Advertisement

Ursprung und Evolution des Lebendigen

  • Aleksandar Janjic
Chapter

Zusammenfassung

Viele Wege führen zum Leben – Reaktion für Reaktion werden die abiotischen Grundlagen der allerersten ökologischen Interaktion und ihrer evolutionären Entfaltung entschlüsselt. Doch wie sieht dieses Leben aus und ist es überhaupt möglich, Leben widerspruchsfrei zu definieren? Das kleinstmögliche Leben birgt das Potenzial, alles, was wir über unsere Erde und ferne Welten zu wissen glauben, größtmöglich zu verändern.

Literatur

  1. Allwood AC, Walter MR, Kamber BS et al (2006) Stromatolite reef from the Early Archaean era of Australia. Nature 441:714–718CrossRefGoogle Scholar
  2. Allwood AC, Rosing MT, Flannery DT et al (2018) Reassessing evidence of life in 3,700-million-year-old rocks of Greenland. Nature 563:241–244CrossRefGoogle Scholar
  3. Altwegg K, Balsiger H, Bar-Nun A et al (2015) 67P/Churyumov-Gerasimenko, a Jupiter family comet with a high D/H ratio. Science 347(6220):1261952CrossRefGoogle Scholar
  4. Altwegg K, Balsiger H, Bar-Nun A et al (2016) Prebiotic chemicals – amino acids and phosphorus – in the coma of comet 67/PChuryumov-Gerasimenko. Sci Adv 2(5):e1600285CrossRefGoogle Scholar
  5. Armstrong DL, Lancet D, Zidovetzki R (2018) Replication of Simulated Prebiotic Amphiphilic Vesicles in a finite environment exhibits complex behavior that includes high progeny variability and competition. Astrobioloy 18:419–430CrossRefGoogle Scholar
  6. Arvidson RE, Squyres SW, Anderson RC et al (2006) Overview of the spirit Mars exploration rover mission to Gusev Crater: landing site to Backstay Rock in the Columbia Hills. JGR Planets 111:E2Google Scholar
  7. Balaram B, Canham T, Duncan C et al (2018) Mars helicopter technology demonstration. 2018 AIAA Atmospheric Flight Mechanics Conference, AIAA SciTech Forum, AIAA 2018-0023Google Scholar
  8. Baluska F, Mancuso S (2016) Vision in plants via plant-specific ocelli? Trends Plant Sci 21:727–730CrossRefGoogle Scholar
  9. Bamford DH, Grimes JM, Stuart DI (2005) What does structure tell us about virus evolution? Curr Opin Struct Biol 15:655–663CrossRefGoogle Scholar
  10. Becker S, Thoma I, Deutsch A et al (2016) A high-yielding, strictly regioselective prebiotic purine nucleoside formation pathway. Science 352(6287):833–836CrossRefGoogle Scholar
  11. Berliner AJ, Mochizuki T, Stedman KM (2018) Astrovirology: viruses at large in the universe. Astrobiology 18:207–223CrossRefGoogle Scholar
  12. Blöchl E, Keller M, Wächtershäuser G et al (1992) Reactions depending on iron sulfide and linking geochemistry with biochemistry. Proc Natl Acad Sci 89:8117–8120CrossRefGoogle Scholar
  13. Boetius A, Ravenschlag K, Schubert CJ et al (2000) A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature 46:623–626CrossRefGoogle Scholar
  14. Boetius A (2005) Lost city life. Science 307(5714):1420–1422CrossRefGoogle Scholar
  15. Bost N, Ramboz C, LeBreton N et al (2015) Testing the ability of the ExoMars 2018 payload to document geological context and potential habitability on Mars. Planet Space Sci 108:87–97CrossRefGoogle Scholar
  16. Brockwell TG, Meech KJ, Pickens K et al (2016) The mass spectrometer for planetary exploration (MASPEX). In Aerospace Conference 2016 IEEE, IEEE, Big Sky, MTGoogle Scholar
  17. Cech TR (1987) The chemistry of self-splicing RNA and RNA enzymes. Science 236:1532–1539CrossRefGoogle Scholar
