Design, Engineering, and Evaluation of Porphyrins for Dye-Sensitized Solar Cells

  • Wenhui Li
  • Mahamoud Elkhaklifa
  • Hongshan HeEmail author


Dye-sensitized solar cells (DSCs) have attracted worldwide attention due to their low cost and versatility. Porphyrins have broad and intense absorption in the visible region, versatility in tuning the molecular structure. Early porphyrin dyes are generally β-functionalized meso-teraarylporphyrins. In the late 2000s, several groups began to pay their attention to meso-functionalized porphyrins. In 2010, the meso- functionalized porphyrin dye with donor-π-acceptor structure, achieved an efficiency of 11%. Since then, dozens of donor-π-acceptor porphyrin dyes with >10% efficiency have been reported. In 2014, the energy conversion efficiency of 13% was reached. However, some challenges still exist including inefficient photon capture in the regions around 520 nm and >700 nm, severe aggregation because of porphyrin’s planar structure and rich π electrons, and poor long-term stability resulting from the weak binding capability of the anchoring group. In this chapter, we will provide readers the operation principles of DSC, an evolution of porphyrin dyes as the best candidates for DSCs, and challenges facing porphyrin dyes for DSCs. Different design strategies, synthetic protocols, as well as their photovoltaic performance of representative dyes will be discussed.


Porphyrin Solar cells Photovoltaics Synthesis 



HH thanks Department of Chemistry & Biochemistry, Eastern Illinois University, for the support of this work.


  1. 1.
    M.I. Asghar, K. Miettunen, J. Halme, P. Vahermaa, M. Toivola, K. Aitola, P. Lund, Review of stability for advanced dye solar cells. Energy Environ. Sci. 3(4), 418–426 (2010). Scholar
  2. 2.
    J.M. Ball, N.K.S. Davis, J.D. Wilkinson, J. Kirkpatrick, J. Teuscher, R. Gunning, H.L. Anderson, H.J. Snaith, A panchromatic anthracene-fused porphyrin sensitizer for dye-sensitized solar cells. RSC Adv. 2(17), 6846–6853 (2012). Scholar
  3. 3.
    T. Bessho, S.M. Zakeeruddin, C.Y. Yeh, E.W. Diau, M. Grätzel, Highly efficient mesoscopic dye-sensitized solar cells based on donor-acceptor-substituted porphyrins. Angew. Chem. Int. Ed. Engl. 49(37), 6646–6649 (2010). Scholar
  4. 4.
    B.J. Brennan, M.J. Llansola Portolés, P.A. Liddell, T.A. Moore, A.L. Moore, D. Gust, Comparison of silatrane, phosphonic acid, and carboxylic acid functional groups for attachment of porphyrin sensitizers to TiO2 in photoelectrochemical cells. Phys. Chem. Chem. Phys. 15(39), 16605–16614 (2013). Scholar
  5. 5.
    W.M. Campbell, A.K. Burrell, D.L. Officer, K.W. Jolley, Porphyrins as light harvesters in the dye-sensitized TiO2 solar cell. Coord. Chem. Rev. 248(13), 1363–1379 (2004). Scholar
  6. 6.
    W.M. Campbell, K.W. Jolley, P. Wagner, K. Wagner, P.J. Walsh, K.C. Gordon, L. Schmidt-Mende, M.K. Nazeeruddin, Q. Wang, M. Grätzel, Highly efficient porphyrin sensitizers for dye-sensitized solar cells. J. Phys. Chem. C 111(32), 11760–11762 (2007). Scholar
  7. 7.
    Y. Cao, B. Yu, Q. Yu, Y. Cheng, S. Liu, S. Dong, F. Gao, P. Wang, Dye-sensitized solar cells with a high absorptivity ruthenium sensitizer featuring a 2-(hexylthio)thiophene conjugated bipyridine. J. Phys. Chem. C 113(15), 6290–6297 (2009). Scholar
  8. 8.
