Advertisement

Characterization Tools for Mechanical Probing of Biomimetic Materials

  • Silvia Caponi
  • Claudio Canale
  • Ornella Cavalleri
  • Massimo VassalliEmail author
Chapter

Abstract

The possibility to fully heal damaged or failing tissues and organs is one of the major challenges of modern medicine. Several approaches have been proposed, either using tissue engineered functional substitutes or inducing the body to self-repair, exploiting its innate regenerative potential. In any case, a crucial step for the success of therapy is provided by the design of a suitable scaffold, capable to sustain cellular growth and induce the differentiation towards the lineage of interest. A growing body of evidence suggests that the most affordable way to design an effective scaffold is to exploit a biomimetic approach, trying to emulate the characteristics of the natural environment. Moreover, it has been pointed out that not only the chemical nature of the material is relevant to this process but also its physical and, in particular, mechanical properties. Mapping the elasticity of a living tissue is becoming more and more relevant in the rational design of next generation biomimetic scaffolds, and the exploitation of advanced tools is required to achieve sub-μm resolution, comparable to the length scale probed by a single living cell.

References

  1. 1.
    Akilbekova D, Ogay V, Yakupov T, Sarsenova M, Umbayev B, Nurakhmetov A, Tazhin K, Yakovlev VV, Utegulov ZN (2018) Brillouin spectroscopy and radiography for assessment of viscoelastic and regenerative properties of mammalian bones. J Biomed Opt 23(9):097004CrossRefGoogle Scholar
  2. 2.
    Antonacci G, Braakman S (2016) Biomechanics of subcellular structures by non-invasive Brillouin microscopy. Sci Rep 6:37217.  https://doi.org/10.1038/srep37217CrossRefGoogle Scholar
  3. 3.
    Antonacci G, Foreman MR, Paterson C, Török P (2013) Spectral broadening in Brillouin imaging. Appl Phys Lett 103(22):221105.  https://doi.org/10.1063/1.4836477. http://adsabs.harvard.edu/abs/2013ApPhL.103v1105ACrossRefGoogle Scholar
  4. 4.
    Antonacci G, Pedrigi RM, Kondiboyina A, Mehta VV, De Silva R, Paterson C, Krams R, Török P (2015) Quantification of plaque stiffness by Brillouin microscopy in experimental thin cap fibroatheroma. J R Soc Interface 12(112):20150843CrossRefGoogle Scholar
  5. 5.
    Antonacci G, De Panfilis S, Di Domenico G, DelRe E, Ruocco G (2016) Breaking the contrast limit in single-pass fabry-pérot spectrometers. Phys Rev Appl 6(5):054020.  https://doi.org/10.1103/PhysRevApplied.6.054020. http://adsabs.harvard.edu/abs/2016PhRvP...6e4020ACrossRefGoogle Scholar
  6. 6.
    Barenghi R, Beke S, Romano I, Gavazzo P, Farkas B, Vassalli M, Brandi F, Scaglione S (2014) Elastin-coated biodegradable photopolymer scaffolds for tissue engineering applications. Biomed Res Int 2014:624645CrossRefGoogle Scholar
  7. 7.
    Bavi N, Nikolaev YA, Bavi O, Ridone P, Martinac AD, Nakayama Y, Cox CD, Martinac B (2017) Principles of mechanosensing at the membrane interface. In: Epand R., Ruysschaert JM. (eds) The Biophysics of Cell Membranes. Springer Series in Biophysics, vol 19. Singapore: SpringerGoogle Scholar
  8. 8.
    Bechtle S, Ang S, Schneider G (2010) On the mechanical properties of hierarchically structured biological materials. Universitätsbibliothek der Technischen Universität Hamburg-Harburg, Hamburg. https://books.google.it/books?id=nW5QuwEACAAJCrossRefGoogle Scholar
  9. 9.
    Benassi P, Caponi S, Eramo R, Fontana A, Giugni A, Nardone M, Sampoli M, Viliani G (2005) Sound attenuation in a unexplored frequency region: Brillouin ultraviolet light scattering measurements in v-si o2. Phys Rev B 71(17):172201.  https://doi.org/10.1103/PhysRevB.71.172201. http://adsabs.harvard.edu/abs/2005PhRvB.71q2201BCrossRefGoogle Scholar
  10. 10.
    Berne BJ, Pecora R (1977) Dynamic Light Scattering with Applications to Chemistry, Biology, and Physics. Courier Corporation, 54(10):A430  https://doi.org/10.1021/ed054pA430.1CrossRefGoogle Scholar
  11. 11.
    Bettinger CJ, Langer R, Borenstein JT (2009) Engineering substrate topography at the micro- and nanoscale to control cell function. Angew Chem Int Ed Engl 48:5406–5415.  https://doi.org/10.1002/anie.200805179CrossRefGoogle Scholar
  12. 12.
    Betzig E, Trautman J, Harris T, Weiner J, Kostelak R (1991) Breaking the diffraction barrier: optical microscopy on a nanometric scale. Science 251(5000):1468–1470CrossRefGoogle Scholar
  13. 13.
