Advertisement

Design, Engineering, and Evaluation of Porphyrins for Dye-Sensitized Solar Cells

  • Wenhui Li
  • Mahamoud Elkhaklifa
  • Hongshan HeEmail author
Chapter

Abstract

Dye-sensitized solar cells (DSCs) have attracted worldwide attention due to their low cost and versatility. Porphyrins have broad and intense absorption in the visible region, versatility in tuning the molecular structure. Early porphyrin dyes are generally β-functionalized meso-teraarylporphyrins. In the late 2000s, several groups began to pay their attention to meso-functionalized porphyrins. In 2010, the meso- functionalized porphyrin dye with donor-π-acceptor structure, achieved an efficiency of 11%. Since then, dozens of donor-π-acceptor porphyrin dyes with >10% efficiency have been reported. In 2014, the energy conversion efficiency of 13% was reached. However, some challenges still exist including inefficient photon capture in the regions around 520 nm and >700 nm, severe aggregation because of porphyrin’s planar structure and rich π electrons, and poor long-term stability resulting from the weak binding capability of the anchoring group. In this chapter, we will provide readers the operation principles of DSC, an evolution of porphyrin dyes as the best candidates for DSCs, and challenges facing porphyrin dyes for DSCs. Different design strategies, synthetic protocols, as well as their photovoltaic performance of representative dyes will be discussed.

Keywords

Porphyrin Solar cells Photovoltaics Synthesis 

Notes

Acknowledgments

HH thanks Department of Chemistry & Biochemistry, Eastern Illinois University, for the support of this work.

References

  1. 1.
    M.I. Asghar, K. Miettunen, J. Halme, P. Vahermaa, M. Toivola, K. Aitola, P. Lund, Review of stability for advanced dye solar cells. Energy Environ. Sci. 3(4), 418–426 (2010).  https://doi.org/10.1039/B922801BCrossRefGoogle Scholar
  2. 2.
    J.M. Ball, N.K.S. Davis, J.D. Wilkinson, J. Kirkpatrick, J. Teuscher, R. Gunning, H.L. Anderson, H.J. Snaith, A panchromatic anthracene-fused porphyrin sensitizer for dye-sensitized solar cells. RSC Adv. 2(17), 6846–6853 (2012).  https://doi.org/10.1039/C2RA20952GCrossRefGoogle Scholar
  3. 3.
    T. Bessho, S.M. Zakeeruddin, C.Y. Yeh, E.W. Diau, M. Grätzel, Highly efficient mesoscopic dye-sensitized solar cells based on donor-acceptor-substituted porphyrins. Angew. Chem. Int. Ed. Engl. 49(37), 6646–6649 (2010).  https://doi.org/10.1002/anie.201002118CrossRefGoogle Scholar
  4. 4.
    B.J. Brennan, M.J. Llansola Portolés, P.A. Liddell, T.A. Moore, A.L. Moore, D. Gust, Comparison of silatrane, phosphonic acid, and carboxylic acid functional groups for attachment of porphyrin sensitizers to TiO2 in photoelectrochemical cells. Phys. Chem. Chem. Phys. 15(39), 16605–16614 (2013).  https://doi.org/10.1039/c3cp52156gCrossRefGoogle Scholar
  5. 5.
    W.M. Campbell, A.K. Burrell, D.L. Officer, K.W. Jolley, Porphyrins as light harvesters in the dye-sensitized TiO2 solar cell. Coord. Chem. Rev. 248(13), 1363–1379 (2004).  https://doi.org/10.1016/j.ccr.2004.01.007CrossRefGoogle Scholar
  6. 6.
    W.M. Campbell, K.W. Jolley, P. Wagner, K. Wagner, P.J. Walsh, K.C. Gordon, L. Schmidt-Mende, M.K. Nazeeruddin, Q. Wang, M. Grätzel, Highly efficient porphyrin sensitizers for dye-sensitized solar cells. J. Phys. Chem. C 111(32), 11760–11762 (2007).  https://doi.org/10.1021/jp0750598CrossRefGoogle Scholar
  7. 7.
    Y. Cao, B. Yu, Q. Yu, Y. Cheng, S. Liu, S. Dong, F. Gao, P. Wang, Dye-sensitized solar cells with a high absorptivity ruthenium sensitizer featuring a 2-(hexylthio)thiophene conjugated bipyridine. J. Phys. Chem. C 113(15), 6290–6297 (2009).  https://doi.org/10.1021/jp9006872CrossRefGoogle Scholar
  8. 8.
    C.M. Carcel, J.K. Laha, R.S. Loewe, P. Thamyongkit, K. Schweikart, V. Misra, D.F. Bocian, J.S. Lindsey, Porphyrin architectures tailored for studies of molecular information storage. J. Org. Chem. 69(20), 6739–6750 (2004).  https://doi.org/10.1021/jo0498260CrossRefGoogle Scholar
  9. 9.