    C.M. Carcel, J.K. Laha, R.S. Loewe, P. Thamyongkit, K. Schweikart, V. Misra, D.F. Bocian, J.S. Lindsey, Porphyrin architectures tailored for studies of molecular information storage. J. Org. Chem. 69(20), 6739–6750 (2004). Scholar
  9. 9.
    D.E. Carlson, C.R. Wronski, Amorphous silicon solar cells. IEEE Trans. Electron Devices 36(12), 2775–2780 (1976). Scholar
  10. 10.
    Y.C. Chang, C.L. Wang, T.Y. Pan, S.H. Hong, C.M. Lan, H.H. Kuo, C.F. Lo, H.Y. Hsu, C.Y. Lin, E.W. Diau, A strategy to design highly efficient porphyrin sensitizers for dye-sensitized solar cells. Chem. Commun. 47(31), 8910–8912 (2011). Scholar
  11. 11.
    C. Chen, X. Yang, M. Cheng, F. Zhang, L. Sun, Degradation of cyanoacrylic acid-based organic sensitizers in dye-sensitized solar cells. ChemSusChem 6(7), 1270–1275 (2013). Scholar
  12. 12.
    S. Cherian, C.C. Wamser, Adsorption and photoactivity of tetra(4-carboxyphenyl)porphyrin (TCPP) on nanoparticulate TiO2. J. Phys. Chem. B 104(104), 3624–3629 (2000). Scholar
  13. 13.
    J.N. Clifford, E. Martínez-Ferrero, A. Viterisi, E. Palomares, Sensitizer molecular structure-device efficiency relationship in dye-sensitized solar cells. Chem. Soc. Rev. 40(3), 1635–1646 (2011). Scholar
  14. 14.
    J.R. Darwent, P. Douglas, A. Harriman, G. Porter, M.C. Richoux, Metal phthalocyanines and porphyrins as photosensitizers for reduction of water to hydrogen. Coord. Chem. Rev. 44(1), 83–126 (1982). Scholar
  15. 15.
    H. Deng, Y. Zhou, H. Mao, Z. Lu, The mixed effect of phthalocyanine and porphyrin on the photoelectric conversion of a nanostructured TiO2 electrode. Synth. Met. 92(92), 269–274 (1998). Scholar
  16. 16.
    S. Eu, S. Hayashi, T. Umeyama, A. Oguro, M. Kawasaki, N. Kadota, Y. Matano, H. Imahori, Effects of 5-membered heteroaromatic spacers on structures of porphyrin films and photovoltaic properties of porphyrin-sensitized TiO2 cells. J. Phys. Chem. C 111(8), 3528–3537 (2007). Scholar
  17. 17.
    S. Fan, X. Lu, H. Sun, G. Zhou, Y.J. Chang, Z.S. Wang, Effect of the co-sensitization sequence on the performance of dye-sensitized solar cells with porphyrin and organic dyes. Phys. Chem. Chem. Phys. 18(2), 932–938 (2016). Scholar
  18. 18.
    A. Forneli, M. Planells, M.A. Sarmentero, E. Martinezferrero, B.C. O'Regan, P. Ballester, E. Palomares, The role of para-alkyl substituents on meso-phenyl porphyrin sensitized TiO2 solar cells: control of the eTiO2/electrolyte+ recombination reaction. J. Mater. Chem. 18(14), 1652–1658 (2008). Scholar
  19. 19.
    J.H. Fuhrhop, The reactivity of the porphyrin ligand. Angew. Chem. Int. Ed. Engl. 13(5), 321–335 (1974). Scholar
  20. 20.
    F. Gao, Y. Wang, D. Shi, J. Zhang, M. Wang, X. Jing, R. Humphry-Baker, P. Wang, S.M. Zakeeruddin, M. Grätzel, Enhance the optical absorptivity of nanocrystalline TiO2 film with high molar extinction coefficient ruthenium sensitizers for high performance dye-sensitized solar cells. J. Am. Chem. Soc. 130(32), 10720–10728 (2008). Scholar
  21. 21.