    Bhushan B (ed) (2010) Scanning probe microscopy in nanoscience and nanotechnology, vol 2. Springer, Berlin/HeidelbergGoogle Scholar
  14. 14.
    Bhushan B, Fuchs H (eds) (2008) Applied scanning probe methods, vol XIII. Springer, Berlin/HeidelbergGoogle Scholar
  15. 15.
    Bilodeau GG (1992) Regular pyramid punch problem. J Appl Mech 59:519.  https://doi.org/10.1115/1.2893754CrossRefGoogle Scholar
  16. 16.
    Binnig G, Rohrer H, Gerber C, Weibel E (1982) Surface studies by scanning tunneling microscopy. Phys Rev Lett 49(1):57CrossRefGoogle Scholar
  17. 17.
    Binnig G, Quate CF, Gerber C (1986) Atomic force microscope. Phys Rev Lett 56:930–933.  https://doi.org/10.1103/PhysRevLett.56.930CrossRefGoogle Scholar
  18. 18.
    Boon J, Yip S (1991) Molecular hydrodynamics. Dover Publications, New YorkGoogle Scholar
  19. 19.
    Bottani CE, Fioretto D (2018) Brillouin scattering of phonons in complex materials. Adv Phys: X 3(1):1467281Google Scholar
  20. 20.
    Bracalello A, Santopietro V, Vassalli M, Marletta G, Del Gaudio R, Bochicchio B, Pepe A (2011) Design and production of a chimeric resilin-, elastin-, and collagen-like engineered polypeptide. Biomacromolecules 12:2957–2965.  https://doi.org/10.1021/bm2005388CrossRefGoogle Scholar
  21. 21.
    Brillouin L (1922) Diffusion of light and x-rays by a transparent homogeneous body. Ann Phys 17(2):88–122CrossRefGoogle Scholar
  22. 22.
    Caponi S, Fontana A, Montagna M, Pilla O, Rossi F, Terki F, Woignier T (2003) Acoustic attenuation in silica porous systems. J Non Cryst Solids 322:29–34.  https://doi.org/10.1016/S0022-3093(03)00167-4. http://adsabs.harvard.edu/abs/2003JNCS..322...29CCrossRefGoogle Scholar
  23. 23.
    Caponi S, Benassi P, Eramo R, Giugni A, Nardone M, Fontana A, Sampoli M, Terki F, Woignier T (2004a) Phonon attenuation in vitreous silica and silica porous systems. Philos Mag 84(13–16):1423–1431CrossRefGoogle Scholar
  24. 24.
    Caponi S, Carini G, D’angelo G, Fontana A, Pilla O, Rossi F, Terki F, Tripodo G, Woignier T (2004b) Acoustic and thermal properties of silica aerogels and xerogels. Phys Rev B 70(21):214204CrossRefGoogle Scholar
  25. 25.
    Cappella B, Dietler G (1999) Force-distance curves by atomic force microscopy. Surf Sci 34(1–3):1–3, 5–104Google Scholar
  26. 26.
    Carlotti G (2018) Elastic characterization of transparent and opaque films, multilayers and acoustic resonators by surface Brillouin scattering: a review. Appl Sci 8(1):124CrossRefGoogle Scholar
  27. 27.
    Cavalleri O, Natale C, Stroppolo ME, Relini A, Cosulich E, Thea S, Novi M, Gliozzi A (2000) Azurin immobilisation on thiol covered au(111). Phys Chem Chem Phys 2:4630–4635CrossRefGoogle Scholar
  28. 28.
    Chen C, Bang S, Cho Y, Lee S, Lee I, Zhang S, Noh I (2016) Research trends in biomimetic medical materials for tissue engineering: 3d bioprinting, surface modification, nano/micro-technology and clinical aspects in tissue engineering of cartilage and bone. Biomater Res 20(1):1.  https://doi.org/10.1186/s40824-016-0057-3CrossRefGoogle Scholar
  29. 29.
    Chu B (1976) Laser spectroscopy. (Book reviews: dynamic light scattering. With applications to chemistry, biology, and physics). Science 194:1155–1156.  https://doi.org/10.1126/science.194.4270.1155. http://adsabs.harvard.edu/abs/1976Sci...194.1155BCrossRefGoogle Scholar
  30. 30.
    Comez L, Masciovecchio C, Monaco G, Fioretto D (2012) Progress in liquid and glass physics by Brillouin scattering spectroscopy. Solid State Phys 63:1–77. ElsevierCrossRefGoogle Scholar
  31. 31.
    Cusack S, Miller A (1979) Determination of the elastic constants of collagen by Brillouin light scattering. J Mol Biol 135:39–51CrossRefGoogle Scholar
  32. 32.
    Dil J (1982) Brillouin scattering in condensed matter. Rep Prog Phys 45(3):285CrossRefGoogle Scholar
  33. 33.
    Dimitriadis EK, Horkay F, Maresca J, Kachar B, Chadwick RS (2002) Determination of elastic moduli of thin layers of soft material using the atomic force microscope. Biophys J 82(5):2798–2810.  https://doi.org/10.1016/s0006-3495(02)75620-8CrossRefGoogle Scholar
  34. 34.