    D.E. Carlson, C.R. Wronski, Amorphous silicon solar cells. IEEE Trans. Electron Devices 36(12), 2775–2780 (1976).  https://doi.org/10.1063/1.88617CrossRefGoogle Scholar
  10. 10.
    Y.C. Chang, C.L. Wang, T.Y. Pan, S.H. Hong, C.M. Lan, H.H. Kuo, C.F. Lo, H.Y. Hsu, C.Y. Lin, E.W. Diau, A strategy to design highly efficient porphyrin sensitizers for dye-sensitized solar cells. Chem. Commun. 47(31), 8910–8912 (2011).  https://doi.org/10.1039/C1CC12764KCrossRefGoogle Scholar
  11. 11.
    C. Chen, X. Yang, M. Cheng, F. Zhang, L. Sun, Degradation of cyanoacrylic acid-based organic sensitizers in dye-sensitized solar cells. ChemSusChem 6(7), 1270–1275 (2013).  https://doi.org/10.1002/cssc.201200949CrossRefGoogle Scholar
  12. 12.
    S. Cherian, C.C. Wamser, Adsorption and photoactivity of tetra(4-carboxyphenyl)porphyrin (TCPP) on nanoparticulate TiO2. J. Phys. Chem. B 104(104), 3624–3629 (2000).  https://doi.org/10.1021/jp994459vCrossRefGoogle Scholar
  13. 13.
    J.N. Clifford, E. Martínez-Ferrero, A. Viterisi, E. Palomares, Sensitizer molecular structure-device efficiency relationship in dye-sensitized solar cells. Chem. Soc. Rev. 40(3), 1635–1646 (2011).  https://doi.org/10.1039/b920664gCrossRefGoogle Scholar
  14. 14.
    J.R. Darwent, P. Douglas, A. Harriman, G. Porter, M.C. Richoux, Metal phthalocyanines and porphyrins as photosensitizers for reduction of water to hydrogen. Coord. Chem. Rev. 44(1), 83–126 (1982).  https://doi.org/10.1016/S0010-8545(00)80518-4CrossRefGoogle Scholar
  15. 15.
    H. Deng, Y. Zhou, H. Mao, Z. Lu, The mixed effect of phthalocyanine and porphyrin on the photoelectric conversion of a nanostructured TiO2 electrode. Synth. Met. 92(92), 269–274 (1998).  https://doi.org/10.1016/S0379-6779(98)80096-9CrossRefGoogle Scholar
  16. 16.
    S. Eu, S. Hayashi, T. Umeyama, A. Oguro, M. Kawasaki, N. Kadota, Y. Matano, H. Imahori, Effects of 5-membered heteroaromatic spacers on structures of porphyrin films and photovoltaic properties of porphyrin-sensitized TiO2 cells. J. Phys. Chem. C 111(8), 3528–3537 (2007).  https://doi.org/10.1021/jp067290bCrossRefGoogle Scholar
  17. 17.
    S. Fan, X. Lu, H. Sun, G. Zhou, Y.J. Chang, Z.S. Wang, Effect of the co-sensitization sequence on the performance of dye-sensitized solar cells with porphyrin and organic dyes. Phys. Chem. Chem. Phys. 18(2), 932–938 (2016).  https://doi.org/10.1039/c5cp05986kCrossRefGoogle Scholar
  18. 18.
    A. Forneli, M. Planells, M.A. Sarmentero, E. Martinezferrero, B.C. O'Regan, P. Ballester, E. Palomares, The role of para-alkyl substituents on meso-phenyl porphyrin sensitized TiO2 solar cells: control of the eTiO2/electrolyte+ recombination reaction. J. Mater. Chem. 18(14), 1652–1658 (2008).  https://doi.org/10.1039/B717081ECrossRefGoogle Scholar
  19. 19.
    J.H. Fuhrhop, The reactivity of the porphyrin ligand. Angew. Chem. Int. Ed. Engl. 13(5), 321–335 (1974).  https://doi.org/10.1002/anie.197403211CrossRefGoogle Scholar
  20. 20.
    F. Gao, Y. Wang, D. Shi, J. Zhang, M. Wang, X. Jing, R. Humphry-Baker, P. Wang, S.M. Zakeeruddin, M. Grätzel, Enhance the optical absorptivity of nanocrystalline TiO2 film with high molar extinction coefficient ruthenium sensitizers for high performance dye-sensitized solar cells. J. Am. Chem. Soc. 130(32), 10720–10728 (2008).  https://doi.org/10.1021/ja801942jCrossRefGoogle Scholar
  21. 21.
    M. Garcíaiglesias, J.H. Yum, R. Humphrybaker, S.M. Zakeeruddin, P. Péchy, P. Vázquez, E. Palomares, M. Grätzel, M.K. Nazeeruddin, T. Torres, Effect of anchoring groups in zinc phthalocyanine on the dye-sensitized solar cell performance and stability. Chem. Sci. 2(6), 1145–1150 (2011).  https://doi.org/10.1039/C0SC00602ECrossRefGoogle Scholar
  22. 22.
