
  132. 132.
    Oksendal AN, Bach-Gansmo T, Jacobsen TF, Eide H, Andrew E (1993) Oral magnetic particles: results from clinical phase II trials in 216 patients. Acta Radiol 34:187–193CrossRefGoogle Scholar
  133. 133.
    Reimer P, Balzer T (2003) Ferucarbotran (Resovist): a new clinically approved RES-specific contrast agent for contrast-enhanced MRI of the liver: properties, clinical development, and applications. Eur Radiol 13:1266Google Scholar
  134. 134.
    Michel SCA, Keller TM, Fröhlich JM, Fink D, Caduff R, Seifert B et al (2002) Preoperative breast cancer staging: MR imaging of the axilla with ultrasmall superparamagnetic iron oxide enhancement. Radiology 225:527–536CrossRefGoogle Scholar
  135. 135.
    Trivedi RA, Mallawarachi C, U-King-Im J-M, Graves MJ, Horsley J, Goddard MJ et al (2006) Identifying inflamed carotid plaques using in vivo USPIO-enhanced MR imaging to label plaque macrophages. Arterioscler Thromb Vasc Biol 26:1601CrossRefGoogle Scholar
  136. 136.
    Bachmann R, Conrad R, Kreft B, Luzar O, Block W, Flacke S et al (2002) Evaluation of a new ultrasmall superparamagnetic iron oxide contrast agent Clariscan®, (NC100150) for MRI of renal perfusion: experimental study in an animal model. J Magn Reson Imaging 16:190–195CrossRefGoogle Scholar
  137. 137.
    Jung CW, Jacobs P (1995) Physical and chemical properties of superparamagnetic iron oxide MR contrast agents: ferumoxides, ferumoxtran, ferumoxsil. Magn Reson Imaging 13:661–674CrossRefGoogle Scholar
  138. 138.
    Jung CW (1995) Surface properties of superparamagnetic iron oxide MR contrast agents: ferumoxides, ferumoxtran, ferumoxsil. Magn Reson Imaging 13:675–691CrossRefGoogle Scholar
  139. 139.
    Wang Y-XJ (2011) Superparamagnetic iron oxide based MRI contrast agents: current status of clinical application. Quant Imaging Med Surg 1:35–40Google Scholar
  140. 140.
    Thill M, Kurylcio A, Welter R, van Haasteren V, Grosse B, Berclaz G et al (2014) The central-European SentiMag study: sentinel lymph node biopsy with superparamagnetic iron oxide (SPIO) vs. radioisotope. Breast 23:175–179CrossRefGoogle Scholar
  141. 141.
    Winter A, Woenkhaus J, Wawroschek F (2014) A novel method for intraoperative sentinel lymph node detection in prostate cancer patients using superparamagnetic iron oxide nanoparticles and a handheld magnetometer: the initial clinical experience. Ann Surg Oncol 21:4390–4396CrossRefGoogle Scholar
  142. 142.
    Wáng YXJ, Idée J-M (2017) A comprehensive literatures update of clinical researches of superparamagnetic resonance iron oxide nanoparticles for magnetic resonance imaging. Quant Imaging Med Surg 7:88–122CrossRefGoogle Scholar
  143. 143.
    Lee J-H, Huh Y-M, Jun Y-w, Seo J-w, Jang J-t, Song H-T et al (2007) Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging. Nat Med 13:95–99CrossRefGoogle Scholar
  144. 144.
    Kim J, Piao Y, Hyeon T (2009) Multifunctional nanostructured materials for multimodal imaging, and simultaneous imaging and therapy. Chem Soc Rev 38:372–390CrossRefGoogle Scholar
  145. 145.
    Jarzyna PA, Gianella A, Skajaa T, Knudsen G, Deddens LH, Cormode DP et al (2010) Multifunctional imaging nanoprobes. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2:138–150CrossRefGoogle Scholar
  146. 146.
    Lewin M, Carlesso N, Tung C-H, Tang X-W, Cory D, Scadden DT et al (2000) Tat peptide-derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells. Nat Biotechnol 18:410–414CrossRefGoogle Scholar
  147. 147.
    Lee H-Y, Li Z, Chen K, Hsu AR, Xu C, Xie J et al (2008) PET/MRI dual-modality tumor imaging using arginine-glycine-aspartic (RGD)–conjugated radiolabeled Iron oxide nanoparticles. J Nucl Med 49:1371CrossRefGoogle Scholar
  148. 148.
    Josephson L, Kircher MF, Mahmood U, Tang Y, Weissleder R (2002) Near-infrared fluorescent nanoparticles as combined MR/optical imaging probes. Bioconjug Chem 13:554–560CrossRefGoogle Scholar
  149. 149.