    Edginton RS, Mattana S, Caponi S, Fioretto D, Green E, Winlove CP, Palombo F (2016) Preparation of extracellular matrix protein fibers for Brillouin spectroscopy. J Vis Exp.  https://doi.org/10.3791/54648
  35. 35.
    Edginton RS, Green EM, Winlove CP, Fioretto D, Palombo F (2018) Dual scale biomechanics of extracellular matrix proteins probed by Brillouin scattering and quasistatic tensile testing. In: Society of photo-optical instrumentation engineers (SPIE) conference series, vol 10504, p 105040J.  https://doi.org/10.1117/12.2290183. http://adsabs.harvard.edu/abs/2018SPIE10504E..0JE
  36. 36.
    Elsayad K, Werner S, Gallemí M, Kong J, Guajardo ERS, Zhang L, Jaillais Y, Greb T, Belkhadir Y (2016) Mapping the subcellular mechanical properties of live cells in tissues with fluorescence emission–Brillouin imaging. Sci Signal 9(435):rs5–rs5CrossRefGoogle Scholar
  37. 37.
    Engler AJ, Sen S, Sweeney HL, Discher DE (2006) Matrix elasticity directs stem cell lineage specification. Cell 126(4):677–689CrossRefGoogle Scholar
  38. 38.
    Fabry B, Maksym GN, Butler JP, Glogauer M, Navajas D, Fredberg JJ (2001) Scaling the microrheology of living cells. Phys Rev Lett 87:148102.  https://doi.org/10.1103/PhysRevLett.87.148102CrossRefGoogle Scholar
  39. 39.
    Ferrera D, Canale C, Marotta R, Mazzaro N, Gritti M, Mazzanti M, Capellari S, Cortelli P, Gasparini L (2014) Lamin b1 overexpression increases nuclear rigidity in autosomal dominant leukodystrophy fibroblasts. FASEB J 28(9):3906–3918.  https://doi.org/10.1096/fj.13-247635CrossRefGoogle Scholar
  40. 40.
    Fink M, Tanter M (2010) Multiwave imaging and super resolution. Phys Today 63(2):28–33.  https://doi.org/10.1063/1.3326986CrossRefGoogle Scholar
  41. 41.
    Fiore A, Zhang J, Shao P, Yun SH, Scarcelli G (2016) High-extinction virtually imaged phased array-based Brillouin spectroscopy of turbid biological media. Appl Phys Lett 108:203701.  https://doi.org/10.1063/1.4948353CrossRefGoogle Scholar
  42. 42.
    Franz MO, Mallot HA (2000) Biomimetic robot navigation. Robot Auton Syst 30:133–153.  https://doi.org/10.1016/s0921-8890(99)00069-xCrossRefGoogle Scholar
  43. 43.
    Fung Y (1993) Biomechanics: mechanical properties of living tissues. Springer, New YorkCrossRefGoogle Scholar
  44. 44.
    Gruber P (2008) The signs of life in architecture. Bioinspir Biomim 3:023001.  https://doi.org/10.1088/1748-3182/3/2/023001CrossRefGoogle Scholar
  45. 45.
    Hadden WJ, Young JL, Holle AW, McFetridge ML, Kim DY, Wijesinghe P, Taylor-Weiner H, Wen JH, Lee AR, Bieback K, Vo BN, Sampson DD, Kennedy BF, Spatz JP, Engler AJ, Choi YS (2017) Stem cell migration and mechanotransduction on linear stiffness gradient hydrogels. Proc Natl Acad Sci U S A 114:5647–5652.  https://doi.org/10.1073/pnas.1618239114CrossRefGoogle Scholar
  46. 46.
    Harley R, James D, Miller A, White JW (1977) Phonons and the elastic moduli of collagen and muscle. Nature 267:285–287CrossRefGoogle Scholar
  47. 47.
    Harley BA, Leung JH, Silva ECCM, Gibson LJ (2007) Mechanical characterization of collagen-glycosaminoglycan scaffolds. Acta Biomater 3:463–474.  https://doi.org/10.1016/j.actbio.2006.12.009CrossRefGoogle Scholar
  48. 48.
    Hartmann U (1988) Magnetic force microscopy: some remarks from the micromagnetic point of view. J Appl Phys 64(3):1561–1564CrossRefGoogle Scholar
  49. 49.
    Huang G, Li F, Zhao X, Ma Y, Li Y, Lin M, Jin G, Lu TJ, Genin GM, Xu F (2017) Functional and biomimetic materials for engineering of the three-dimensional cell microenvironment. Chem Rev 117(20):12764–12850.  https://doi.org/10.1021/acs.chemrev.7b00094. PMID: 28991456CrossRefGoogle Scholar
  50. 50.
    Hutter JL, Bechhoefer J (1993) Calibration of atomic-force microscope tips. Rev Sci Instrum 64(7):1868–1873.  https://doi.org/10.1063/1.1143970CrossRefGoogle Scholar
  51. 51.
    Ikada Y (2006) Challenges in tissue engineering. J R Soc Interface 3:589–601.  https://doi.org/10.1098/rsif.2006.0124CrossRefGoogle Scholar
  52. 52.