  18. Cho I, Blaser MJ (2012) The human microbiome: at the interface of health and disease. Nat Rev Genet 13:260–270CrossRefGoogle Scholar
  19. Christensen PR, Bandfield JL, Clark RN et al (2000) Detection of crystalline hematite mineralization on Mars by the Thermal Emission Spectrometer: evidence for near-surface water. JGR Planets 105:9623–9642CrossRefGoogle Scholar
  20. Christensen PR, Morris RV, Lane MD et al (2001) Global mapping of Martian hematite mineral deposits: Remnants of water-driven processes on early Mars. JGR Planets 106:23873–23885CrossRefGoogle Scholar
  21. Collins MA, Buick RK (1989) Effect of temperature on the spoilage of sotred peas by Rhodotorula glutinis. Food Microbiol 6:135–141CrossRefGoogle Scholar
  22. Cordier D, Carrasco N (2019) The floatability of aerosols and wave damping on Titan’s seas. Nat Geosci 12:315–320CrossRefGoogle Scholar
  23. Damer B, Deamer D (2015) Coupled phases and combinatorial selection in fluctuating hydrothermal pools: a scenario to guide experimental approaches to the origin of cellular life. Life 5:872–887CrossRefGoogle Scholar
  24. Darwin F (1887) The life and letters of Charles Darwin. Bd. 3. John Murray, London, 18. Viele Werke und Briefe Darwins wurden von seinem Sohn Francis Darwin veröffentlicht und sind heute online verfügbar unter darwin-online.org.ukGoogle Scholar
  25. De Vera J-PP, Schulze-Makuch D, Khan A et al (2014) Adaptation of an Antarctic lichen to Martian niche conditions can occur within 34 days. Planet Space Sci 98:182–190CrossRefGoogle Scholar
  26. Deeg CM, Zimmer MM, George E et al (2018) Chromulinavorax destructans, a pathogenic TM6 bacterium with an unusual replication strategy targeting protist mitochondrion. bioRxiv:10.1101/ 379388Google Scholar
  27. Di Giulio M (2011) The last universal common ancestor (LUCA) and the ancestors of archaea and bacteria were progenotes. J Mol Evol 72:119–126CrossRefGoogle Scholar
  28. DLR (2018) MASCOT lands safely on asteroid Ryugu. Presseveröffentlichung. https://www.dlr.de/dlr/presse/en/desktopdefault.aspx/tabid-10172/213_read-30118/#/gallery/32231. Zugegriffen: 15. Febr. 2019
  29. Egel R (2012) Primal eukaryogenesis: on the communal nature of precellular states, ancestral to modern life. Life 2:170–212CrossRefGoogle Scholar
  30. ESA (2005) Europe arrives at the New Frontier – The Huygens landing on Titan. ESA Bulletin 121. Open access. http://www.esa.int/esapub/bulletin/bulletin121/bul121a_lebreton.pdf. Zugegriffen: 15. Febr. 2019
  31. Erez Z, Steinberger-Levy I, Shamir M et al (2017) Communication between viruses guides lysis-lysogeny decisions. Nature 541:488–493CrossRefGoogle Scholar
  32. Forterre P (2011) Manipulation of cellular syntheses and the nature of viruses: the virocell concept. C R Chim 14:392–399CrossRefGoogle Scholar
  33. Forterre P (2017) Viruses in the 21st century: from the curiosity-driven discovery of giant viruses to new concepts and definitions of life. Clin Infect Dis 65:S74–S79CrossRefGoogle Scholar
  34. Gilbert W (1986) The RNA world. Nature 319(6055):618CrossRefGoogle Scholar
  35. Gissinger C, Petitdemange L (2019) A magnetically driven equatorial jet in Europa’s ocean. Nat Astron 3:401–407CrossRefGoogle Scholar
  36. Goesmann F, Brinckerhoff WB, Raulin F et al (2017) The Mars Organic Molecule Analyzer (MOMA) instrument: characterization of organic material in martian sediments. Astrobiology 17:655–685CrossRefGoogle Scholar
