Thermal Management Techniques for Concentrating Photovoltaic Modules

  • Xiaoru Zhuang
  • Xinhai XuEmail author
  • Jianpeng Cui


Concentrating photovoltaic technology is one of the most promising solar energy utilization technologies which can directly transform sunlight into electricity with high conversion efficiency up to 46%. Nevertheless, the concentrator brings a large amount of heat to the solar cell and temperature of the solar cell significantly affects its performance by reducing the efficiency and lifespan. Therefore, it is necessary to use proper cooling technology to dissipate the excess heat and maintain the solar cell temperature in an acceptable range. This work presents an overview of various cooling technologies available for concentrating photovoltaic systems in terms of passive and active methods. In passive cooling, natural convection heat sink cooling, heat pipe cooling, and phase change material cooling have been summarized. Inactive cooling, jet impingement cooling, liquid immersion cooling, and microchannel heat sink cooling have been evaluated. At last, discussions of these cooling techniques were reviewed.


Concentrating photovoltaic Thermal management Passive cooling Active cooling 



Support from the National Natural Science Foundation of China (51706056) and China Postdoctoral Science Foundation (2018 M631927) is greatly acknowledged.


  1. 1.
    L. Micheli, N. Sarmah, X. Luo, K.S. Reddy, T.K. Mallick, Opportunities and challenges in micro-and nano-technologies for concentrating photovoltaic cooling: a review. Renew. Sust. Energ. Rev. 20, 595–610 (2013)CrossRefGoogle Scholar
  2. 2.
    S. Jakhar, M.S. Soni, N. Gakkhar, Historical and recent development of concentrating photovoltaic cooling technologies. Renew. Sust. Energ. Rev. 60, 41–59 (2016)CrossRefGoogle Scholar
  3. 3.
    K. Lovegrove, W. Stein, Concentrating Solar Power Technology: Principles, Developments, and Applications Woodhead Publishing Limited, Cambridge, UK (2012)Google Scholar
  4. 4.
    M. Soni, M. Padmini, Concentrating solar photovoltaic, in IVth International Conference on Advances in Energy Research Mumbai, India (2013)Google Scholar
  5. 5.
    I.S.E. Fraunhofer, The new world record for solar cell efficiency at 46% (2014). Press release, Fraunhofer ISE, December 1. Available at 14 Sept 2017
  6. 6.
    M.A. Green, K. Emery, Y. Hishikawa, W. Warta, E.D. Dunlop, D.H. Levi, et al., Solar cell efficiency tables (version 49). Prog. Photovolt. Res. Appl. 25, 565–572 (2010)Google Scholar
  7. 7.
    P. Pérez-Higueras, E. Muñoz, G. Almonacid, P.G. Vidal, High concentrator photovoltaics efficiencies: Present status and forecast. Renew. Sustain. Energy Rev. 15(4), 1810–1815 (2011)CrossRefGoogle Scholar
  8. 8.
    A. Royne, C.J. Dey, D.R. Mills, Cooling of photovoltaic cells under concentrated illumination: a critical review. Sol. Energy Mater. Sol. Cells 86(4), 451–483 (2005)CrossRefGoogle Scholar
  9. 9.
    Z. Ye, Q. Li, Q. Zhu, W. Pan, The cooling technology of solar cells under a concentrated system, in Proceedings of the IEEE 6th International Power Electro and Motion Control Conference, IPEMC’09, 3 Wuhan, China (2009), pp. 2193–2197Google Scholar
  10. 10.
    E. Skoplaki, J.A. Palyvos, On the temperature dependence of photovoltaic module electrical performance: a review of efficiency/power correlations. Sol. Energy 83(5), 614–624 (2009)CrossRefGoogle Scholar
  11. 11.
    A. Aldossary, S. Mahmoud, R. Al-Dadah, Technical feasibility study of passive and active cooling for concentrator PV in a harsh environment. Appl. Therm. Eng. 100, 490–500 (2016)CrossRefGoogle Scholar
  12. 12.
    K. Nashik, T. Takamoto, T. Agui, M. Kaneiwa, Y. Uraoka, T. Fuyuki, Annual output estimation of concentrator photovoltaic systems using high-efficiency gap/in GaAs/Ge triple-junction solar cells based on experimental solar cell's characteristics and field-test meteorological data. Sol. Energy Mater. Sol. Cells 90(1), 57–67 (2006)CrossRefGoogle Scholar
  13. 13.