    Kapsali V (2013) 7 – Biomimetic approaches to the design of smart textiles for protection. In: Chapman R (ed) Smart textiles for protection. Wood-head Publishing series in textiles. Woodhead Publishing, Cambridge, UK, pp 214–226.  https://doi.org/10.1533/9780857097620.1.214. http://www.sciencedirect.com/science/article/pii/B9780857090560500078CrossRefGoogle Scholar
  53. 53.
    Karampatzakis A, Song CZ, Allsopp LP, Filloux A, Rice SA, Cohen Y, Wohland T, Török P (2017) Probing the internal micromechanical properties of Pseudomonas aeruginosa biofilms by Brillouin imaging. NPJ Biofilms Microbiomes 3:20.  https://doi.org/10.1038/s41522-017-0028-zCrossRefGoogle Scholar
  54. 54.
    Kennedy BF, Wijesinghe P, Sampson DD (2017) The emergence of optical elastography in biomedicine. Nat Photonics 11:215–221.  https://doi.org/10.1038/nphoton.2017.6. http://adsabs.harvard.edu/abs/2017NaPho..11..215KCrossRefGoogle Scholar
  55. 55.
    Key J, Palange AL, Gentile F, Aryal S, Stigliano C, Mascolo DD, Rosa ED, Cho M, Lee Y, Singh J, Decuzzi P (2015) Soft discoidal polymeric nanoconstructs resist macrophage uptake and enhance vascular targeting in tumors. ACS Nano 9(12):11628–11641.  https://doi.org/10.1021/acsnano.5b04866CrossRefGoogle Scholar
  56. 56.
    Kim JH, Yoo JJ (2018) Current developments and future perspectives of tissue engineering and regenerative medicine. In: Clinical regenerative medicine in urology. Springer, SingaporeCrossRefGoogle Scholar
  57. 57.
    Klieber C, Hecksher T, Pezeril T, Torchinsky DH, Dyre JC, Nelson KA (2013) Mechanical spectra of glass-forming liquids. II. Gigahertz-frequency longitudinal and shear acoustic dynamics in glycerol and dc704 studied by time-domain Brillouin scattering. J Chem Phys 138:12A544.  https://doi.org/10.1063/1.4789948CrossRefGoogle Scholar
  58. 58.
    Koski KJ, Akhenblit P, McKiernan K, Yarger JL (2013) Non-invasive determination of the complete elastic moduli of spider silks. Nat Mater 12:262–267.  https://doi.org/10.1038/nmat3549CrossRefGoogle Scholar
  59. 59.
    Lepesant JP, Powers L, Pershan PS (1978) Brillouin light scattering measurement of the elastic properties of aligned multilamella lipid samples. Proc Natl Acad Sci U S A 75:1792–1795CrossRefGoogle Scholar
  60. 60.
    Lim C, Zhou E, Quek S (2006) Mechanical models for living cells – a review. J Biomech 39(2):195–216.  https://doi.org/10.1016/j.jbiomech.2004.12.008CrossRefGoogle Scholar
  61. 61.
    Lin DC, Dimitriadis EK, Horkay F (2007) Robust strategies for automated AFM force curve analysis – II: adhesion-influenced indentation of soft, elastic materials. J Biomech Eng 129(6):904.  https://doi.org/10.1115/1.2800826CrossRefGoogle Scholar
  62. 62.
    Lutolf MP, Gilbert PM, Blau HM (2009) Designing materials to direct stem-cell fate. Nature 462(7272):433CrossRefGoogle Scholar
  63. 63.
    Ma PX (2008) Biomimetic materials for tissue engineering. Adv Drug Deliv Rev 60:184–198.  https://doi.org/10.1016/j.addr.2007.08.041CrossRefGoogle Scholar
  64. 64.
    Mandadapu KK, Govindjee S, Mofrad MRK (2008) On the cytoskeleton and soft glassy rheology. J Biomech 41:1467–1478.  https://doi.org/10.1016/j.jbiomech.2008.02.014CrossRefGoogle Scholar
  65. 65.
    Mapelli L, Canale C, Pesci D, Averaimo S, Guizzardi F, Fortunati V, Falasca L, Piacentini M, Gliozzi A, Relini A, Mazzanti M, Jodice C (2012) Toxic effects of expanded ataxin-1 involve mechanical instability of the nuclear membrane. Biochim Biophys Acta 1822:906–917.  https://doi.org/10.1016/j.bbadis.2012.01.016CrossRefGoogle Scholar
  66. 66.
    Maret G, Oldenbourg R, Winterling G, Dransfeld K, Rupprecht A (1979) Velocity of high frequency sound waves in oriented DNA fibres and films determined by Brillouin scattering. Colloid Polym Sci 257(10):1017–1020CrossRefGoogle Scholar
  67. 67.
    Masciovecchio C, Baldi G, Caponi S, Comez L, Di Fonzo S, Fioretto D, Fontana A, Gessini A, Santucci S, Sette F et al (2006) Evidence for a crossover in the frequency dependence of the acoustic attenuation in vitreous silica. Phys Rev Lett 97(3):035501CrossRefGoogle Scholar
  68. 68.