    M. Grätzel, Dye-sensitized solar cells. J Photochem Photobiol C: Photochem Rev 4(2), 145–153 (2003).  https://doi.org/10.1016/S1389-5567(03)00026-1CrossRefGoogle Scholar
  23. 23.
    M. Grätzel, Photovoltaic performance and long-term stability of dye-sensitized mesoscopic solar cells. C. R. Chim. 9(5), 578–583 (2006).  https://doi.org/10.1016/j.crci.2005.06.037CrossRefGoogle Scholar
  24. 24.
    M.A. Green, Y. Hishikawa, W. Warta, E.D. Dunlop, D.H. Levi, J. Hohl-Ebinger, A.W.H. Ho-Baillie, Solar cell efficiency tables (version 50). Prog. Photovolt. Res. Appl. 25(7), 668–676 (2017).  https://doi.org/10.1002/pip.2909CrossRefGoogle Scholar
  25. 25.
    A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo, H. Pettersson, Dye-sensitized solar cells. Chem. Rev. 110(11), 6595–6663 (2010).  https://doi.org/10.1021/cr900356pCrossRefGoogle Scholar
  26. 26.
    S. Hayashi, Y. Matsubara, S. Eu, H. Hayashi, T. Umeyama, Y. Matano, H. Imahori, Fused five-membered porphyrin for dye-sensitized solar cells. Chem. Lett. 37(8), 846–847 (2008).  https://doi.org/10.1246/cl.2008.846CrossRefGoogle Scholar
  27. 27.
    S. Hayashi, M. Tanaka, H. Hayashi, S. Eu, T. Umeyama, Y. Matano, Y. Araki, H. Imahori, Naphthyl- fused π-elongated porphyrins for dye-sensitized TiO2 cells. J. Phys. Chem. C 112(39), 15576–15585 (2008).  https://doi.org/10.1021/jp805122zCrossRefGoogle Scholar
  28. 28.
    H. He, A. Gurung, L. Si, 8-Hydroxyquinoline as a strong alternative anchoring group for porphyrin-sensitized solar cells. Chem. Commun. 48(47), 5910–5912 (2012).  https://doi.org/10.1039/c2cc31440aCrossRefGoogle Scholar
  29. 29.
    H. He, A. Gurung, L. Si, A.G. Sykes, A simple acrylic acid functionalized zinc porphyrin for cost-effective dye-sensitized solar cells. Chem. Commun. 48(61), 7619–7621 (2012).  https://doi.org/10.1039/c2cc33337fCrossRefGoogle Scholar
  30. 30.
    T. Higashino, Y. Fujimori, K. Sugiura, Y. Tsuji, S. Ito, H. Imahori, Tropolone as a high-performance robust anchoring group for dye-sensitized solar cells. Angew. Chem. Int. Ed. Engl. 54(31), 9052–9056 (2015).  https://doi.org/10.1002/anie.201502951CrossRefGoogle Scholar
  31. 31.
    T. Higashino, K. Kawamoto, K. Sugiura, Y. Fujimori, Y. Tsuji, K. Kurotobi, S. Ito, H. Imahori, Effects of bulky substituents of push-pull porphyrins on photovoltaic properties of dye-sensitized solar cells. ACS Appl. Mater. Interfaces 8(24), 15379–15390 (2016).  https://doi.org/10.1021/acsami.6b03806CrossRefGoogle Scholar
  32. 32.
    T. Higashino, Y. Kurumisawa, C. Ning, Y. Fujimori, Y. Tsuji, S. Nimura, D. Packwood, J. Park, H. Imahori, A hydroxamic acid anchoring group for durable dye-sensitized solar cells with a cobalt redox shuttle. ChemSusChem 10(17), 3347–3351 (2017).  https://doi.org/10.1002/cssc.201701157CrossRefGoogle Scholar
  33. 33.
    A. Hinsch, J.M. Kroon, R. Kern, I. Uhlendorf, J. Holzbock, A. Meyer, J. Ferber, Long-term stability of dye-sensitized solar cells. Prog. Photovolt. Res. Appl. 9(6), 425–438 (2001).  https://doi.org/10.1002/pip.397CrossRefGoogle Scholar
  34. 34.
    S. Horn, K. Dahms, M.O. Senge, Synthetic transformations of porphyrins – Advances 2004–2007. J. Porphyrins Phthalocyanines 12(10), 1053–1077 (2008).  https://doi.org/10.1142/S108842460800042XCrossRefGoogle Scholar
  35. 35.