    K. Araki, H. Uozumi, M. Yamaguchi, A simple passive cooling structure and its heat analysis for 500× concentrator PV module, in Photovoltaic Specialists Conference, 2002. Conference Record of the Twenty-Ninth IEEE, New Orleans, Los Angeles, USA, vol. 18 (IEEE, 2002), pp.1568–1571Google Scholar
  14. 14.
    T. L. Chou, Z. H. Shih, H. F. Hong, C. N. Han, Investigation of the thermal performance of high-concentration photovoltaic solar cell package, in International Conference on Electronic Materials and Packaging Daejeon, South Korea (IEEE, 2007), pp. 1–6Google Scholar
  15. 15.
    F. Gualdi, O. Arenas, A. Vossier, A. Dollet, V. Aimez, R. Arès, Determining passive cooling limits in CPV using an analytical thermal model, 9th International Conference on Concentrator Photovoltaic Systems, Miyazaki, Japan, AIP Conference Proceeding. 1556(48), 10–13 (2013)Google Scholar
  16. 16.
    M. Cui, N.F. Chen, X.L. Yang, Y. Wang, Y.N. Bai, X.W. Zhang, Thermal analysis and test for single concentrator solar cells. J. Semicond. 30(4), 63–66 (2009)Google Scholar
  17. 17.
    S.K. Natarajan, T.K. Mallick, M. Katz, S. Weingaertner, Numerical investigations of solar cell temperature for photovoltaic concentrator system with and without passive cooling arrangements. Int. J. Therm. Sci. 50(12), 2514–2521 (2011)CrossRefGoogle Scholar
  18. 18.
    L. Micheli, E.F. Fernandez, F. Almonacid, K.S. Reddy, T.K. Mallick, Enhancing Ultra-High CPV Passive Cooling Using Least-Material Finned Heat Sinks, American Institute of Physics Conference Series, vol 1679 (AIP Publishing LLC, 2015), pp. 1810–001575Google Scholar
  19. 19.
    L. Micheli, E. F. Fernández, F. Almonacid, K. S. Reddy, T. K. Mallick, Optimization of the least-material approach for passive Ultra-High CPV cooling, in Photovoltaic Specialist Conference, New Orleans, Los Angeles, USA (IEEE, 2015), pp. 1–6Google Scholar
  20. 20.
    L. Micheli, S. Senthilarasu, K.S. Reddy, T.K. Mallick, Applicability of silicon micro-finned heat sinks for 500× concentrating photovoltaic systems. J. Mater. Sci. 50(16), 5378–5388 (2015)CrossRefGoogle Scholar
  21. 21.
    K.H. Do, T.H. Kim, Y.S. Han, B.I. Choi, M.B. Kim, A general correlation of a natural convective heat sink with plate-fins for high concentrating photovoltaic module cooling. Sol. Energy 86(9), 2725–2734 (2012)CrossRefGoogle Scholar
  22. 22.
    A. Bar-Cohen, M. Iyengar, A.D. Kraus, Design of optimum plate-fin natural convective heat sinks. J. Electron. Packag. 125(2), 208–216 (2003)CrossRefGoogle Scholar
  23. 23.
    A. Dayan, R. Kushnir, G. Mittelman, A. Ullmann, Laminar free convection underneath a downward facing hot fin array. Int. J. Heat Mass Transfer 47(12), 2849–2860 (2004)CrossRefGoogle Scholar
  24. 24.
    Z. Zou, H. Gong, J. Wang, S. Xie, Numerical investigation of solar enhanced passive air cooling system for concentration photovoltaic module heat dissipation. J. Clean Energy Technol. 5(3)206–211 (2017)CrossRefGoogle Scholar
  25. 25.
    G. F. Russell, U.S. Patent No. 4,320,246, 1982. U.S. Patent and Trademark Office, Washington, DCGoogle Scholar
  26. 26.
    A. Akbarzadeh, T. Wadowski, Heat pipe-based cooling systems for photovoltaic cells under concentrated solar radiation. Appl. Therm. Eng. 16(1), 81–87 (1996)CrossRefGoogle Scholar
  27. 27.
    A. Cheknane, B. Benyoucef, A. Chaker, Performance of concentrator solar cells with passive cooling. Semicond. Sci. Technol. 21(2), 144 (2006)CrossRefGoogle Scholar
  28. 28.