    M. Garcíaiglesias, J.H. Yum, R. Humphrybaker, S.M. Zakeeruddin, P. Péchy, P. Vázquez, E. Palomares, M. Grätzel, M.K. Nazeeruddin, T. Torres, Effect of anchoring groups in zinc phthalocyanine on the dye-sensitized solar cell performance and stability. Chem. Sci. 2(6), 1145–1150 (2011). Scholar
  22. 22.
    M. Grätzel, Dye-sensitized solar cells. J Photochem Photobiol C: Photochem Rev 4(2), 145–153 (2003). Scholar
  23. 23.
    M. Grätzel, Photovoltaic performance and long-term stability of dye-sensitized mesoscopic solar cells. C. R. Chim. 9(5), 578–583 (2006). Scholar
  24. 24.
    M.A. Green, Y. Hishikawa, W. Warta, E.D. Dunlop, D.H. Levi, J. Hohl-Ebinger, A.W.H. Ho-Baillie, Solar cell efficiency tables (version 50). Prog. Photovolt. Res. Appl. 25(7), 668–676 (2017). Scholar
  25. 25.
    A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo, H. Pettersson, Dye-sensitized solar cells. Chem. Rev. 110(11), 6595–6663 (2010). Scholar
  26. 26.
    S. Hayashi, Y. Matsubara, S. Eu, H. Hayashi, T. Umeyama, Y. Matano, H. Imahori, Fused five-membered porphyrin for dye-sensitized solar cells. Chem. Lett. 37(8), 846–847 (2008). Scholar
  27. 27.
    S. Hayashi, M. Tanaka, H. Hayashi, S. Eu, T. Umeyama, Y. Matano, Y. Araki, H. Imahori, Naphthyl- fused π-elongated porphyrins for dye-sensitized TiO2 cells. J. Phys. Chem. C 112(39), 15576–15585 (2008). Scholar
  28. 28.
    H. He, A. Gurung, L. Si, 8-Hydroxyquinoline as a strong alternative anchoring group for porphyrin-sensitized solar cells. Chem. Commun. 48(47), 5910–5912 (2012). Scholar
  29. 29.
    H. He, A. Gurung, L. Si, A.G. Sykes, A simple acrylic acid functionalized zinc porphyrin for cost-effective dye-sensitized solar cells. Chem. Commun. 48(61), 7619–7621 (2012). Scholar
  30. 30.
    T. Higashino, Y. Fujimori, K. Sugiura, Y. Tsuji, S. Ito, H. Imahori, Tropolone as a high-performance robust anchoring group for dye-sensitized solar cells. Angew. Chem. Int. Ed. Engl. 54(31), 9052–9056 (2015). Scholar
  31. 31.
    T. Higashino, K. Kawamoto, K. Sugiura, Y. Fujimori, Y. Tsuji, K. Kurotobi, S. Ito, H. Imahori, Effects of bulky substituents of push-pull porphyrins on photovoltaic properties of dye-sensitized solar cells. ACS Appl. Mater. Interfaces 8(24), 15379–15390 (2016). Scholar
  32. 32.
    T. Higashino, Y. Kurumisawa, C. Ning, Y. Fujimori, Y. Tsuji, S. Nimura, D. Packwood, J. Park, H. Imahori, A hydroxamic acid anchoring group for durable dye-sensitized solar cells with a cobalt redox shuttle. ChemSusChem 10(17), 3347–3351 (2017). Scholar
  33. 33.
    A. Hinsch, J.M. Kroon, R. Kern, I. Uhlendorf, J. Holzbock, A. Meyer, J. Ferber, Long-term stability of dye-sensitized solar cells. Prog. Photovolt. Res. Appl. 9(6), 425–438 (2001). Scholar
  34. 34.
    S. Horn, K. Dahms, M.O. Senge, Synthetic transformations of porphyrins – Advances 2004–2007. J. Porphyrins Phthalocyanines 12(10), 1053–1077 (2008). Scholar
  35. 35.