  37. Golombek MP, Cook RA, Economou T et al (1997) Overview of the Mars Pathfinder mission and assessment of landing site predictions. Science 278:1743–1748CrossRefGoogle Scholar
  38. Grotzinger JP (2014) Habitability, taphonomy, and the search for organic carbon on Mars. Science 343:386–387CrossRefGoogle Scholar
  39. Heinz J, Schirmack J, Airo A et al (2018) Enhanced microbial survivability in subzero brines. Astrobiology 18:1171–1180CrossRefGoogle Scholar
  40. Hendrix AR, Hurford TA, Barge LM et al (2019) The NASA roadmap to ocean worlds. Astrobiology 19:1–27CrossRefGoogle Scholar
  41. Hörst SM, Yelle RV, Buch A et al (2012) Formation of amino acids and nucleotide bases in a Titan atmosphere simulation experiment. Astrobiology 12(9):809–817CrossRefGoogle Scholar
  42. Horowitz NH et al (1976) The Viking carbon assimilation experiments: interim report. Science 194(4721):1321fCrossRefGoogle Scholar
  43. Hoshika S, Leal NA, Kim M-J et al (2019) Hachimoji DNA and RNA: a genetic system with eight building blocks. Science 363:884–887CrossRefGoogle Scholar
  44. Hsu H-W, Postberg F, Sekine Y et al (2015) Ongoing hydrothermal activities within Enceladus. Nature 519:207–210CrossRefGoogle Scholar
  45. Hughes SS, Haberle CW, Kobs Nawotniak SE et al (2018) BASALT A: Basaltic Terrains in Idao and Hawaii as Planetary Analogues for Mars geology and Astrobiology. Astrobiology 19.  https://doi.org/10.1089/ast.2018.1847
  46. Hutchins KS, Jakosky BM (1996) Evolution of martian atmospheric argon: implications for sources of volatiles. J Geophys Res: Planets 101:14933–14949CrossRefGoogle Scholar
  47. Iess L et al (2014) The gravity field and interior structure of enceladus. Science 344(6179):6178–6180CrossRefGoogle Scholar
  48. Janjic A (2018) The need for including virus detection methods in future Mars missions. Astrobiology 18:1611–1614CrossRefGoogle Scholar
  49. Jia X, Kivelson MG, Khurana K et al (2018) Evidence of a plume on Europa from Galileo magnetic and plasma wave signatures. Nat Astron 2:459–464CrossRefGoogle Scholar
  50. Karr JR, Sanghvi JC, Macklin DN et al (2012) A whole-cell computational model predicts phenotype from genotype. Cell 150(2):389–401CrossRefGoogle Scholar
  51. Khurana KK et al (1998) Induced magnetic fields as evidence for subsurface oceans in Europa and Callisto. Nature 395:777–780CrossRefGoogle Scholar
  52. Kim SC, O’Flaherty DK, Zhou L et al (2018) Inosine, but none of the 8-oxo-purines, is a plausible component of a primordial version of RNA. PNAS 115:13318–13323CrossRefGoogle Scholar
  53. Kite ES, Gaidos E, Onstott TC (2018) Valuing life-detection missions. Astrobiology 18:834–840CrossRefGoogle Scholar
  54. Klein HP et al (1976) The viking biological investigation: preliminary results. Science 194(4260):99–105CrossRefGoogle Scholar
  55. Klose J, Polz MFP, Wagner M et al (2015) Endosymbionts escape dead hydrothermal vent tubeworms to enrich the free-living population. PNAS 112:11300–11305CrossRefGoogle Scholar
  56. Konstantinidis K, Flores Martinez CL, Dachwald B et al (2015) A lander mission to probe suglacial water on Saturn’s moon Enceladus for life. Acta Astronaut 106:63–89CrossRefGoogle Scholar
  57. Koonin EV, Martin W (2005) On the origin of genomes and cells within inorganic compartments. Trends Genet 21:647–654CrossRefGoogle Scholar
  58. Koonin EV, Senkevich TG, Dolja VV (2006) The ancient Virus world and evolution of cells. Biol Direct 1:29CrossRefGoogle Scholar