    Pittet MJ, Swirski FK, Reynolds F, Josephson L, Weissleder R (2006) Labeling of immune cells for in vivo imaging using magnetofluorescent nanoparticles. Nat Protoc 1:73–79CrossRefGoogle Scholar
  150. 150.
    Moore A, Medarova Z, Potthast A, Dai G (2004) In vivo targeting of underglycosylated MUC-1 tumor antigen using a multimodal imaging probe. Cancer Res 64:1821–1827CrossRefGoogle Scholar
  151. 151.
    Nahrendorf M, Zhang H, Hembrador S, Panizzi P, Sosnovik DE, Aikawa E et al (2008) Nanoparticle PET-CT imaging of macrophages in inflammatory atherosclerosis. Circulation 117:379–387CrossRefGoogle Scholar
  152. 152.
    Nahrendorf M, Keliher E, Marinelli B, Waterman P, Feruglio PF, Fexon L et al (2010) Hybrid PET-optical imaging using targeted probes. Proc Natl Acad Sci USA 107:7910–7915CrossRefGoogle Scholar
  153. 153.
    Kirschbaum K, Sonner JK, Zeller MW, Deumelandt K, Bode J, Sharma R et al (2016) In vivo nanoparticle imaging of innate immune cells can serve as a marker of disease severity in a model of multiple sclerosis. Proc Natl Acad Sci USA 113:13227–13232CrossRefGoogle Scholar
  154. 154.
    Raymond KN, Pierre VC (2005) Next generation, high Relaxivity gadolinium MRI agents. Bioconjug Chem 16:3–8CrossRefGoogle Scholar
  155. 155.
    Datta A, Raymond KN (2009) Gd-hydroxypyridinone (HOPO)-based high-relaxivity magnetic resonance imaging (MRI) contrast agents. Acc Chem Res 42:938–947CrossRefGoogle Scholar
  156. 156.
    Yang H, Zhuang Y, Sun Y, Dai A, Shi X, Wu D et al (2011) Targeted dual-contrast T1- and T2-weighted magnetic resonance imaging of tumors using multifunctional gadolinium-labeled superparamagnetic iron oxide nanoparticles. Biomaterials 32:4584–4593CrossRefGoogle Scholar
  157. 157.
    Bae KH, Kim YB, Lee Y, Hwang J, Park H, Park TG (2010) Bioinspired synthesis and characterization of gadolinium-labeled magnetite nanoparticles for dual contrast T1- and T2-weighted magnetic resonance imaging. Bioconjug Chem 21:505–512CrossRefGoogle Scholar
  158. 158.
    Amstad E, Gillich T, Bilecka I, Textor M, Reimhult E (2009) Ultrastable iron oxide nanoparticle colloidal suspensions using dispersants with catechol-derived anchor groups. Nano Lett 9:4042–4048CrossRefGoogle Scholar
  159. 159.
    Shen J, Li Y, Zhu Y, Yang X, Yao X, Li J et al (2015) Multifunctional gadolinium-labeled silica-coated Fe3O4 and CuInS2 nanoparticles as a platform for in vivo tri-modality magnetic resonance and fluorescence imaging. J Mater Chem B 3:2873–2882CrossRefGoogle Scholar
  160. 160.
    Savolainen H, Volpe A, Phinikaridou A, Douek M, Fruhwirth GO, de Rosales RTM (2018) [68Ga]Ga-sienna+ PET-MRI as a preoperative imaging tool for sentinel lymph node biopsy: synthesis and preclinical evaluation in a metastatic breast Cancer model. In: 13th European molecular imaging meeting – EMIMGoogle Scholar
  161. 161.
    Jin Y, Jia C, Huang S-W, O’Donnell M, Gao X (2010) Multifunctional nanoparticles as coupled contrast agents. Nat Commun 1:41CrossRefGoogle Scholar
  162. 162.
    Pissuwan D, Valenzuela SM, Cortie MB (2006) Therapeutic possibilities of plasmonically heated gold nanoparticles. Trends Biotechnol 24:62–67CrossRefGoogle Scholar
  163. 163.
    Hoskins C, Min Y, Gueorguieva M, McDougall C, Volovick A, Prentice P et al (2012) Hybrid gold-iron oxide nanoparticles as a multifunctional platform for biomedical application. J Nanobiotechnol 10:27CrossRefGoogle Scholar
  164. 164.
    Thomas R, Park I-K, Jeong YY (2013) Magnetic Iron oxide nanoparticles for multimodal imaging and therapy of Cancer. Int J Mol Sci 14:15910–15930CrossRefGoogle Scholar
  165. 165.