    C.P. Hsieh, H.P. Lu, C.L. Chiu, C.W. Lee, S.H. Chuang, C.L. Mai, W.N. Yen, S.J. Hsu, W.G. Diau, C.Y. Yeh, Synthesis and characterization of porphyrin sensitizers with various electron-donating substituents for highly efficient dye-sensitized solar cells. J. Mater. Chem. 20(6), 1127–1134 (2010). Scholar
  36. 36.
    H. Imahori, S. Hayashi, H. Hayashi, A. Oguro, S. Eu, T. Umeyama, Y. Matano, Effects of porphyrin substituents and adsorption conditions on photovoltaic properties of porphyrin-sensitized TiO2 cells. J. Phys. Chem. C 113(42), 18406–18413 (2009). Scholar
  37. 37.
    H. Imahori, Y. Matsubara, H. Iijima, T. Umeyama, Y. Matano, S. Ito, M. Niemi, N.V. Tkachenko, H. Lemmetyinen, Effects of the meso-diarylamino group of porphyrins as sensitizers in dye-sensitized solar cells on optical, electrochemical, and photovoltaic properties. J. Phys. Chem. C 114(23), 686–694 (2010). Scholar
  38. 38.
    S. Ito, S.M. Zakeeruddin, R. Humphry-Baker, P. Liska, R. Charvet, P. Comte, M.K. Nazeeruddin, P. Péchy, M. Takata, H. Miura, High-efficiency organic-dye-sensitized solar cells controlled by nanocrystalline-TiO2 electrode thickness. Adv. Mater. 18(9), 1202–1205 (2006). Scholar
  39. 39.
    R.K. Kanaparthi, J. Kandhadi, L. Giribabu, Metal-free organic dyes for dye-sensitized solar cells: recent advances. Tetrahedron 44(6), 8383–8393 (2013). Scholar
  40. 40.
    A. Kato, R.D. Hartnell, M. Yamashita, H. Miyasaka, S. K-i, D.P. Arnold, Selective meso- monobromination of 5,15-diarylporphyrins via organopalladium porphyrins. J. Porphyrins Phthalocyanines 8(10), 1222–1227 (2009). Scholar
  41. 41.
    A. Kay, M. Grätzel, Artificial photosynthesis. 1. Photosensitization of titania solar cells with chlorophyll derivatives and related natural porphyrins. J. Phys. Chem. 97(23), 6272–6277 (1993). Scholar
  42. 42.
    B.G. Kim, K. Chung, J. Kim, Molecular design principle of all-organic dyes for dye-sensitized solar cells. Chem. Eur. J. 19(17), 5220–5230 (2013). Scholar
  43. 43.
    H. Kohjiro, S. Tadatake, K. Ryuzi, F. Akihiro, O. Yasuyo, S. Akira, S. Sadaharu, S. Kazuhiro, S. Hideki, A. Hironori, Molecular design of coumarin dyes for efficient dye-sensitized solar cells. J. Phys. Chem. B 107(2), 597–606 (2003). Scholar
  44. 44.
    N. Krishna, K.J. Vamsi, S. Venkata, S. Singh, G.L. Prakash, L. Han, I. Bedja, R. Gupta, I.A. Kumar, Donor-π–acceptor based stable porphyrin sensitizers for dye-sensitized solar cells: effect of π-conjugated spacers. J. Phys. Chem. C 121(12), 6464–6477 (2017). Scholar
  45. 45.
    K. Kurotobi, Y. Toude, K. Kawamoto, Y. Fujimori, S. Ito, P. Chabera, V. Sundström, H. Imahori, Highly asymmetrical porphyrins with the enhanced push-pull character for dye-sensitized solar cells. Chem. Eur. J. 19(50), 17075–17081 (2013). Scholar
  46. 46.
    C.M. Lan, H.P. Wu, T.Y. Pan, C.W. Chang, W.S. Chao, C.T. Chen, C.L. Wang, C.Y. Lin, W.G. Diau, Enhanced photovoltaic performance with co-sensitization of porphyrin and an organic dye in dye-sensitized solar cells. Energy Environ. Sci. 5(4), 6460–6464 (2012). Scholar
  47. 47.