    Mattana S, Caponi S, Tamagnini F, Fioretto D, Palombo F (2017a) Viscoelasticity of amyloid plaques in transgenic mouse brain studied by Brillouin microspectroscopy and correlative Raman analysis. J Innov Opt Health Sci 10:1742001.  https://doi.org/10.1142/S1793545817420019CrossRefGoogle Scholar
  69. 69.
    Mattana S, Cardinali MA, Caponi S, Pierantoni DC, Corte L, Roscini L, Cardinali G, Fioretto D (2017b) High-contrast Brillouin and Raman micro-spectroscopy for simultaneous mechanical and chemical investigation of microbial biofilms. Biophys Chem 229:123–129CrossRefGoogle Scholar
  70. 70.
    Mattana S, Mattarelli M, Urbanelli L, Sagini K, Emiliani C, Dalla Serra M, Fioretto D, Caponi S (2018) Non-contact mechanical and chemical analysis of single living cells by microspectroscopic techniques. Light: Sci Appl 7(2):17139CrossRefGoogle Scholar
  71. 71.
    Meng Z, Traverso AJ, Yakovlev VV (2014) Background clean-up in Brillouin microspectroscopy of scattering medium. Opt Express 22:5410–5415.  https://doi.org/10.1364/OE.22.005410CrossRefGoogle Scholar
  72. 72.
    Meng Z, Bustamante Lopez SC, Meissner KE, Yakovlev VV (2016a) Subcellular measurements of mechanical and chemical properties using dual Raman-Brillouin microspectroscopy. J Biophotonics 9:201–207.  https://doi.org/10.1002/jbio.201500163CrossRefGoogle Scholar
  73. 73.
    Meng Z, Traverso AJ, Ballmann CW, Troyanova-Wood MA, Yakovlev VV (2016b) Seeing cells in a new light: a renaissance of Brillouin spectroscopy. Adv Opt Photon 8(2):300–327CrossRefGoogle Scholar
  74. 74.
    Monaco G, Caponi S, di Leonardo R, Fioretto D, Ruocco G (2000) Intramolecular origin of the fast relaxations observed in the Brillouin light scattering spectra of molecular glass formers. Phys Rev E 62:R7595–R7598.  https://doi.org/10.1103/PhysRevE.62.R7595. http://adsabs.harvard.edu/abs/2000PhRvE..62.7595MCrossRefGoogle Scholar
  75. 75.
    Murphy SV, Atala A (2013) Organ engineering–combining stem cells, biomaterials, and bioreactors to produce bioengineered organs for transplantation. BioEssays 35:163–172.  https://doi.org/10.1002/bies.201200062CrossRefGoogle Scholar
  76. 76.
    Nichol JW, Koshy ST, Bae H, Hwang CM, Yamanlar S, Khademhosseini A (2010) Cellladen microengineered gelatin methacrylate hydrogels. Biomaterials 31(21):5536–5544CrossRefGoogle Scholar
  77. 77.
    O’Brien FJ, Harley BA, Yannas IV, Gibson L (2004) Influence of freezing rate on pore structure in freeze-dried collagen-gag scaffolds. Biomaterials 25:1077–1086CrossRefGoogle Scholar
  78. 78.
    Offeddu GS, Ashworth JC, Cameron RE, Oyen ML (2015) Multi-scale mechanical response of freeze-dried collagen scaffolds for tissue engineering applications. J Mech Behav Biomed Mater 42:19–25.  https://doi.org/10.1016/j.jmbbm.2014.10.015CrossRefGoogle Scholar
  79. 79.
    Oh YJ, Sekot G, Duman M, Chtcheglova L, Messner P, Peterlik H, Schäffer C, Hinterdorfer P (2013) Characterizing the s-layer structure and anti-s-layer antibody recognition on intact tannerella forsythia cells by scanning probe microscopy and small angle x-ray scattering. J Mol Recognit 26:542–549.  https://doi.org/10.1002/jmr.2298CrossRefGoogle Scholar
  80. 80.
    Oliver WC, Pharr GM (2004) Measurement of hardness and elastic modulus by instrumented indentation: advances in understanding and refinements to methodology. J Mater Res 19(1):3–20CrossRefGoogle Scholar
  81. 81.
    Oropesa-Nuñez R, Keshavan S, Dante S, Diaspro A, Mannini B, Capitini C, Cecchi C, Stefani M, Chiti F, Canale C (2018) Toxic hypf-n oligomers selectively bind the plasma membrane to impair cell adhesion capability. Biophys J 114:1357–1367.  https://doi.org/10.1016/j.bpj.2018.02.003CrossRefGoogle Scholar
  82. 82.
    Oyen M (2011) Nanoindentation of biological and biomimetic materials. Exp Tech 37(1):73–87.  https://doi.org/10.1111/j.1747-1567.2011.00716.xCrossRefGoogle Scholar
  83. 83.