    C.P. Hsieh, H.P. Lu, C.L. Chiu, C.W. Lee, S.H. Chuang, C.L. Mai, W.N. Yen, S.J. Hsu, W.G. Diau, C.Y. Yeh, Synthesis and characterization of porphyrin sensitizers with various electron-donating substituents for highly efficient dye-sensitized solar cells. J. Mater. Chem. 20(6), 1127–1134 (2010).  https://doi.org/10.1039/b919645eCrossRefGoogle Scholar
  36. 36.
    H. Imahori, S. Hayashi, H. Hayashi, A. Oguro, S. Eu, T. Umeyama, Y. Matano, Effects of porphyrin substituents and adsorption conditions on photovoltaic properties of porphyrin-sensitized TiO2 cells. J. Phys. Chem. C 113(42), 18406–18413 (2009).  https://doi.org/10.1021/jp907288hCrossRefGoogle Scholar
  37. 37.
    H. Imahori, Y. Matsubara, H. Iijima, T. Umeyama, Y. Matano, S. Ito, M. Niemi, N.V. Tkachenko, H. Lemmetyinen, Effects of the meso-diarylamino group of porphyrins as sensitizers in dye-sensitized solar cells on optical, electrochemical, and photovoltaic properties. J. Phys. Chem. C 114(23), 686–694 (2010).  https://doi.org/10.1021/jp102486bCrossRefGoogle Scholar
  38. 38.
    S. Ito, S.M. Zakeeruddin, R. Humphry-Baker, P. Liska, R. Charvet, P. Comte, M.K. Nazeeruddin, P. Péchy, M. Takata, H. Miura, High-efficiency organic-dye-sensitized solar cells controlled by nanocrystalline-TiO2 electrode thickness. Adv. Mater. 18(9), 1202–1205 (2006).  https://doi.org/10.1002/adma.200502540CrossRefGoogle Scholar
  39. 39.
    R.K. Kanaparthi, J. Kandhadi, L. Giribabu, Metal-free organic dyes for dye-sensitized solar cells: recent advances. Tetrahedron 44(6), 8383–8393 (2013).  https://doi.org/10.1016/j.tet.2012.06.064CrossRefGoogle Scholar
  40. 40.
    A. Kato, R.D. Hartnell, M. Yamashita, H. Miyasaka, S. K-i, D.P. Arnold, Selective meso- monobromination of 5,15-diarylporphyrins via organopalladium porphyrins. J. Porphyrins Phthalocyanines 8(10), 1222–1227 (2009).  https://doi.org/10.1142/S108842460400057XCrossRefGoogle Scholar
  41. 41.
    A. Kay, M. Grätzel, Artificial photosynthesis. 1. Photosensitization of titania solar cells with chlorophyll derivatives and related natural porphyrins. J. Phys. Chem. 97(23), 6272–6277 (1993).  https://doi.org/10.1021/j100125a029CrossRefGoogle Scholar
  42. 42.
    B.G. Kim, K. Chung, J. Kim, Molecular design principle of all-organic dyes for dye-sensitized solar cells. Chem. Eur. J. 19(17), 5220–5230 (2013).  https://doi.org/10.1002/chem.201204343CrossRefGoogle Scholar
  43. 43.
    H. Kohjiro, S. Tadatake, K. Ryuzi, F. Akihiro, O. Yasuyo, S. Akira, S. Sadaharu, S. Kazuhiro, S. Hideki, A. Hironori, Molecular design of coumarin dyes for efficient dye-sensitized solar cells. J. Phys. Chem. B 107(2), 597–606 (2003).  https://doi.org/10.1021/jp026963xCrossRefGoogle Scholar
  44. 44.
    N. Krishna, K.J. Vamsi, S. Venkata, S. Singh, G.L. Prakash, L. Han, I. Bedja, R. Gupta, I.A. Kumar, Donor-π–acceptor based stable porphyrin sensitizers for dye-sensitized solar cells: effect of π-conjugated spacers. J. Phys. Chem. C 121(12), 6464–6477 (2017).  https://doi.org/10.1021/acs.jpcc.6b12869CrossRefGoogle Scholar
  45. 45.
    K. Kurotobi, Y. Toude, K. Kawamoto, Y. Fujimori, S. Ito, P. Chabera, V. Sundström, H. Imahori, Highly asymmetrical porphyrins with the enhanced push-pull character for dye-sensitized solar cells. Chem. Eur. J. 19(50), 17075–17081 (2013).  https://doi.org/10.1002/chem.201303460CrossRefGoogle Scholar
  46. 46.
    C.M. Lan, H.P. Wu, T.Y. Pan, C.W. Chang, W.S. Chao, C.T. Chen, C.L. Wang, C.Y. Lin, W.G. Diau, Enhanced photovoltaic performance with co-sensitization of porphyrin and an organic dye in dye-sensitized solar cells. Energy Environ. Sci. 5(4), 6460–6464 (2012).  https://doi.org/10.1039/c2ee21104aCrossRefGoogle Scholar
  47. 47.