    Giljohann DA, Seferos DS, Daniel WL, Massich MD, Patel PC, Mirkin CA (2010) Gold nanoparticles for biology and medicine. Angew Chem Int Ed 49:3280–3294CrossRefGoogle Scholar
  166. 166.
    Lee N, Yoo D, Ling D, Cho MH, Hyeon T, Cheon J (2015) Iron oxide based nanoparticles for multimodal imaging and Magnetoresponsive therapy. Chem Rev 115:10637–10689CrossRefGoogle Scholar
  167. 167.
    Reguera J, Jimenez de Aberasturi D, Henriksen-Lacey M, Langer J, Espinosa A, Szczupak B et al (2017) Janus plasmonic-magnetic gold-iron oxide nanoparticles as contrast agents for multimodal imaging. Nanoscale 9:9467–9480CrossRefGoogle Scholar
  168. 168.
    Mahmoudi M, Shokrgozar MA (2012) Multifunctional stable fluorescent magnetic nanoparticles. Chem Commun 48:3957–3959CrossRefGoogle Scholar
  169. 169.
    Kairdolf BA, Smith AM, Stokes TH, Wang MD, Young AN, Nie S (2013) Semiconductor quantum dots for bioimaging and biodiagnostic applications. Annu Rev Anal Chem 6:143–162CrossRefGoogle Scholar
  170. 170.
    Chen O, Riedemann L, Etoc F, Herrmann H, Coppey M, Barch M et al (2014) Magneto-fluorescent core-shell supernanoparticles. Nat Commun 5:5093CrossRefGoogle Scholar
  171. 171.
    Lee EA, Yim H, Heo J, Kim H, Jung G, Hwang NS (2014) Application of magnetic nanoparticle for controlled tissue assembly and tissue engineering. Arch Pharm Res 37:120–128CrossRefGoogle Scholar
  172. 172.
    Corchero JL, Villaverde A (2009) Biomedical applications of distally controlled magnetic nanoparticles. Trends Biotechnol 27:468–476CrossRefGoogle Scholar
  173. 173.
    Sensenig R, Sapir Y, MacDonald C, Cohen S, Polyak B (2012) Magnetic nanoparticle-based approaches to locally target therapy and enhance tissue regeneration in vivo. Nanomedicine (Lond) 7:1425–1442CrossRefGoogle Scholar
  174. 174.
    Santos LJ, Reis RL, Gomes ME (2015) Harnessing magnetic-mechano actuation in regenerative medicine and tissue engineering. Trends Biotechnol 33:471–479CrossRefGoogle Scholar
  175. 175.
    Betal S, Saha AK, Ortega E, Dutta M, Ramasubramanian AK, Bhalla AS et al (2018) Core-shell magnetoelectric nanorobot – a remotely controlled probe for targeted cell manipulation. Sci Rep 8:1755CrossRefGoogle Scholar
  176. 176.
    Guillotin B, Guillemot F (2011) Cell patterning technologies for organotypic tissue fabrication. Trends Biotechnol 29:183–190CrossRefGoogle Scholar
  177. 177.
    Perea H, Aigner J, Heverhagen JT, Hopfner U, Wintermantel E (2007) Vascular tissue engineering with magnetic nanoparticles: seeing deeper. J Tissue Eng Regen Med 1:318–321CrossRefGoogle Scholar
  178. 178.
    Yamamoto Y, Ito A, Kato M, Kawabe Y, Shimizu K, Fujita H et al (2009) Preparation of artificial skeletal muscle tissues by a magnetic force-based tissue engineering technique. J Biosci Bioeng 108:538–543CrossRefGoogle Scholar
  179. 179.
    Shimizu K, Ito A, Yoshida T, Yamada Y, Ueda M, Honda H (2007) Bone tissue engineering with human mesenchymal stem cell sheets constructed using magnetite nanoparticles and magnetic force. J Biomed Mater Res B Appl Biomater 82B:471–480CrossRefGoogle Scholar
  180. 180.
    Sasaki T, Iwasaki N, Kohno K, Kishimoto M, Majima T, Nishimura S-I et al (2007) Magnetic nanoparticles for improving cell invasion in tissue engineering. J Biomed Mater Res A 86A:969–978CrossRefGoogle Scholar
  181. 181.
    Thevenot P, Sohaebuddin S, Poudyal N, Liu JP, Tang L (2008) Magnetic nanoparticles to enhance cell seeding and distribution in tissue engineering scaffolds. Proc IEEE Conf Nanotechnol 2008:646–649Google Scholar
  182. 182.
    Shimizu K, Ito A, Honda H (2006) Enhanced cell-seeding into 3D porous scaffolds by use of magnetite nanoparticles. J Biomed Mater Res B Appl Biomater 77B:265–272CrossRefGoogle Scholar
  183. 183.