    Palomba R, Palange AL, Rizzuti IF, Ferreira M, Cervadoro A, Barbato MG, Canale C, Decuzzi P (2018) Modulating phagocytic cell sequestration by tailoring nanoconstruct softness. ACS Nano 12:1433–1444.  https://doi.org/10.1021/acsnano.7b07797CrossRefGoogle Scholar
  84. 84.
    Palombo F, Madami M, Stone N, Fioretto D (2014a) Mechanical mapping with chemical specificity by confocal Brillouin and Raman microscopy. Analyst 139:729–733.  https://doi.org/10.1039/c3an02168hCrossRefGoogle Scholar
  85. 85.
    Palombo F, Winlove CP, Edginton RS, Green E, Stone N, Caponi S, Madami M, Fioretto D (2014b) Biomechanics of fibrous proteins of the extracellular matrix studied by Brillouin scattering. J R Soc Interface 11:20140739.  https://doi.org/10.1098/rsif.2014.0739CrossRefGoogle Scholar
  86. 86.
    Pastorino L, Dellacasa E, Scaglione S, Giulianelli M, Sbrana F, Vassalli M, Ruggiero C (2014) Oriented collagen nanocoatings for tissue engineering. Colloids Surf B: Biointerfaces 114:372–378CrossRefGoogle Scholar
  87. 87.
    Pawelec KM, Husmann A, Best SM, Cameron RE (2014) Understanding anisotropy and architecture in ice-templated biopolymer scaffolds. Mater Sci Eng C Mater Biol Appl 37:141–147.  https://doi.org/10.1016/j.msec.2014.01.009CrossRefGoogle Scholar
  88. 88.
    Perticaroli S, Nickels JD, Ehlers G, Sokolov AP (2014) Rigidity, secondary structure, and the universality of the boson peak in proteins. Biophys J 106(12):2667–2674CrossRefGoogle Scholar
  89. 89.
    Pukhlyakova E, Aman AJ, Elsayad K, Technau U (2018) β-Catenin-dependent mechanotrans-duction dates back to the common ancestor of Cnidaria and Bilateria. Proc Natl Acad Sci U S A 115:6231–6236.  https://doi.org/10.1073/pnas.1713682115CrossRefGoogle Scholar
  90. 90.
    Qi C, Yan X, Huang C, Melerzanov A, Du Y (2015) Biomaterials as carrier, barrier and reactor for cell-based regenerative medicine. Protein Cell 6:638–653.  https://doi.org/10.1007/s13238-015-0179-8CrossRefGoogle Scholar
  91. 91.
    Randall JT, Vaughan JM (1979) Brillouin scattering in systems of biological significance. Philos Trans R Soc Lond A 293(1402):341–348CrossRefGoogle Scholar
  92. 92.
    Rezende CA, Lee LT, Galembeck F (2009) Surface mechanical properties of thin polymer films investigated by AFM in pulsed force mode. Langmuir 25:9938–9946.  https://doi.org/10.1021/la9010949CrossRefGoogle Scholar
  93. 93.
    Rigato A, Miyagi A, Scheuring S, Rico F (2017) High-frequency microrheology reveals cytoskeleton dynamics in living cells. Nat Phys 13:771–775.  https://doi.org/10.1038/nphys4104CrossRefGoogle Scholar
  94. 94.
    Sadati M, Nourhani A, Fredberg JJ, Taheri Qazvini N (2014) Glass-like dynamics in the cell and in cellular collectives. Wiley Interdiscip Rev Syst Biol Med 6:137–149.  https://doi.org/10.1002/wsbm.1258CrossRefGoogle Scholar
  95. 95.
    Salem AK, Stevens R, Pearson RG, Davies MC, Tendler SJB, Roberts CJ, Williams PM, Shakesheff KM (2002) Interactions of 3t3 fibroblasts and endothelial cells with defined pore features. J Biomed Mater Res 61:212–217.  https://doi.org/10.1002/jbm.10195CrossRefGoogle Scholar
  96. 96.
    Sassi P, Caponi S, Ricci M, Morresi A, Oldenhof H, Wolkers WF, Fioretto D (2015) Infraredversuslight scattering techniques to monitor the gel to liquid crystal phase transition in lipid membranes. J Raman Spectrosc 46:644–651.  https://doi.org/10.1002/jrs.4702. http://adsabs.harvard.edu/abs/2015JRSp...46..644SCrossRefGoogle Scholar
  97. 97.
    Sbrana F, Fotia C, Bracalello A, Baldini N, Marletta G, Ciapetti G, Bochicchio B, Vassalli M (2012) Multiscale characterization of a chimeric biomimetic polypeptide for stem cell culture. Bioinspir Biomim 7(4):046007CrossRefGoogle Scholar
  98. 98.
    Scarcelli G, Yun SH (2007) Confocal Brillouin microscopy for three-dimensional mechanical imaging. Nat Photonics 2:39–43.  https://doi.org/10.1038/nphoton.2007.250CrossRefGoogle Scholar
  99. 99.
    Scarcelli G, Yun SH (2011) Multistage vipa etalons for high-extinction parallel Brillouin spectroscopy. Opt Express 19(10):913–10922.  https://doi.org/10.1364/OE.19.010913CrossRefGoogle Scholar
  100. 100.