    S.M. Lecours, S.G. Dimagno, M.J. Therien, Exceptional electronic modulation of porphyrins through meso-Arylethynyl groups. Electronic spectroscopy, electronic structure, and electrochemistry of [5,15-Bis[(aryl)ethynyl]- 10,20-diphenylporphinato]zinc(II) complexes. X-ray crystal structures of [5,15-Bis[(4′-fluorophenyl) ethynyl]-10, 20-diphenylporphinato] zinc (II) and 5,15-Bis[(4′-methoxyphenyl) ethynyl]-10,20-diphenylporphyrin. J. Am. Chem. Soc. 118(47), 11854–11864 (1996). Scholar
  48. 48.
    C.W. Lee, H.P. Lu, C.M. Lan, Y.L. Huang, Y.R. Liang, W.N. Yen, Y.C. Liu, Y.S. Lin, E.W. Diau, C.Y. Yeh, Novel zinc porphyrin sensitizers for dye-sensitized solar cells: synthesis and spectral, electrochemical, and photovoltaic properties. Chem. Eur. J. 1035(6), 400–406 (2013). Scholar
  49. 49.
    L.L. Li, E.W. Diau, Porphyrin-sensitized solar cells. Chem. Soc. Rev. 42(1), 291 (2013)CrossRefGoogle Scholar
  50. 50.
    W. Li, L. Si, Z. Liu, H. Wu, Z. Zhao, Y.B. Cheng, H. He, Bis(9,9-dihexyl-9H-fluorene-7-yl)amine (BDFA) as a new donor for porphyrin-sensitized solar cells. Org. Electron. 15(10), 2448–2460 (2014). Scholar
  51. 51.
    W. Li, L. Si, Z. Liu, Z. Zhao, H. He, K. Zhu, B. Moore, Y.B. Cheng, Fluorene functionalized porphyrins as broadband absorbers for TiO2 nanocrystalline solar cells. J. Mater. Chem. A 2(33), 13667–13674 (2014). Scholar
  52. 52.
    W. Li, Z. Liu, H. Wu, Y.B. Cheng, Z. Zhao, H. He, Thiophene-functionalized porphyrins: synthesis, photophysical properties, and photovoltaic performance in dye-sensitized solar cells. J. Phys. Chem. C 119(10), 5265–5273 (2015). Scholar
  53. 53.
    M. Liang, J. Chen, Arylamine organic dyes for dye-sensitized solar cells. Chem. Soc. Rev. 42(8), 3453–3488 (2013). Scholar
  54. 54.
    C.Y. Lin, C.F. Lo, M.H. Hsieh, S.J. Hsu, H.P. Lu, W.G. Diau, Preparation and photovoltaic characterization of free-base and Metallo carboxyphenylethynyl porphyrins for dye-sensitized solar cells. J. Chin. Chem. Soc. 57(5B), 1136–1140 (2010). Scholar
  55. 55.
    J.S. Lindsey, Synthetic routes to meso-patterned porphyrins. Acc. Chem. Res. 43(2), 300–311 (2010). Scholar
  56. 56.
    Y. Liu, N. Xiang, X. Feng, P. Shen, W. Zhou, C. Weng, B. Zhao, S. Tan, Thiophene-linked porphyrin derivatives for dye-sensitized solar cells. Chem. Commun. 18(18), 2499–2501 (2009). Scholar
  57. 57.
    C.F. Lo, L. Luo, E.W. Diau, I.J. Chang, C.Y. Lin, Evidence for the assembly of carboxyphenylethynyl zinc porphyrins on nanocrystalline TiO2 surfaces. Chem. Commun. 13(13), 1430–1432 (2006). Scholar
  58. 58.
    H.P. Lu, C.Y. Tsai, W.N. Yen, C.P. Hsieh, C.W. Lee, C.Y. Yeh, W.G. Diau, Control of dye aggregation and electron injection for highly efficient porphyrin sensitizers adsorbed on semiconductor films with varying ratios of adsorbate. J. Phys. Chem. C 113(49), 20990–20997 (2009). Scholar
  59. 59.