    Ishii M, Shibata R, Numaguchi Y, Kito T, Suzuki H, Shimizu K et al (2011) Enhanced angiogenesis by transplantation of mesenchymal stem cell sheet created by a novel magnetic tissue engineering method. Arterioscler Thromb Vasc Biol 31:2210–2215CrossRefGoogle Scholar
  184. 184.
    Ishii M, Shibata R, Shimizu Y, Yamamoto T, Kondo K, Inoue Y et al (2014) Multilayered adipose-derived regenerative cell sheets created by a novel magnetite tissue engineering method for myocardial infarction. Int J Cardiol 175:545–553CrossRefGoogle Scholar
  185. 185.
    Kito T, Shibata R, Ishii M, Suzuki H, Himeno T, Kataoka Y et al (2013) iPS cell sheets created by a novel magnetite tissue engineering method for reparative angiogenesis. Sci Rep 3:1418CrossRefGoogle Scholar
  186. 186.
    Meng J, Xiao B, Zhang Y, Liu J, Xue H, Lei J et al (2013) Super-paramagnetic responsive nanofibrous scaffolds under static magnetic field enhance osteogenesis for bone repair in vivo. Sci Rep 3:2655CrossRefGoogle Scholar
  187. 187.
    Sapir Y, Cohen S, Friedman G, Polyak B (2012) The promotion of in vitro vessel-like organization of endothelial cells in magnetically responsive alginate scaffolds. Biomaterials 33:4100–4109CrossRefGoogle Scholar
  188. 188.
    Singh RK, Patel KD, Lee JH, Lee E-J, Kim J-H, Kim T-H et al (2014) Potential of magnetic Nanofiber scaffolds with mechanical and biological properties applicable for bone regeneration. PLoS One 9:e91584CrossRefGoogle Scholar
  189. 189.
    Cezar CA, Kennedy SM, Mehta M, Weaver JC, Gu L, Vandenburgh H et al (2014) Biphasic ferrogels for triggered drug and cell delivery. Adv Healthc Mater 3:1869–1876CrossRefGoogle Scholar
  190. 190.
    Ziv-Polat O, Skaat H, Shahar A, Margel S (2012) Novel magnetic fibrin hydrogel scaffolds containing thrombin and growth factors conjugated iron oxide nanoparticles for tissue engineering. Int J Nanomedicine 7:1259–1274CrossRefGoogle Scholar
  191. 191.
    Lü J-M, Wang X, Marin-Muller C, Wang H, Lin PH, Yao Q et al (2009) Current advances in research and clinical applications of PLGA-based nanotechnology. Expert Rev Mol Diagn 9:325–341CrossRefGoogle Scholar
  192. 192.
    Eckmann DM, Composto RJ, Tsourkas A, Muzykantov VR (2014) Nanogel carrier design for targeted drug delivery. J Mater Chem B Mater Biol Med 2:8085–8097CrossRefGoogle Scholar
  193. 193.
    Lal S, Clare SE, Halas NJ (2008) Nanoshell-enabled photothermal cancer therapy: impending clinical impact. Acc Chem Res 41:1842–1851CrossRefGoogle Scholar
  194. 194.
    Park J-H, von Maltzahn G, Xu MJ, Fogal V, Kotamraju VR, Ruoslahti E et al (2010) Cooperative nanomaterial system to sensitize, target, and treat tumors. Proc Natl Acad Sci USA 107:981–986CrossRefGoogle Scholar
  195. 195.
    Bullivant JP, Zhao S, Willenberg BJ, Kozissnik B, Batich CD, Dobson J (2013) Materials characterization of feraheme/ferumoxytol and preliminary evaluation of its potential for magnetic fluid hyperthermia. Int J Mol Sci 14:17501–17510CrossRefGoogle Scholar
  196. 196.
    Balakrishnan VS, Rao M, Kausz AT, Brenner L, Pereira BJG, Frigo TB et al (2009) Physicochemical properties of ferumoxytol, a new intravenous iron preparation. Eur J Clin Investig 39:489–496CrossRefGoogle Scholar
  197. 197.
    Helenek MJ, Tokars ML, Lawrence RP (2006) Methods and compositions for administration of iron. US Patent, 7754702B2Google Scholar
  198. 198.
    Pai AB, Garba AO (2012) Ferumoxytol: a silver lining in the treatment of anemia of chronic kidney disease or another dark cloud? J Blood Med 3:77–85Google Scholar
  199. 199.
    Bashir MR, Bhatti L, Marin D, Nelson RC (2015) Emerging applications for ferumoxytol as a contrast agent in MRI. J Magn Reson Imaging 41:884–898CrossRefGoogle Scholar
  200. 200.