    W. G. Anderson, P. M. Dussinger, D. B. Sarraf, S. Tamanna, Heat pipe cooling of concentrating photovoltaic cells, in Photovoltaic Specialists Conference, 2008. PVSC’08. 33rd IEEE (IEEE¸ 2008, May), San Diego, California, USA, pp. 1–6Google Scholar
  29. 29.
    H.J. Huang, S.C. Shen, H.J. Shaw, Design and fabrication of a novel hybrid-structure heat pipe for a concentrator photovoltaic. Energies 5(11), 4340–4349 (2012)CrossRefGoogle Scholar
  30. 30.
    S. Wang, J. Shi, H. H. Chen, S. R. Schafer, M. Munir, G. Stecker, …, C. L. Chen, Cooling design and evaluation for photovoltaic cells within constrained space in a CPV/CSP hybrid solar system. Appl. Therm. Eng. 110, 369–381 (2017)CrossRefGoogle Scholar
  31. 31.
    M.C. Browne, B. Norton, S.J. McCormack, Phase change materials for photovoltaic thermal management. Renew. Sust. Energ. Rev. 47, 762–782 (2015)CrossRefGoogle Scholar
  32. 32.
    T. Ma, H. Yang, Y. Zhang, L. Lu, X. Wang, Using phase change materials in photovoltaic systems for thermal regulation and electrical efficiency improvement: a review and outlook. Renew. Sust. Energ. Rev. 43, 1273–1284 (2015)CrossRefGoogle Scholar
  33. 33.
    M.M. Islam, A.K. Pandey, M. Hasanuzzaman, N.A. Rahim, Recent signs of progress and achievements in photovoltaic-phase change material technology: a review with special treatment on photovoltaic thermal-phase change material systems. Energy Convers. Manag. 126, 177–204 (2016)CrossRefGoogle Scholar
  34. 34.
    S.S. Chandel, T. Agarwal, Review of cooling techniques using phase change materials for enhancing the efficiency of photovoltaic power systems. Renew. Sust. Energ. Rev. 73, 1342–1351 (2017)CrossRefGoogle Scholar
  35. 35.
    S. Preet, Water and phase change material based photovoltaic thermal management systems: a review. Renew. Sust. Energ. Rev. 82, 791–807 (2018)CrossRefGoogle Scholar
  36. 36.
    S. Sharma, A. Tahir, K.S. Reddy, T.K. Mallick, Performance enhancement of a building-integrated concentrating photovoltaic system using phase change material. Sol. Energy Mater. Sol. Cells 149, 29–39 (2016)CrossRefGoogle Scholar
  37. 37.
    S. Sharma, L. Micheli, W. Chang, A.A. Tahir, K.S. Reddy, T.K. Mallick, Nano-enhanced phase change material for thermal management of BICPV. Appl. Energy 208, 719–733 (2017)CrossRefGoogle Scholar
  38. 38.
    M. Emam, S. Ookawara, M. Ahmed, Performance study and analysis of an inclined concentrated photovoltaic-phase change material system. Sol. Energy 150, 229–245 (2017)CrossRefGoogle Scholar
  39. 39.
    M. Emam, M. Ahmed, Cooling concentrator photovoltaic systems using various configurations of phase-change material heat sinks. Energy Convers. Manag. 158, 298–314 (2018)CrossRefGoogle Scholar
  40. 40.
    Y. Su, Y. Zhang, L. Shu, Experimental study of using phase change material cooling in a solar tracking concentrated photovoltaic-thermal system. Sol. Energy 159, 777–785 (2018)CrossRefGoogle Scholar
  41. 41.
    W. M. Rohsenow, Y. I. Cho, in Handbook of Heat Transfer, ed. by J. P. Hartnett, vol. 3 (McGraw-Hill, New York, 1998)Google Scholar
  42. 42.
    A. Royne, C.J. Dey, Design of a jet impingement cooling device for densely packed PV cells under high concentration. Sol. Energy 81(8), 1014–1024 (2007)CrossRefGoogle Scholar
  43. 43.
    D. Montorfano, A. Gaetano, M. C. Barbato, G. Ambrosetti, A. Pedretti, CPV cells cooling system based on submerged jet impingement: CFD modeling and experimental validation, in AIP Conference Proceedings, vol. 1616, No. 1 (AIP, 2014), Albuquerque, New Mexcico, USA, pp. 135–139Google Scholar
  44. 44.