    Scarcelli G, Yun SH (2012) In vivo Brillouin optical microscopy of the human eye. Opt Express 20:9197–9202.  https://doi.org/10.1364/OE.20.009197CrossRefGoogle Scholar
  101. 101.
    Scarcelli G, Kim P, Yun SH (2011) In vivo measurement of age-related stiffening in the crystalline lens by Brillouin optical microscopy. Biophys J 101:1539–1545.  https://doi.org/10.1016/j.bpj.2011.08.008CrossRefGoogle Scholar
  102. 102.
    Scarcelli G, Polacheck WJ, Nia HT, Patel K, Grodzinsky AJ, Kamm RD, Yun SH (2015) Noncontact three-dimensional mapping of intracellular hydromechanical properties by Brillouin microscopy. Nat Methods 12:1132–1134.  https://doi.org/10.1038/nmeth.3616CrossRefGoogle Scholar
  103. 103.
    Scarponi F, Mattana S, Corezzi S, Caponi S, Comez L, Sassi P, Morresi A, Paolantoni M, Urbanelli L, Emiliani C et al (2017) High-performance versatile setup for simultaneous Brillouin-Raman microspectroscopy. Phys Rev X 7(3):031015Google Scholar
  104. 104.
    Schlüßler R, Möllmert S, Abuhattum S, Cojoc G, Müller P, Kim K, Möckel C, Zimmermann C, Czarske J, Guck J (2018) Mechanical mapping of spinal cord growth and repair in living Zebrafish larvae by Brillouin imaging. Biophys J 115(5):911–923CrossRefGoogle Scholar
  105. 105.
    Schneider D, Gomopoulos N, Koh CY, Papadopoulos P, Kremer F, Thomas EL, Fytas G (2016) Nonlinear control of high-frequency phonons in spider silk. Nat Mater 15(10):1079CrossRefGoogle Scholar
  106. 106.
    Schwarz US, Gardel ML (2012) United we stand – integrating the actin cytoskeleton and cell–matrix adhesions in cellular mechanotransduction. J Cell Sci 125:3051.  https://doi.org/10.1242/jcs.093716. http://jcs.biologists.org/content/early/2012/07/10/jcs.093716CrossRefGoogle Scholar
  107. 107.
    Scott ON, Begley MR, Komaragiri U, Mackin TJ (2004) Indentation of freestanding circular elastomer films using spherical indenters. Acta Mater 52:4877–4885.  https://doi.org/10.1016/j.actamat.2004.06.043CrossRefGoogle Scholar
  108. 108.
    Sebastian T, Schultheiss K, Obry B, Hillebrands B, Schultheiss H, Obry B (2015) Micro-focused Brillouin light scattering: imaging spin waves at the nanoscale. Front Phys 3:35.  https://doi.org/10.3389/fphy.2015.00035. http://adsabs.harvard.edu/abs/2015FrP..... 3...35SCrossRefGoogle Scholar
  109. 109.
    Smith L, Ma P (2004) Nano-fibrous scaffolds for tissue engineering. Colloids Surf B: Biointerfaces 39(3):125–131CrossRefGoogle Scholar
  110. 110.
    Smolyakov G, Pruvost S, Cardoso L, Alonso B, Belamie E, Duchet-Rumeau J (2016) AFM PeakForce QNM mode: evidencing nanometre-scale mechanical properties of chitin-silica hybrid nanocomposites. Carbohydr Polym 151:373–380.  https://doi.org/10.1016/j.carbpol.2016.05.042CrossRefGoogle Scholar
  111. 111.
    Sneddon IN (1965) The relation between load and penetration in the axisymmetric boussinesq problem for a punch of arbitrary profile. Int J Eng Sci 3(1):47–57.  https://doi.org/10.1016/0020-7225(65)90019-4CrossRefGoogle Scholar
  112. 112.
    Solano I, Parisse P, Gramazio F, Ianeselli L, Medagli B, Cavalleri O, Casalis L, Canepa M (2017) Atomic force microscopy and spectroscopic ellipsometry combined analysis of small ubiquitin-like modifier adsorption on functional monolayers. Appl Surf Sci 421:722–727.  https://doi.org/10.1016/j.apsusc.2016.10.195CrossRefGoogle Scholar
  113. 113.
    Sweers K, van der Werf K, Bennink M, Subramaniam V (2011) Nanomechanical properties of α-synuclein amyloid fibrils: a comparative study by nanoindentation, harmonic force microscopy, and peakforce QNM. Nanoscale Res Lett 6(1):270.  https://doi.org/10.1186/1556-276x-6-270CrossRefGoogle Scholar
  114. 114.
    Tomar V, Qu T, Dubey DK, Verma D, Zhang Y (2015) Introduction. In: Multiscale characterization of biological systems. New York: Springer-Verlag  https://doi.org/10.1007/978-1-4939-3453-9CrossRefGoogle Scholar
  115. 115.
    Traverso AJ, Thompson JV, Steelman ZA, Meng Z, Scully MO, Yakovlev VV (2015) Dual Raman-Brillouin microscope for chemical and mechanical characterization and imaging. Anal Chem 87:7519–7523.  https://doi.org/10.1021/acs.analchem.5b02104CrossRefGoogle Scholar
  116. 116.