    S.M. Lecours, S.G. Dimagno, M.J. Therien, Exceptional electronic modulation of porphyrins through meso-Arylethynyl groups. Electronic spectroscopy, electronic structure, and electrochemistry of [5,15-Bis[(aryl)ethynyl]- 10,20-diphenylporphinato]zinc(II) complexes. X-ray crystal structures of [5,15-Bis[(4′-fluorophenyl) ethynyl]-10, 20-diphenylporphinato] zinc (II) and 5,15-Bis[(4′-methoxyphenyl) ethynyl]-10,20-diphenylporphyrin. J. Am. Chem. Soc. 118(47), 11854–11864 (1996).  https://doi.org/10.1021/ja962403yCrossRefGoogle Scholar
  48. 48.
    C.W. Lee, H.P. Lu, C.M. Lan, Y.L. Huang, Y.R. Liang, W.N. Yen, Y.C. Liu, Y.S. Lin, E.W. Diau, C.Y. Yeh, Novel zinc porphyrin sensitizers for dye-sensitized solar cells: synthesis and spectral, electrochemical, and photovoltaic properties. Chem. Eur. J. 1035(6), 400–406 (2013).  https://doi.org/10.1002/chem.200801572CrossRefGoogle Scholar
  49. 49.
    L.L. Li, E.W. Diau, Porphyrin-sensitized solar cells. Chem. Soc. Rev. 42(1), 291 (2013)CrossRefGoogle Scholar
  50. 50.
    W. Li, L. Si, Z. Liu, H. Wu, Z. Zhao, Y.B. Cheng, H. He, Bis(9,9-dihexyl-9H-fluorene-7-yl)amine (BDFA) as a new donor for porphyrin-sensitized solar cells. Org. Electron. 15(10), 2448–2460 (2014).  https://doi.org/10.1016/j.orgel.2014.07.006CrossRefGoogle Scholar
  51. 51.
    W. Li, L. Si, Z. Liu, Z. Zhao, H. He, K. Zhu, B. Moore, Y.B. Cheng, Fluorene functionalized porphyrins as broadband absorbers for TiO2 nanocrystalline solar cells. J. Mater. Chem. A 2(33), 13667–13674 (2014).  https://doi.org/10.1039/c4ta01954gCrossRefGoogle Scholar
  52. 52.
    W. Li, Z. Liu, H. Wu, Y.B. Cheng, Z. Zhao, H. He, Thiophene-functionalized porphyrins: synthesis, photophysical properties, and photovoltaic performance in dye-sensitized solar cells. J. Phys. Chem. C 119(10), 5265–5273 (2015).  https://doi.org/10.1021/jp509842pCrossRefGoogle Scholar
  53. 53.
    M. Liang, J. Chen, Arylamine organic dyes for dye-sensitized solar cells. Chem. Soc. Rev. 42(8), 3453–3488 (2013).  https://doi.org/10.1039/c3cs35372aCrossRefGoogle Scholar
  54. 54.
    C.Y. Lin, C.F. Lo, M.H. Hsieh, S.J. Hsu, H.P. Lu, W.G. Diau, Preparation and photovoltaic characterization of free-base and Metallo carboxyphenylethynyl porphyrins for dye-sensitized solar cells. J. Chin. Chem. Soc. 57(5B), 1136–1140 (2010).  https://doi.org/10.1002/jccs.201000162CrossRefGoogle Scholar
  55. 55.
    J.S. Lindsey, Synthetic routes to meso-patterned porphyrins. Acc. Chem. Res. 43(2), 300–311 (2010).  https://doi.org/10.1021/ar900212tCrossRefGoogle Scholar
  56. 56.
    Y. Liu, N. Xiang, X. Feng, P. Shen, W. Zhou, C. Weng, B. Zhao, S. Tan, Thiophene-linked porphyrin derivatives for dye-sensitized solar cells. Chem. Commun. 18(18), 2499–2501 (2009).  https://doi.org/10.1039/b821985kCrossRefGoogle Scholar
  57. 57.
    C.F. Lo, L. Luo, E.W. Diau, I.J. Chang, C.Y. Lin, Evidence for the assembly of carboxyphenylethynyl zinc porphyrins on nanocrystalline TiO2 surfaces. Chem. Commun. 13(13), 1430–1432 (2006).  https://doi.org/10.1039/b516782eCrossRefGoogle Scholar
  58. 58.
    H.P. Lu, C.Y. Tsai, W.N. Yen, C.P. Hsieh, C.W. Lee, C.Y. Yeh, W.G. Diau, Control of dye aggregation and electron injection for highly efficient porphyrin sensitizers adsorbed on semiconductor films with varying ratios of adsorbate. J. Phys. Chem. C 113(49), 20990–20997 (2009).  https://doi.org/10.1021/jp908100vCrossRefGoogle Scholar
  59. 59.