    J. Barrau, J. Rosell, M. Ibañez, Design of a hybrid jet impingement/microchannel cooling device for densely packed PV cells under high concentration, in AIP Conference Proceedings, vol. 1277, No. 1 (AIP, 2010), Freiburg, Germany, pp. 74–77Google Scholar
  45. 45.
    J. Barrau, J. Rosell, D. Chemisana, L. Tadrist, M. Ibáñez, Effect of a hybrid jet impingement/micro-channel cooling device on the performance of densely packed PV cells under high concentration. Sol. Energy 85(11), 2655–2665 (2011)CrossRefGoogle Scholar
  46. 46.
    J. Barrau, A. Perona, A. Dollet, J. Rosell, Outdoor test of a hybrid jet impingement/micro-channel cooling device for densely packed concentrated photovoltaic cells. Sol. Energy 107, 113–121 (2014)CrossRefGoogle Scholar
  47. 47.
    X. Han, Y. Wang, L. Zhu, Electrical and thermal performance of silicon concentrator solar cells immersed in dielectric liquids. Appl. Energy 88(12), 4481–4489 (2011)CrossRefGoogle Scholar
  48. 48.
    L. Zhu, Y. Wang, Z. Fang, Y. Sun, Q. Huang, An effective heat dissipation method for densely packed solar cells under high concentrations. Sol. Energy Mater. Sol. Cells 94(2), 133–140 (2010)CrossRefGoogle Scholar
  49. 49.
    L. Liu, L. Zhu, Y. Wang, Q. Huang, Y. Sun, Z. Yin, Heat dissipation performance of silicon solar cells by direct dielectric liquid immersion under intensified illuminations. Sol. Energy 85(5), 922–930 (2011)CrossRefGoogle Scholar
  50. 50.
    L. Zhu, R.F. Boehm, Y. Wang, C. Halford, Y. Sun, Water immersion cooling of PV cells in a high concentration system. Sol. Energy Mater. Sol. Cells 95(2), 538–545 (2011)CrossRefGoogle Scholar
  51. 51.
    X. Han, Y. Wang, L. Zhu, H. Xiang, H. Zhang, Mechanism study of the electrical performance change of silicon concentrator solar cells immersed in de-ionized water. Energy Convers. Manag. 53(1), 1–10 (2012)CrossRefGoogle Scholar
  52. 52.
    H. Xiang, Y. Wang, L. Zhu, X. Han, Y. Sun, Z. Zhao, 3D numerical simulation on heat transfer performance of a cylindrical liquid immersion solar receiver. Energy Convers. Manag. 64, 97–105 (2012)CrossRefGoogle Scholar
  53. 53.
    Y. Sun, Y. Wang, L. Zhu, B. Yin, H. Xiang, Q. Huang, Direct liquid-immersion cooling of concentrator silicon solar cells in a linear concentrating photovoltaic receiver. Energy 65, 264–271 (2014)CrossRefGoogle Scholar
  54. 54.
    X. Han, Y. Wang, L. Zhu, The performance and long-term stability of silicon concentrator solar cells immersed in dielectric liquids. Energy Convers. Manag. 66, 189–198 (2013)CrossRefGoogle Scholar
  55. 55.
    G. Xin, Y. Wang, Y. Sun, Q. Huang, L. Zhu, Experimental study of liquid-immersion III–V multi-junction solar cells with dimethyl silicone oil under high concentrations. Energy Convers. Manag. 94, 169–177 (2015)CrossRefGoogle Scholar
  56. 56.
    X. Han, Q. Wang, J. Zheng, J. Qu, Thermal analysis of direct liquid-immersed solar receiver for a high concentrating photovoltaic system. Int. J. Photoenergy (2015)Google Scholar
  57. 57.
    X. Kang, Y.P. Wang, G.C. Xin, X.S. Shi, Experiment and simulation study on silicon oil immersion cooling densely-packed solar cells under high concentration ratio. Int. J. Energy Power Eng. 5(3), 90–96 (2016)CrossRefGoogle Scholar
  58. 58.
    X. Kang, Y. Wang, Q. Huang, Y. Cui, X. Shi, Y. Sun, Study on direct-contact phase-change liquid immersion cooling dense-array solar cells under high concentration ratios. Energy Convers. Manage. 128, 95–103 (2016)CrossRefGoogle Scholar
  59. 59.