    ClinicalTrialsgov (2016) Using ferumoxytol-enhanced MRI to measure inflammation in patients with brain tumors or other conditions of the CNS.
  201. 201.
    ClinicalTrialsgov (2015) Ferumoxytol enhanced MRI for the detection of lymph node involvement in prostate cancer.
  202. 202.
    ClinicalTrialsgov (2014) Magnetic nanoparticle thermoablation-retention and maintenance in the prostate: a phase 0 study in men (MAGNABLATE I).
  203. 203.
    Moore A, Weissleder R, Bogdanov A Jr (1997) Uptake of dextran-coated monocrystalline iron oxides in tumor cells and macrophages. J Magn Reson Imaging 7:1140–1145CrossRefGoogle Scholar
  204. 204.
    Gref R, Minamitake Y, Peracchia MT, Trubetskoy V, Torchilin V, Langer R (1994) Biodegradable long-circulating polymeric nanospheres. Science 263:1600CrossRefGoogle Scholar
  205. 205.
    Suk JS, Xu Q, Kim N, Hanes J, Ensign LM (2016) PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv Drug Deliv Rev 99:28–51CrossRefGoogle Scholar
  206. 206.
    Yamaoka T, Tabata Y, Ikada Y (1994) Distribution and tissue uptake of poly(ethylene glycol) with different molecular weights after intravenous administration to mice. J Pharm Sci 83:601–606CrossRefGoogle Scholar
  207. 207.
    Peng XH, Qian X, Mao H, Wang AY, Chen Z, Nie S et al (2008) Targeted magnetic iron oxide nanoparticles for tumor imaging and therapy. Int J Nanomedicine 3:311–321Google Scholar
  208. 208.
    Park K (2013) Facing the truth about nanotechnology in drug delivery. ACS Nano 7:7442–7447CrossRefGoogle Scholar
  209. 209.
    Bae YH, Park K (2011) Targeted drug delivery to tumors: myths, reality and possibility. J Control Release 153:198–205CrossRefGoogle Scholar
  210. 210.
    Leamon CP, Cooper SR, Hardee GE (2003) Folate-liposome-mediated antisense oligodeoxynucleotide targeting to cancer cells: evaluation in vitro and in vivo. Bioconjug Chem 14:738–747CrossRefGoogle Scholar
  211. 211.
    Peng M, Li H, Luo Z, Kong J, Wan Y, Zheng L et al (2015) Dextran-coated superparamagnetic nanoparticles as potential cancer drug carriers in vivo. Nanoscale 7:11155–11162CrossRefGoogle Scholar
  212. 212.
    Kaittanis C, Shaffer TM, Ogirala A, Santra S, Perez JM, Chiosis G et al (2014) Environment-responsive nanophores for therapy and treatment monitoring via molecular MRI quenching. Nat Commun 5:3384CrossRefGoogle Scholar
  213. 213.
    Rejman J, Oberle V, Zuhorn IS, Hoekstra D (2004) Size-dependent internalization of particles via the pathways of clathrin- and caveolae-mediated endocytosis. Biochem J 377:159–169CrossRefGoogle Scholar
  214. 214.
    Bennet D, Kim S (2014) Polymer nanoparticles for smart drug delivery in nanotechnology and nanomaterials. In: Sezer AD (ed) Application of nanotechnology in drug delivery, IntechOpen, London. Scholar
  215. 215.
    Mura S, Nicolas J, Couvreur P (2013) Stimuli-responsive nanocarriers for drug delivery. Nat Mater 12:991–1003CrossRefGoogle Scholar
  216. 216.
    Cheng R, Meng F, Deng C, Klok H-A, Zhong Z (2013) Dual and multi-stimuli responsive polymeric nanoparticles for programmed site-specific drug delivery. Biomaterials 34:3647–3657CrossRefGoogle Scholar
  217. 217.
    El-Boubbou K, Ali R, Bahhari HM, AlSaad KO, Nehdi A, Boudjelal M et al (2016) Magnetic fluorescent Nanoformulation for intracellular drug delivery to human breast cancer, primary tumors, and tumor biopsies: beyond targeting expectations. Bioconjug Chem 27:1471–1483CrossRefGoogle Scholar
  218. 218.
    El-Boubbou K, Azar D, Bekdash A, Abi-Habib RJ (2017) Doxironide magnetic nanoparticles for selective drug delivery to human acute myeloid leukemia. J Biomed Nanotechnol 13:500–512CrossRefGoogle Scholar
  219. 219.
    El-Boubbou K, Ali R, Bahhari HM, Boudjelal M (2017) Magnetic nanocarriers enhance drug delivery selectively to human leukemic cells. J Nanomed Nanotechnol 8(441):1–7Google Scholar
  220. 220.