    J. Luo, M. Xu, R. Li, K.W. Huang, C. Jiang, Q. Qi, W. Zeng, J. Zhang, C. Chi, P. Wang, N-annulated perylene as an efficient electron donor for porphyrin-based dyes: enhanced light-harvesting ability and high-efficiency Co(II/III)-based dye-sensitized solar cells. J. Am. Chem. Soc. 136(1), 265–272 (2014).  https://doi.org/10.1021/ja409291gCrossRefGoogle Scholar
  60. 60.
    C.L. Mai, W.K. Huang, H.P. Lu, C.W. Lee, C.L. Chiu, Y.R. Liang, E.W. Diau, C.Y. Yeh, Synthesis and characterization of porphyrin sensitizers for dye-sensitized solar cells. Chem. Commun. 46(5), 809–811 (2010).  https://doi.org/10.1039/b917316aCrossRefGoogle Scholar
  61. 61.
    C.L. Mai, T. Moehl, C.H. Hsieh, J.D. Décoppet, S.M. Zakeeruddin, M. Grätzel, C.Y. Yeh, Porphyrin sensitizers bearing a pyridine-type anchoring group for dye-sensitized solar cells. ACS Appl. Mater. Interfaces 7(27), 14975–14982 (2015).  https://doi.org/10.1021/acsami.5b03783CrossRefGoogle Scholar
  62. 62.
    V.S. Manthou, E.K. Pefkianakis, P. Falaras, G.C. Vougioukalakis, Co-adsorbents: a key component in efficient and robust dye-sensitized solar cells. ChemSusChem 8(4), 588–599 (2015).  https://doi.org/10.1002/cssc.201403211CrossRefGoogle Scholar
  63. 63.
    S. Mathew, A. Yella, P. Gao, R. Humphrybaker, B.F. Curchod, N. Ashariastani, I. Tavernelli, U. Rothlisberger, M.K. Nazeeruddin, M. Grätzel, Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers. Nat. Chem. 6(3), 242 (2014).  https://doi.org/10.1038/NCHEM.1861CrossRefGoogle Scholar
  64. 64.
    A. Meindl, S. Plunkett, A.A. Ryan, K.J. Flanagan, S. Callaghan, M.O. Senge, Comparative synthetic strategies for the generation of 5,10- and 5,15-substituted push-pull porphyrins. Eur. J. Org. Chem. 2017(25), 3516–3516 (2017).  https://doi.org/10.1002/ejoc.201700093CrossRefGoogle Scholar
  65. 65.
    R.L. Milot, C.A. Schmuttenmaer, Electron injection dynamics in high-potential porphyrin photoanodes. Acc. Chem. Res. 48(5), 1423–1431 (2015).  https://doi.org/10.1021/ar500363qCrossRefGoogle Scholar
  66. 66.
    R.L. Milot, G.F. Moore, R.H. Crabtree, G.W. Brudvig, C.A. Schmuttenmaer, Electron injection dynamics from photoexcited porphyrin dyes into SnO2 and TiO2 nanoparticles. J. Phys. Chem. C 117(42), 21662–21670 (2015)CrossRefGoogle Scholar
  67. 67.
    S. Mozaffari, M.R. Nateghi, M.B. Zarandi, An overview of the challenges in the commercialization of dye-sensitized solar cells. Renew. Sust. Energy Rev. 71, 675–686 (2016).  https://doi.org/10.1016/j.rser.2016.12.096CrossRefGoogle Scholar
  68. 68.
    M.K. Nazeeruddin, R. Humphry-Baker, D.L. Officer, W.M. Campbell, A.K. Burrell, M. Grätzel, Application of metalloporphyrins in nanocrystalline dye-sensitized solar cells for conversion of sunlight into electricity. Langmuir 20(15), 6514–6517 (2004).  https://doi.org/10.1021/la0496082CrossRefGoogle Scholar
  69. 69.
    M.K. Nazeeruddin, F. De Angelis, F. Simona, S. Annabella, G. Viscardi, P. Liska, S. Ito, T. Bessho, M. Grätzel, Combined experimental and DFT-TDDFTcomputational study of photoelectrochemical cell ruthenium sensitizers. J. Am. Chem. Soc. 127(48), 16835 (2005).  https://doi.org/10.1021/ja052467lCrossRefGoogle Scholar
  70. 70.
    P. Péchy, F.P. Rotzinger, M.K. Nazeeruddin, O. Kohle, S.M. Zakeeruddin, R. Humphrybaker, M. Grätzel, Preparation of phosphonated polypyridyl ligands to anchor transition-metal complexes on oxide surfaces: application for the conversion of light to electricity with nanocrystalline TiO2 films. J. Chem. Soc. Chem. Commun. 1(1), 65–66 (1995).  https://doi.org/10.1039/C39950000065CrossRefGoogle Scholar
  71. 71.