    Y. Wang, C. Wen, Q. Huang, X. Kang, M. Chen, H. Wang, Performance comparison between ethanol phase-change immersion and active water cooling for solar cells in a high concentrating photovoltaic system. Energy Convers. Manage. 149, 505–513 (2017)CrossRefGoogle Scholar
  60. 60.
    Y. Wang, X. Shi, Q. Huang, Y. Cui, X. Kang, Experimental study on direct-contact liquid film cooling simulated dense-array solar cells in the high concentrating photovoltaic system. Energy Convers. Manage. 135, 55–62 (2017)CrossRefGoogle Scholar
  61. 61.
    Y. Wang, L. Zhou, X. Kang, Q. Huang, X. Shi, C. Wang, Experimental and numerical optimization of direct-contact liquid film cooling in high concentration photovoltaic system. Energy Convers. Manage. 154, 603–614 (2017)CrossRefGoogle Scholar
  62. 62.
    L. R. Glicksman, R. L. R. J. Phillips, Forced-convection, liquid cooled; microchannel heat sinks for high power-density microelectronics, in Proceedings of the International Symposium on Cooling Technology for Electronic Equipment (1987), pp. 295–316Google Scholar
  63. 63.
    A.M. Adham, N. Mohd-Ghazali, R. Ahmad, Thermal and hydrodynamic analysis of microchannel heat sinks a review. Renew. Sustain. Energy Rev. 21(21), 614–622 (2013)CrossRefGoogle Scholar
  64. 64.
    J. A. A. Ortegón, J. P. Cassiano, E. M. Cardoso, J. B. C. Silva, CFD analysis of a microchannel heat sink cooling system for high concentration photovoltaic systems, in Cilamce, Florianópolis, SC, Brazil, November, 5–8 (2017)Google Scholar
  65. 65.
    M.D.H. Capua, R. Escobar, A.J. Diaz, A.M. Guzmán, Enhancement of the cooling capability of a high concentration photovoltaic system using microchannels with forwarding triangular ribs on sidewalls. Appl. Energy 226, 160–180 (2018)CrossRefGoogle Scholar
  66. 66.
    K. Vafai, L. Zhu, Analysis of two-layered micro-channel heat sink concept in electronic cooling. Int. J. Heat Mass Transf. 42(12), 2287–2297 (1999)CrossRefGoogle Scholar
  67. 67.
    X. Wei, Y. Joshi, Stacked microchannel heat sinks for liquid cooling of microelectronic components. J. Electron. Packag. 126(1), 60–66 (2004)CrossRefGoogle Scholar
  68. 68.
    A. Radwan, M. Ahmed, The influence of microchannel heat sink configurations on the performance of low concentrator photovoltaic systems. Appl. Energy 206, 594–611 (2017)CrossRefGoogle Scholar
  69. 69.
    I. A. Siyabi, K. Shanks, T. Mallick, S. Sundaram, Thermal analysis of a multi-layer microchannel heat sink for cooling concentrator photovoltaic (CPV) cells, in AIP Conference Proceedings, vol. 1881, No. 1 (AIP Publishing, 2017), Ottawa, Canada, p. 070001Google Scholar
  70. 70.
    J.H. Ryu, D.H. Choi, S.J. Kim, Three-dimensional numerical optimization of a manifold microchannel heat sink. Int. J. Heat Mass Transf. 46(9), 1553–1562 (2003)CrossRefGoogle Scholar
  71. 71.
    E. Kermani, S. Dessiatoun, A. Shooshtari, M. M. Ohadi, Experimental investigation of heat transfer performance of a manifold microchannel heat sink for cooling of concentrated solar cells, in Electronic Components and Technology Conference, 2009. ECTC 2009. 59th (IEEE, 2009), San Diego, California, USA pp. 453–459Google Scholar
  72. 72.
    K. Yang, C. Zuo, A novel multi-layer manifold microchannel cooling system for concentrating photovoltaic cells. Energy Convers. Manag. 89, 214–221 (2015)CrossRefGoogle Scholar
  73. 73.
    J. Dong, X. Zhuang, X. Xu, Z. Miao, B. Xu, Numerical analysis of a multi-channel active cooling system for densely packed concentrating photovoltaic cells. Energy Convers. Manag. 161, 172–181 (2018)CrossRefGoogle Scholar
  74. 74.
    A. Radwan, M. Ahmed, S. Ookawara, Performance enhancement of concentrated photovoltaic systems using a microchannel heat sink with nanofluids. Energy Convers. Manag. 119, 289–303 (2016)CrossRefGoogle Scholar
  75. 75.