    J. Luo, M. Xu, R. Li, K.W. Huang, C. Jiang, Q. Qi, W. Zeng, J. Zhang, C. Chi, P. Wang, N-annulated perylene as an efficient electron donor for porphyrin-based dyes: enhanced light-harvesting ability and high-efficiency Co(II/III)-based dye-sensitized solar cells. J. Am. Chem. Soc. 136(1), 265–272 (2014). Scholar
  60. 60.
    C.L. Mai, W.K. Huang, H.P. Lu, C.W. Lee, C.L. Chiu, Y.R. Liang, E.W. Diau, C.Y. Yeh, Synthesis and characterization of porphyrin sensitizers for dye-sensitized solar cells. Chem. Commun. 46(5), 809–811 (2010). Scholar
  61. 61.
    C.L. Mai, T. Moehl, C.H. Hsieh, J.D. Décoppet, S.M. Zakeeruddin, M. Grätzel, C.Y. Yeh, Porphyrin sensitizers bearing a pyridine-type anchoring group for dye-sensitized solar cells. ACS Appl. Mater. Interfaces 7(27), 14975–14982 (2015). Scholar
  62. 62.
    V.S. Manthou, E.K. Pefkianakis, P. Falaras, G.C. Vougioukalakis, Co-adsorbents: a key component in efficient and robust dye-sensitized solar cells. ChemSusChem 8(4), 588–599 (2015). Scholar
  63. 63.
    S. Mathew, A. Yella, P. Gao, R. Humphrybaker, B.F. Curchod, N. Ashariastani, I. Tavernelli, U. Rothlisberger, M.K. Nazeeruddin, M. Grätzel, Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers. Nat. Chem. 6(3), 242 (2014). Scholar
  64. 64.
    A. Meindl, S. Plunkett, A.A. Ryan, K.J. Flanagan, S. Callaghan, M.O. Senge, Comparative synthetic strategies for the generation of 5,10- and 5,15-substituted push-pull porphyrins. Eur. J. Org. Chem. 2017(25), 3516–3516 (2017). Scholar
  65. 65.
    R.L. Milot, C.A. Schmuttenmaer, Electron injection dynamics in high-potential porphyrin photoanodes. Acc. Chem. Res. 48(5), 1423–1431 (2015). Scholar
  66. 66.
    R.L. Milot, G.F. Moore, R.H. Crabtree, G.W. Brudvig, C.A. Schmuttenmaer, Electron injection dynamics from photoexcited porphyrin dyes into SnO2 and TiO2 nanoparticles. J. Phys. Chem. C 117(42), 21662–21670 (2015)CrossRefGoogle Scholar
  67. 67.
    S. Mozaffari, M.R. Nateghi, M.B. Zarandi, An overview of the challenges in the commercialization of dye-sensitized solar cells. Renew. Sust. Energy Rev. 71, 675–686 (2016). Scholar
  68. 68.
    M.K. Nazeeruddin, R. Humphry-Baker, D.L. Officer, W.M. Campbell, A.K. Burrell, M. Grätzel, Application of metalloporphyrins in nanocrystalline dye-sensitized solar cells for conversion of sunlight into electricity. Langmuir 20(15), 6514–6517 (2004). Scholar
  69. 69.
    M.K. Nazeeruddin, F. De Angelis, F. Simona, S. Annabella, G. Viscardi, P. Liska, S. Ito, T. Bessho, M. Grätzel, Combined experimental and DFT-TDDFTcomputational study of photoelectrochemical cell ruthenium sensitizers. J. Am. Chem. Soc. 127(48), 16835 (2005). Scholar
  70. 70.
    P. Péchy, F.P. Rotzinger, M.K. Nazeeruddin, O. Kohle, S.M. Zakeeruddin, R. Humphrybaker, M. Grätzel, Preparation of phosphonated polypyridyl ligands to anchor transition-metal complexes on oxide surfaces: application for the conversion of light to electricity with nanocrystalline TiO2 films. J. Chem. Soc. Chem. Commun. 1(1), 65–66 (1995). Scholar
  71. 71.