    Gautier J, Allard-Vannier E, Burlaud-Gaillard J, Domenech J, Chourpa I (2015) Efficacy and hemotoxicity of stealth doxorubicin-loaded magnetic nanovectors on breast cancer xenografts. J Biomed Nanotechnol 11:177–189CrossRefGoogle Scholar
  221. 221.
    Kossatz S, Grandke J, Couleaud P, Latorre A, Aires A, Crosbie-Staunton K et al (2015) Efficient treatment of breast cancer xenografts with multifunctionalized iron oxide nanoparticles combining magnetic hyperthermia and anti-cancer drug delivery. Breast Cancer Res 17:66CrossRefGoogle Scholar
  222. 222.
    Mejías R, Pérez-Yagüe S, Gutiérrez L, Cabrera LI, Spada R, Acedo P et al (2011) Dimercaptosuccinic acid-coated magnetite nanoparticles for magnetically guided in vivo delivery of interferon gamma for cancer immunotherapy. Biomaterials 32:2938–2952CrossRefGoogle Scholar
  223. 223.
    Wang D, Fei B, Halig LV, Qin X, Hu Z, Xu H et al (2014) Targeted iron-oxide nanoparticle for photodynamic therapy and imaging of head and neck cancer. ACS Nano 8:6620–6632CrossRefGoogle Scholar
  224. 224.
    Tietze R, Lyer S, Dürr S, Struffert T, Engelhorn T, Schwarz M et al (2013) Efficient drug-delivery using magnetic nanoparticles – biodistribution and therapeutic effects in tumour bearing rabbits. Nanomedicine 9:961–971CrossRefGoogle Scholar
  225. 225.
    Hu S-H, Liao B-J, Chiang C-S, Chen P-J, Chen IW, Chen S-Y (2012) Core-shell nanocapsules stabilized by single-component polymer and nanoparticles for magneto-chemotherapy/hyperthermia with multiple drugs. Adv Mater 24:3627–3632CrossRefGoogle Scholar
  226. 226.
    Kim D-H, Guo Y, Zhang Z, Procissi D, Nicolai J, Omary RA et al (2014) Temperature sensitive magnetic drug carriers for concurrent gemcitabine chemohyperthermia. Adv Healthc Mater 3:714–724CrossRefGoogle Scholar
  227. 227.
    Kong SD, Zhang W, Lee JH, Brammer K, Lal R, Karin M et al (2010) Magnetically vectored nanocapsules for tumor penetration and remotely switchable on-demand drug release. Nano Lett 10:5088–5092CrossRefGoogle Scholar
  228. 228.
    Yang J, Lee C-H, Ko H-J, Suh J-S, Yoon H-G, Lee K et al (2007) Multifunctional magneto-polymeric nanohybrids for targeted detection and synergistic therapeutic effects on breast cancer. Angew Chem Int Ed 46:8836–8839CrossRefGoogle Scholar
  229. 229.
    Lim E-K, Huh Y-M, Yang J, Lee K, Suh J-S, Haam S (2011) pH-triggered drug-releasing magnetic nanoparticles for cancer therapy guided by molecular imaging by MRI. Adv Mater 23:2436–2442CrossRefGoogle Scholar
  230. 230.
    Ketkar-Atre A, Struys T, Dresselaers T, Hodenius M, Mannaerts I, Ni Y et al (2014) In vivo hepatocyte MR imaging using lactose functionalized magnetoliposomes. Biomaterials 35:1015–1024CrossRefGoogle Scholar
  231. 231.
    Bulte JWM, Douglas T, Witwer B, Zhang S-C, Strable E, Lewis BK et al (2001) Magnetodendrimers allow endosomal magnetic labeling and in vivo tracking of stem cells. Nat Biotechnol 19:1141–1147CrossRefGoogle Scholar
  232. 232.
    Lamanna G, Kueny-Stotz M, Mamlouk-Chaouachi H, Ghobril C, Basly B, Bertin A et al (2011) Dendronized iron oxide nanoparticles for multimodal imaging. Biomaterials 32:8562–8573CrossRefGoogle Scholar
  233. 233.
    Monnier CA, Burnand D, Rothen-Rutishauser B, Lattuada M, Petri-Fink A (2014) Magnetoliposomes: opportunities and challenges. Eur J Nanomed 6:201–2015CrossRefGoogle Scholar
  234. 234.
    Laurent S, Saei AA, Behzadi S, Panahifar A, Mahmoudi M (2014) Superparamagnetic iron oxide nanoparticles for delivery of therapeutic agents: opportunities and challenges. Expert Opin Drug Deliv 11:1449–1470CrossRefGoogle Scholar
  235. 235.