  117. 117.
    Vacher R, Boyer L (1972) Brillouin scattering: a tool for the measurement of elastic and photoelastic constants. Phys Rev B 6(2):639CrossRefGoogle Scholar
  118. 118.
    Vacher Sussner H, Schmidt M, Hunklinger S (1980) High resolution studies of Brillouin scattering in amorphous materials, Chap. 13. In: Maris HJ (ed) Phonon scattering in condensed matter. Springer, Boston, pp 61–64CrossRefGoogle Scholar
  119. 119.
    Vacher R, Pelous J, Courtens E (1997) Mean free path of high-frequency acoustic excitations in glasses with application to vitreous silica. Phys Rev B 56(2):R481CrossRefGoogle Scholar
  120. 120.
    Vassalli M, Sbrana F, Laurita A, Papi M, Bloise N, Visai L, Bochicchio B (2013) Biological and structural characterization of a naturally inspired material engineered from elastin as a candidate for tissue engineering applications. Langmuir 29(15):898–15906.  https://doi.org/10.1021/la403311xCrossRefGoogle Scholar
  121. 121.
    Vaughan J, Randall J (1980) Brillouin scattering, density and elastic properties of the lens and cornea of the eye. Nature 284(5755):489–491CrossRefGoogle Scholar
  122. 122.
    Vezenov DV, Noy A, Rozsnyai LF, Lieber CM (1997) Force titrations and ionization state sensitive imaging of functional groups in aqueous solutions by chemical force microscopy. J Am Chem Soc 119(8):2006–2015CrossRefGoogle Scholar
  123. 123.
    Vinckier A, Semenza G (1998) Measuring elasticity of biological materials by atomic force microscopy. FEBS Lett 430(1–2):12–16.  https://doi.org/10.1016/s0014-5793(98)00592-4CrossRefGoogle Scholar
  124. 124.
    Wake MC, Patrick CW, Mikos AG (1994) Pore morphology effects on the fibrovascular tissue growth in porous polymer substrates. Cell Transplant 3:339–343CrossRefGoogle Scholar
  125. 125.
    Wang N, Tytell JD, Ingber DE (2009) Mechanotransduction at a distance: mechanically coupling the extracellular matrix with the nucleus. Nat Rev Mol Cell Biol 10(1):75CrossRefGoogle Scholar
  126. 126.
    Welzel PB, Friedrichs J, Grimmer M, Vogler S, Freudenberg U, Werner C (2014) Cryogel micromechanics unraveled by atomic force microscopy-based nanoindentation. Adv Healthc Mater 3(11):1849–1853CrossRefGoogle Scholar
  127. 127.
    Wen JH, Vincent LG, Fuhrmann A, Choi YS, Hribar KC, Taylor-Weiner H, Chen S, Engler AJ (2014) Interplay of matrix stiffness and protein tethering in stem cell differentiation. Nat Mater 13:979–987.  https://doi.org/10.1038/nmat4051CrossRefGoogle Scholar
  128. 128.
    Wolff L, Fernández P, Kroy K (2012) Resolving the stiffening-softening paradox in cell mechanics. PLoS One 7:e40063.  https://doi.org/10.1371/journal.pone.0040063CrossRefGoogle Scholar
  129. 129.
    Xavier JR, Thakur T, Desai P, Jaiswal MK, Sears N, Cosgriff-Hernandez E, Kaunas R, Gaharwar AK (2015) Bioactive nanoengineered hydrogels for bone tissue engineering: a growth-factor-free approach. ACS Nano 9(3):3109–3118CrossRefGoogle Scholar
  130. 130.
    Xu J, Läuger K, Dransfeld K, Wilson I (1994) Thermal sensors for investigation of heat transfer in scanning probe microscopy. Rev Sci Instrum 65(7):2262–2266CrossRefGoogle Scholar
  131. 131.
    Yun SH, Chernyak D (2018) Brillouin microscopy: assessing ocular tissue biomechanics. Curr Opin Ophthalmol 29:299–305.  https://doi.org/10.1097/ICU.0000000000000489CrossRefGoogle Scholar
  132. 132.
    Zeltinger J, Sherwood JK, Graham DA, Müeller R, Griffith LG (2001) Effect of pore size and void fraction on cellular adhesion, proliferation, and matrix deposition. Tissue Eng 7:557–572.  https://doi.org/10.1089/107632701753213183CrossRefGoogle Scholar
  133. 133.
    Zwanzig R, Mountain RD (1965) High-frequency elastic moduli of simple fluids. J Chem Phys 43(12):4464–4471CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Silvia Caponi
    • 1
  • Claudio Canale
    • 2
  • Ornella Cavalleri
    • 2
  • Massimo Vassalli
    • 3
    Email author
  1. 1.Istituto Officina dei MaterialiNational Research CouncilPerugiaItaly
  2. 2.Department of PhysicsUniversity of GenovaGenoaItaly
  3. 3.Institute of BiophysicsNational Research CouncilGenoaItaly

Personalised recommendations