    T. Ripolles-Sanchis, B.C. Guo, H.P. Wu, T.Y. Pan, H.W. Lee, S.R. Raga, F. Fabregat-Santiago, J. Bisquert, C.Y. Yeh, E.W. Diau, Design and characterization of alkoxy-wrapped push-pull porphyrins for dye-sensitized solar cells. Chem. Commun. 48(36), 4368–4370 (2012). Scholar
  72. 72.
    N. Robertson, Optimizing dyes for dye-sensitized solar cells. Angew. Chem. 37(27), 2338–2345 (2006)CrossRefGoogle Scholar
  73. 73.
    J. Rochford, D. Chu, A. Hagfeldt, E. Galoppini, Tetrachelate porphyrin chromophores for metal oxide semiconductor sensitization: effect of the spacer length and anchoring group position. J. Am. Chem. Soc. 129(15), 4655–4665 (2007). Scholar
  74. 74.
    T.E.O. Screen, K.B. Lawton, G.S. Wilson, N. Dolney, R. Ispasoiu, T.G. Iii, S.J. Martin, D.D.C. Bradley, H.L. Anderson, Synthesis and third-order nonlinear optics of a new soluble conjugated porphyrin polymer. J. Mater. Chem. 11, 312–320 (2001). Scholar
  75. 75.
    M.O. Senge, Stirring the porphyrin alphabet soup--functionalization reactions for porphyrins. Chem. Commun. 47(7), 1943–1960 (2011). Scholar
  76. 76.
    M.O. Senge, J. Richter, Synthetic transformations of porphyrins – advances 2002-2004. J. Porphyrins Phthalocyanines 8(07), 934–953 (2005). Scholar
  77. 77.
    D.M. Shen, C. Liu, X.G. Chen, Q.Y. Chen, Facile and efficient hypervalent iodine(III)-mediated meso- functionalization of porphyrins. J. Org. Chem. 74(1), 206–211 (2009). Scholar
  78. 78.
    J.W. Shiu, Y.C. Chang, C.Y. Chan, H.P. Wu, H.Y. Hsu, C.L. Wang, C.Y. Lin, E.G. Diau, Panchromatic co-sensitization of porphyrin-sensitized solar cells to harvest near-infrared light beyond 900 nm. J. Mater. Chem. A 3(4), 1417–1420 (2014). Scholar
  79. 79.
    H.J. Snaith, Estimating the maximum attainable efficiency in dye-sensitized solar cells. Adv. Funct. Mater. 20(1), 13–19 (2010). Scholar
  80. 80.
    P.M. Sommeling, M. Späth, H.J.P. Smit, N.J. Bakker, J.M. Kroon, Long-term stability testing of dye-sensitized solar cells. J. Photochem. Photobiol. A 164(1), 137–144 (2004). Scholar
  81. 81.
    M. Tanaka, S. Hayashi, S. Eu, T. Umeyama, Y. Matano, H. Imahori, Novel unsymmetrically pi- elongated porphyrin for dye-sensitized TiO2 cells. Chem. Commun. 20(20), 2069–2071 (2007). Scholar
  82. 82.
    M. Urbani, M. Grätzel, M.K. Nazeeruddin, T. Torres, Meso-substituted porphyrins for dye-sensitized solar cells. Chem. Rev. 114(24), 12330–12396 (2014)CrossRefGoogle Scholar
  83. 83.
    Z.S. Wang, H. Kawauchi, T. Kashima, H. Arakawa, Significant influence of TiO2 photoelectrode morphology on the energy conversion efficiency of N719 dye-sensitized solar cell. Coord. Chem. Rev. 248(13–14), 1381–1389 (2004). Scholar
  84. 84.
    Q. Wang, W.M. Campbell, E.E. Bonfantani, K.W. Jolley, D.L. Officer, P.J. Walsh, K. Gordon, R. Humphrybaker, M.K. Nazeeruddin, M. Grätzel, Efficient light harvesting by using green Zn-porphyrin- sensitized nanocrystalline TiO2 films. J. Phys. Chem. B 109(32), 15397–15409 (2005). Scholar
  85. 85.