    T. Ripolles-Sanchis, B.C. Guo, H.P. Wu, T.Y. Pan, H.W. Lee, S.R. Raga, F. Fabregat-Santiago, J. Bisquert, C.Y. Yeh, E.W. Diau, Design and characterization of alkoxy-wrapped push-pull porphyrins for dye-sensitized solar cells. Chem. Commun. 48(36), 4368–4370 (2012).  https://doi.org/10.1039/c2cc31111aCrossRefGoogle Scholar
  72. 72.
    N. Robertson, Optimizing dyes for dye-sensitized solar cells. Angew. Chem. 37(27), 2338–2345 (2006)CrossRefGoogle Scholar
  73. 73.
    J. Rochford, D. Chu, A. Hagfeldt, E. Galoppini, Tetrachelate porphyrin chromophores for metal oxide semiconductor sensitization: effect of the spacer length and anchoring group position. J. Am. Chem. Soc. 129(15), 4655–4665 (2007).  https://doi.org/10.1021/ja068218uCrossRefGoogle Scholar
  74. 74.
    T.E.O. Screen, K.B. Lawton, G.S. Wilson, N. Dolney, R. Ispasoiu, T.G. Iii, S.J. Martin, D.D.C. Bradley, H.L. Anderson, Synthesis and third-order nonlinear optics of a new soluble conjugated porphyrin polymer. J. Mater. Chem. 11, 312–320 (2001).  https://doi.org/10.1039/B007250HCrossRefGoogle Scholar
  75. 75.
    M.O. Senge, Stirring the porphyrin alphabet soup--functionalization reactions for porphyrins. Chem. Commun. 47(7), 1943–1960 (2011).  https://doi.org/10.1039/c0cc03984eCrossRefGoogle Scholar
  76. 76.
    M.O. Senge, J. Richter, Synthetic transformations of porphyrins – advances 2002-2004. J. Porphyrins Phthalocyanines 8(07), 934–953 (2005).  https://doi.org/10.1142/S1088424604000313CrossRefGoogle Scholar
  77. 77.
    D.M. Shen, C. Liu, X.G. Chen, Q.Y. Chen, Facile and efficient hypervalent iodine(III)-mediated meso- functionalization of porphyrins. J. Org. Chem. 74(1), 206–211 (2009).  https://doi.org/10.1021/jo801855dCrossRefGoogle Scholar
  78. 78.
    J.W. Shiu, Y.C. Chang, C.Y. Chan, H.P. Wu, H.Y. Hsu, C.L. Wang, C.Y. Lin, E.G. Diau, Panchromatic co-sensitization of porphyrin-sensitized solar cells to harvest near-infrared light beyond 900 nm. J. Mater. Chem. A 3(4), 1417–1420 (2014).  https://doi.org/10.1039/C4TA06589ACrossRefGoogle Scholar
  79. 79.
    H.J. Snaith, Estimating the maximum attainable efficiency in dye-sensitized solar cells. Adv. Funct. Mater. 20(1), 13–19 (2010).  https://doi.org/10.1002/adfm.200901476CrossRefGoogle Scholar
  80. 80.
    P.M. Sommeling, M. Späth, H.J.P. Smit, N.J. Bakker, J.M. Kroon, Long-term stability testing of dye-sensitized solar cells. J. Photochem. Photobiol. A 164(1), 137–144 (2004).  https://doi.org/10.1016/j.jphotochem.2003.12.017CrossRefGoogle Scholar
  81. 81.
    M. Tanaka, S. Hayashi, S. Eu, T. Umeyama, Y. Matano, H. Imahori, Novel unsymmetrically pi- elongated porphyrin for dye-sensitized TiO2 cells. Chem. Commun. 20(20), 2069–2071 (2007).  https://doi.org/10.1039/B702501GCrossRefGoogle Scholar
  82. 82.
    M. Urbani, M. Grätzel, M.K. Nazeeruddin, T. Torres, Meso-substituted porphyrins for dye-sensitized solar cells. Chem. Rev. 114(24), 12330–12396 (2014)CrossRefGoogle Scholar
  83. 83.
    Z.S. Wang, H. Kawauchi, T. Kashima, H. Arakawa, Significant influence of TiO2 photoelectrode morphology on the energy conversion efficiency of N719 dye-sensitized solar cell. Coord. Chem. Rev. 248(13–14), 1381–1389 (2004).  https://doi.org/10.1016/j.ccr.2004.03.006CrossRefGoogle Scholar
  84. 84.
    Q. Wang, W.M. Campbell, E.E. Bonfantani, K.W. Jolley, D.L. Officer, P.J. Walsh, K. Gordon, R. Humphrybaker, M.K. Nazeeruddin, M. Grätzel, Efficient light harvesting by using green Zn-porphyrin- sensitized nanocrystalline TiO2 films. J. Phys. Chem. B 109(32), 15397–15409 (2005).  https://doi.org/10.1021/jp052877wCrossRefGoogle Scholar
  85. 85.