    A. Radwan, S. Ookawara, S. Mori, M. Ahmed, Uniform cooling for concentrator photovoltaic cells and electronic chips by forced convective boiling in a 3D-printed monolithic double-layer microchannel heat sink. Energy Convers. Manag. 166, 356–371 (2018)CrossRefGoogle Scholar
  76. 76.
    B. W. Webb, C. F. Ma, Single-phase liquid jet impingement heat transfer, in Advances in Heat Transfer, vol. 26 (Elsevier, 1995), Salt Lake City, Utah, USA, pp. 105–217Google Scholar
  77. 77.
    D.Y. Lee, K. Vafai, Comparative analysis of jet impingement and microchannel cooling for high heat flux applications. Int. J. Heat Mass Transf. 42(9), 1555–1568 (1999)CrossRefGoogle Scholar
  78. 78.
    M. Ahmed, M. Eslamian, Laminar forced convection of a nanofluid in a microchannel: effect of flow inertia and external forces on heat transfer and fluid flow characteristics. Appl. Therm. Eng. 78, 326–338 (2015)CrossRefGoogle Scholar
  79. 79.
    C. Huh, M.H. Kim, An experimental investigation of flow boiling in an asymmetrically heated rectangular microchannel. Exp. Thermal Fluid Sci. 30(8), 775–784 (2006)CrossRefGoogle Scholar
  80. 80.
    L. Yin, R. Xu, P. Jiang, H. Cai, L. Jia, Subcooled flow boiling of water in a large aspect ratio microchannel. Int. J. Heat Mass Transf. 112, 1081–1089 (2017)CrossRefGoogle Scholar
  81. 81.
    W. Lin, Z. Ma, P. Cooper, M.I. Sohel, L. Yang, Thermal performance investigation and optimization of buildings with integrated phase change materials and solar photovoltaic thermal collectors. Energ. Buildings 116, 562–573 (2016)CrossRefGoogle Scholar
  82. 82.
    A. Hasan, S.J. McCormack, M.J. Huang, B. Norton, Characterization of phase change materials for thermal control of photovoltaics using differential scanning calorimetry and temperature history method. Energy Convers. Manag. 81, 322–329 (2014)CrossRefGoogle Scholar
  83. 83.
    M.J. Huang, P.C. Eames, B. Norton, Phase change materials for limiting temperature rise in building integrated photovoltaics. Sol. Energy 80(9), 1121–1130 (2006)CrossRefGoogle Scholar
  84. 84.
    M.J. Huang, P.C. Eames, B. Norton, N.J. Hewitt, Natural convection in an internally finned phase change material heat sink for the thermal management of photovoltaics. Sol. Energy Mater. Sol. Cells 95(7), 1598–1603 (2011)CrossRefGoogle Scholar
  85. 85.
    U. Stritih, Increasing the efficiency of PV panel with the use of PCM. Renew. Energy 97, 671–679 (2016)CrossRefGoogle Scholar
  86. 86.
    S. Preet, B. Bhushan, T. Mahajan, Experimental investigation of water-based photovoltaic/thermal (PV/T) system with and without phase change material (PCM). Sol. Energy 155, 1104–1120 (2017)CrossRefGoogle Scholar
  87. 87.
    T. Klemm, A. Hassabou, A. Abdallah, O. Andersen, Thermal energy storage with phase change materials to increase the efficiency of solar photovoltaic modules. Energy Procedia 135, 193–202 (2017)CrossRefGoogle Scholar
  88. 88.
    Z. Luo, Z. Huang, N. Xie, X. Gao, T. Xu, Y. Fang, Z. Zhang, Numerical and experimental study on temperature control of solar panels with form-stable paraffin/expanded graphite composite PCM. Energy Convers. Manag. 149, 416–423 (2017)CrossRefGoogle Scholar
  89. 89.
    S. Nižetić, M. Arıcı, F. Bilgin, F. Grubišić-Čabo, Investigation of pork fat as potential novel phase change material for passive cooling applications in photovoltaics. J. Clean. Prod. 170, 1006–1016 (2018)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Mechanical Engineering and AutomationHarbin Institute of TechnologyShenzhenChina
  2. 2.Institute of Hydrogen and Fuel Cell, Harbin Institute of TechnologyShenzhenChina

Personalised recommendations