    C.L. Wang, Y.C. Chang, C.M. Lan, C.F. Lo, W.G. Diau, C.Y. Lin, Enhanced light harvesting with π- conjugated cyclic aromatic hydrocarbons for porphyrin-sensitized solar cells. Energy Environ. Sci. 4(5), 1788–1795 (2011). Scholar
  86. 86.
    C.L. Wang, C.M. Lan, S.H. Hong, Y.F. Wang, T.Y. Pan, C.W. Chang, H.H. Kuo, M.Y. Kuo, W.G. Diau, C.Y. Lin, Enveloping porphyrins for efficient dye-sensitized solar cells. Energy Environ. Sci. 5(5), 6933–6940 (2012). Scholar
  87. 87.
    Y. Wu, W. Zhu, Organic sensitizers from D-π-A to D-A-π-A: effect of the internal electron- withdrawing units on molecular absorption, energy levels, and photovoltaic performances. Chem. Soc. Rev. 42(5), 2039–2058 (2013). Scholar
  88. 88.
    C.H. Wu, T.Y. Pan, S.H. Hong, C.L. Wang, H.H. Kuo, Y.Y. Chu, E.W. Diau, C.Y. Lin, A fluorene-modified porphyrin for efficient dye-sensitized solar cells. Chem. Commun. 48(36), 4329–4331 (2012). Scholar
  89. 89.
    Y. Xie, Y. Tang, W. Wu, Y. Wang, J. Liu, X. Li, H. Tian, W.H. Zhu, Porphyrin cosensitization for a photovoltaic efficiency of 11.5%: a record for non-ruthenium solar cells based on iodine electrolyte. J. Am. Chem. Soc. 137(44), 14055–14058 (2015). Scholar
  90. 90.
    A. Yella, H.W. Lee, H.N. Tsao, C. Yi, A. Chandiran, M. Nazeeruddin, E. Diau, C.Y. Yeh, S. Zakeeruddin, M. Grätzel, Porphyrin-sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12 percent efficiency. Science 334(6056), 629–634 (2011). Scholar
  91. 91.
    A. Yella, C.L. Mai, S.M. Zakeeruddin, S.N. Chang, C.H. Hsieh, C.Y. Yeh, M. Grätzel, Molecular engineering of push-pull porphyrin dyes for highly efficient dye-sensitized solar cells: the role of benzene spacers. Angew. Chem. Int. Ed. Engl. 126(11), 3017–3021 (2014). Scholar
  92. 92.
    L. Yu, K. Muthukumaran, I.V. Sazanovich, C. Kirmaier, E. Hindin, J.R. Diers, P.D. Boyle, D.F. Bocian, D. Holten, J.S. Lindsey, Excited-state energy-transfer dynamics in self-assembled triads composed of two porphyrins and an intervening bis(dipyrrinato)metal complex. Inorg. Chem. 42(21), 6629–6647 (2003). Scholar
  93. 93.
    J. Zhao, A. Wang, M.A. Green, F. Ferrazza, 19.8% efficient “honeycomb” textured multicrystalline and 24.4% monocrystalline silicon solar cells. Appl. Phys. Lett. 73(14), 1991–1993 (1998). Scholar
  94. 94.
    W. Zheng, N. Shan, L. Yu, X. Wang, UV–visible, fluorescence and EPR properties of porphyrins and metalloporphyrins. Dyes Pigments 77(1), 153–157 (2008). Scholar
  95. 95.
    S. Chakraborty, H.-C. You, C.-K. Huang, B.-Z. Lin, C.-L. Wang, M.-C. Tsai, C.-L. Liu, C.-Y. Lin, meso-Diphenylbacteriochlorins: Macrocyclic dyes with rare colors for dye-sensitized solar cells. J Phys Chem C 121(13), 7081–7087 (2017). Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Information EngineeringJiangxi University of Science and TechnologyGanzhou, JiangxiChina
  2. 2.Department of Chemistry and BiochemistryEastern Illinois UniversityCharlestonUSA

Personalised recommendations