    Kohler N, Sun C, Wang J, Zhang M (2005) Methotrexate-modified superparamagnetic nanoparticles and their intracellular uptake into human cancer cells. Langmuir 21:8858–8864CrossRefGoogle Scholar
  236. 236.
    Sun C, Fang C, Stephen Z, Veiseh O, Hansen S, Lee D et al (2008) Tumor-targeted drug delivery and MRI contrast enhancement by chlorotoxin-conjugated iron oxide nanoparticles. Nanomedicine (Lond) 3:495–505CrossRefGoogle Scholar
  237. 237.
    Yang H-W, Hua M-Y, Liu H-L, Tsai R-Y, Chuang C-K, Chu P-C et al (2012) Cooperative dual-activity targeted nanomedicine for specific and effective prostate cancer therapy. ACS Nano 6:1795–1805CrossRefGoogle Scholar
  238. 238.
    Tong R, Tang L, Ma L, Tu C, Baumgartner R, Cheng J (2014) Smart chemistry in polymeric nanomedicine. Chem Soc Rev 43:6982–7012CrossRefGoogle Scholar
  239. 239.
    Wang H-C, Zhang Y, Possanza CM, Zimmerman SC, Cheng J, Moore JS et al (2015) Trigger chemistries for better industrial formulations. ACS Appl Mater Interfaces 7:6369–6382CrossRefGoogle Scholar
  240. 240.
    Yu J, Chu X, Hou Y (2014) Stimuli-responsive cancer therapy based on nanoparticles. Chem Commun 50:11614–11630CrossRefGoogle Scholar
  241. 241.
    El-Dakdouki MH, Zhu DC, El-Boubbou K, Kamat M, Chen J, Li W et al (2012) Development of multifunctional hyaluronan-coated nanoparticles for imaging and drug delivery to cancer cells. Biomacromolecules 13:1144–1151CrossRefGoogle Scholar
  242. 242.
    Ding X, Liu Y, Li J, Luo Z, Hu Y, Zhang B et al (2014) Hydrazone-bearing PMMA-functionalized magnetic Nanocubes as pH-responsive drug carriers for remotely targeted Cancer therapy in vitro and in vivo. ACS Appl Mater Interfaces 6:7395–7407CrossRefGoogle Scholar
  243. 243.
    Banerjee SS, Chen D-H (2008) Multifunctional pH-sensitive magnetic nanoparticles for simultaneous imaging, sensing and targeted intracellular anticancer drug delivery. Nanotechnology 19:505104CrossRefGoogle Scholar
  244. 244.
    Zhu L, Wang D, Wei X, Zhu X, Li J, Tu C et al (2013) Multifunctional pH-sensitive superparamagnetic iron-oxide nanocomposites for targeted drug delivery and MR imaging. J Control Release 169:228–238CrossRefGoogle Scholar
  245. 245.
    Wang Y, Jia H-Z, Han K, Zhuo R-X, Zhang X-Z (2013) Theranostic magnetic nanoparticles for efficient capture and in situ chemotherapy of circulating tumor cells. J Mater Chem B 1:3344–3352CrossRefGoogle Scholar
  246. 246.
    Ansari C, Tikhomirov GA, Hong SH, Falconer RA, Loadman PM, Gill JH et al (2014) Development of novel tumor-targeted theranostic nanoparticles activated by membrane-type matrix metalloproteinases for combined cancer magnetic resonance imaging and therapy. Small 10:566–417CrossRefGoogle Scholar
  247. 247.
    Stephen ZR, Kievit FM, Veiseh O, Chiarelli PA, Fang C, Wang K et al (2014) Redox-responsive magnetic nanoparticle for targeted convection-enhanced delivery of O6-benzylguanine to brain tumors. ACS Nano 8:10383–10395CrossRefGoogle Scholar
  248. 248.
    Medarova Z, Pham W, Farrar C, Petkova V, Moore A (2007) In vivo imaging of siRNA delivery and silencing in tumors. Nat Med 13:372–377CrossRefGoogle Scholar
  249. 249.
    Wilson DS, Dalmasso G, Wang L, Sitaraman SV, Merlin D, Murthy N (2010) Orally delivered thioketal-nanoparticles loaded with TNFα-siRNA target inflammation and inhibit gene expression in the intestines. Nat Mater 9:923–928CrossRefGoogle Scholar
  250. 250.
    Lee J-H, Lee K, Moon SH, Lee Y, Park TG, Cheon J (2009) All-in-one target-cell-specific magnetic nanoparticles for simultaneous molecular imaging and siRNA delivery. Angew Chem Int Ed 48:4174–4179CrossRefGoogle Scholar
  251. 251.