    C.L. Wang, Y.C. Chang, C.M. Lan, C.F. Lo, W.G. Diau, C.Y. Lin, Enhanced light harvesting with π- conjugated cyclic aromatic hydrocarbons for porphyrin-sensitized solar cells. Energy Environ. Sci. 4(5), 1788–1795 (2011).  https://doi.org/10.1039/C0EE00767FCrossRefGoogle Scholar
  86. 86.
    C.L. Wang, C.M. Lan, S.H. Hong, Y.F. Wang, T.Y. Pan, C.W. Chang, H.H. Kuo, M.Y. Kuo, W.G. Diau, C.Y. Lin, Enveloping porphyrins for efficient dye-sensitized solar cells. Energy Environ. Sci. 5(5), 6933–6940 (2012).  https://doi.org/10.1039/c2ee03308aCrossRefGoogle Scholar
  87. 87.
    Y. Wu, W. Zhu, Organic sensitizers from D-π-A to D-A-π-A: effect of the internal electron- withdrawing units on molecular absorption, energy levels, and photovoltaic performances. Chem. Soc. Rev. 42(5), 2039–2058 (2013).  https://doi.org/10.1039/C2CS35346FCrossRefGoogle Scholar
  88. 88.
    C.H. Wu, T.Y. Pan, S.H. Hong, C.L. Wang, H.H. Kuo, Y.Y. Chu, E.W. Diau, C.Y. Lin, A fluorene-modified porphyrin for efficient dye-sensitized solar cells. Chem. Commun. 48(36), 4329–4331 (2012).  https://doi.org/10.1039/c2cc30892dCrossRefGoogle Scholar
  89. 89.
    Y. Xie, Y. Tang, W. Wu, Y. Wang, J. Liu, X. Li, H. Tian, W.H. Zhu, Porphyrin cosensitization for a photovoltaic efficiency of 11.5%: a record for non-ruthenium solar cells based on iodine electrolyte. J. Am. Chem. Soc. 137(44), 14055–14058 (2015).  https://doi.org/10.1021/jacs.5b09665CrossRefGoogle Scholar
  90. 90.
    A. Yella, H.W. Lee, H.N. Tsao, C. Yi, A. Chandiran, M. Nazeeruddin, E. Diau, C.Y. Yeh, S. Zakeeruddin, M. Grätzel, Porphyrin-sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12 percent efficiency. Science 334(6056), 629–634 (2011).  https://doi.org/10.1126/science.1209688CrossRefGoogle Scholar
  91. 91.
    A. Yella, C.L. Mai, S.M. Zakeeruddin, S.N. Chang, C.H. Hsieh, C.Y. Yeh, M. Grätzel, Molecular engineering of push-pull porphyrin dyes for highly efficient dye-sensitized solar cells: the role of benzene spacers. Angew. Chem. Int. Ed. Engl. 126(11), 3017–3021 (2014).  https://doi.org/10.1002/anie.201309343CrossRefGoogle Scholar
  92. 92.
    L. Yu, K. Muthukumaran, I.V. Sazanovich, C. Kirmaier, E. Hindin, J.R. Diers, P.D. Boyle, D.F. Bocian, D. Holten, J.S. Lindsey, Excited-state energy-transfer dynamics in self-assembled triads composed of two porphyrins and an intervening bis(dipyrrinato)metal complex. Inorg. Chem. 42(21), 6629–6647 (2003).  https://doi.org/10.1021/ic034559mCrossRefGoogle Scholar
  93. 93.
    J. Zhao, A. Wang, M.A. Green, F. Ferrazza, 19.8% efficient “honeycomb” textured multicrystalline and 24.4% monocrystalline silicon solar cells. Appl. Phys. Lett. 73(14), 1991–1993 (1998).  https://doi.org/10.1063/1.122345CrossRefGoogle Scholar
  94. 94.
    W. Zheng, N. Shan, L. Yu, X. Wang, UV–visible, fluorescence and EPR properties of porphyrins and metalloporphyrins. Dyes Pigments 77(1), 153–157 (2008).  https://doi.org/10.1016/j.dyepig.2007.04.007CrossRefGoogle Scholar
  95. 95.
    S. Chakraborty, H.-C. You, C.-K. Huang, B.-Z. Lin, C.-L. Wang, M.-C. Tsai, C.-L. Liu, C.-Y. Lin, meso-Diphenylbacteriochlorins: Macrocyclic dyes with rare colors for dye-sensitized solar cells. J Phys Chem C 121(13), 7081–7087 (2017).  https://doi.org/10.1021/acs.jpcc.7b00097CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Information EngineeringJiangxi University of Science and TechnologyGanzhou, JiangxiChina
  2. 2.Department of Chemistry and BiochemistryEastern Illinois UniversityCharlestonUSA

Personalised recommendations