    Juratli TA, Schackert G, Krex D (2013) Current status of local therapy in malignant gliomas – a clinical review of three selected approaches. Pharmacol Ther 139:341–358CrossRefGoogle Scholar
  252. 252.
    Hayashi K, Nakamura M, Miki H, Ozaki S, Abe M, Matsumoto T et al (2014) Magnetically responsive smart nanoparticles for cancer treatment with a combination of magnetic hyperthermia and remote-control drug release. Theranostics 4:834–844CrossRefGoogle Scholar
  253. 253.
    Mitragotri S, Burke PA, Langer R (2014) Overcoming the challenges in administering biopharmaceuticals: formulation and delivery strategies. Nat Rev Drug Discov 13:655–672CrossRefGoogle Scholar
  254. 254.
    Mitragotri S, Anderson DG, Chen X, Chow EK, Ho D, Kabanov AV et al (2015) Accelerating the translation of nanomaterials in biomedicine. ACS Nano 9:6644–6654CrossRefGoogle Scholar
  255. 255.
    Jin-Wook Y, Elizabeth C, Samir M (2010) Factors that control the circulation time of nanoparticles in blood: challenges, solutions and future prospects. Curr Pharm Des 16:2298–2307CrossRefGoogle Scholar
  256. 256.
    Bregoli L, Movia D, Gavigan-Imedio JD, Lysaght J, Reynolds J, Prina-Mello A (2016) Nanomedicine applied to translational oncology: a future perspective on cancer treatment. Nanomedicine 12:81–103CrossRefGoogle Scholar
  257. 257.
    Pillai G (2014) Nanomedicines for cancer therapy: an update of FDA approved and those under various stages of development. Pharm Pharm Sci 1:13Google Scholar
  258. 258.
    Sievers EL, Senter PD (2013) Antibody-drug conjugates in cancer therapy. Annu Rev Med 64:15–29CrossRefGoogle Scholar
  259. 259.
    Kamaly N, Xiao Z, Valencia PM, Radovic-Moreno AF, Farokhzad OC (2012) Targeted polymeric therapeutic nanoparticles: design, development and clinical translation. Chem Soc Rev 41:2971–3010CrossRefGoogle Scholar
  260. 260.
    Wickham T, Futch K (2012) A phase I study of MM-302, a HER2-targeted liposomal doxorubicin, in patients with advanced, HER2-positive breast cancer. Cancer Res 72(Suppl. 24):P5-18-09Google Scholar
  261. 261.
    Verma S, Miles D, Gianni L, Krop IE, Welslau M, Baselga J et al (2012) Trastuzumab emtansine for HER2-positive advanced breast cancer. N Engl J Med 367:1783–1791CrossRefGoogle Scholar
  262. 262.
    Singha N, Jenkinsa GJS, Asadi R, Doak SH (2010) Potential toxicity of superparamagnetic iron oxide nanoparticles (SPION). Nano Rev 1:5358CrossRefGoogle Scholar
  263. 263.
    Mahmoudi M, Hofmann H, Rothen-Rutishauser B, Petri-Fink A (2012) Assessing the in vitro and in vivo toxicity of superparamagnetic iron oxide nanoparticles. Chem Rev 112:2323–2338CrossRefGoogle Scholar
  264. 264.
    AMAG Pharmaceuticals Inc (2010) Feraheme™ (ferumoxytol) injection prescribing informationGoogle Scholar
  265. 265.
    Monnier Christophe A, Burnand D, Rothen-Rutishauser B, Lattuada M, Petri-Fink A (2014) Magnetoliposomes: opportunities and challenges. Eur J Nanomed 6:201Google Scholar
  266. 266.
    Ito A, Shinkai M, Honda H, Kobayashi T (2005) Medical application of functionalized magnetic nanoparticles. J Biosci Bioeng 100:1–11CrossRefGoogle Scholar
  267. 267.
    Kudr J, Haddad Y, Richtera L, Heger Z, Cernak M, Adam V et al (2017) Magnetic nanoparticles: from design and synthesis to real world applications. Nanomaterials 7:243CrossRefGoogle Scholar
  268. 268.
    Mahmoudi M, Serpooshan V, Laurent S (2011) Engineered nanoparticles for biomolecular imaging. Nanoscale 3:3007–3026CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Basic Sciences, College of Science & Health Professions (COSHP), King Saud bin Abdulaziz University for Health Sciences (KSAU-HS)King Abdulaziz Medical City, National Guard Health AffairsRiyadhSaudi Arabia
  2. 2.King Abdullah International Medical Research Center (KAIMRC)King Abdulaziz Medical City, National Guard Health AffairsRiyadhSaudi Arabia

Personalised recommendations