  59. Kushner DJ, Baker A, Dunstall TG (1999) Pharmalogical uses and perspectives of heavy water and deuterated compounds. Can J Physiol Pharmacol 77:79–88CrossRefGoogle Scholar
  60. Loeb A (2013) The habitable epoche of the early universe. Int J Astrobiol 13(4):337–339CrossRefGoogle Scholar
  61. Lorenz RD, Stiles B, Kirk RL et al (2008) Titan’s rotation revelas an internal ocean and changing zonal winds. Science 319:1649–1651CrossRefGoogle Scholar
  62. Lou E, Fujisawa S, Barlas A et al (2012) Tunneling Nanotubes – a new paradigm for studying intercellular communication and therapeutics in cancer. Communicative & Integr Biology 5:399–403CrossRefGoogle Scholar
  63. Mahaffy PR, Webster CR, Atreya SK et al (2013) Abundance and isotopic composition of gases in the Martian atmosphere from the Curiosity rover. Science 341:263–266CrossRefGoogle Scholar
  64. Malaska MJ, Hodyss R, Lunine JI et al (2017) Laboratory measurements of nitrogen dissolution in Titan lake fluids. Icarus 289:94–105CrossRefGoogle Scholar
  65. Mastrogiuseppe M, Poggiali V, Hayes AG et al (2019) Deep and methane-rich lakes on Titan. Nat Astron.  https://doi.org/10.1038/s41550-019-0714-2CrossRefGoogle Scholar
  66. Matijevic JR, Crisp J, Bickler DB et al (1997) Characterization of the Martian surface deposits by the Mars Pathfinder rover, Sojourner. Science 278:1765–1768CrossRefGoogle Scholar
  67. McElroy MB, Kong TY, Yung YL (1977) Photochemistry and evolution of Mars’ atmosphere: a Viking perspective. J Geophys Res 82:4379–4388CrossRefGoogle Scholar
  68. McKay CP, Smith HD (2005) Possibilites for methanogenic life in liquid methane on the surface of Titan. Icarus 178:274–276CrossRefGoogle Scholar
  69. McSween HY Jr, Murchie SL, Crisp JA et al (1999) Chemical, multispectral, and textural constraints on the composition and origin of rocks at the Mars Pathfinder landing site. JGR Planets 104:8679–8715CrossRefGoogle Scholar
  70. Menez B, Pisapia C, Andreani M et al (2018) Abiotic synthesis of amino acids in the recesses of the oceanic lithosphere. Nature 564:59–63CrossRefGoogle Scholar
  71. Miller SL (1953) A production of amino acids under possible primitive earth conditions. Science 117(3046):528fCrossRefGoogle Scholar
  72. Miteva V, Sowers T, Brenchley J (2007) Production of N2O by ammonia oxidizing bacteria at subfreezing temperatures as a model for assessing the N2O anomalies in the Vostok Ice core. Geomicrobiol J 24:451–459CrossRefGoogle Scholar
  73. Mitri G, Showman AP, Lunine JI et al (2008) Resurfacing of Titan by ammonia-water cryomagma. Icarus 196:216–224CrossRefGoogle Scholar
  74. Morris RV, Ruff SW, Gellert R et al (2010) Identification of carbonate-rich outcrops on Mars by the Spirit rover. Science 329:421–424CrossRefGoogle Scholar
  75. Morris PW, Gupta H, Nagy Z et al (2016) Herschel/HIFI spectral mapping of C+, CH+, and CH in Orion BN/KL: the prevailing role of ultraviolet irradiation in CH+ formation. Astrophys J 829(1):15CrossRefGoogle Scholar
  76. NASA (2014) Curiosity finds Iron meteorite on Mars. NASA-Pressemitteilung. https://www.nasa.gov/jpl/msl/pia18387. Zugegriffen: 15. Febr. 2019
  77. NASA (2017a) Journey to the center of icy moons. Pressemitteilung der NASA. https://www.nasa.gov/feature/journey-to-the-center-of-icy-moons. Zugegriffen: 15. Febr. 2019
  78. NASA (2017b) Mars Rover curiosity examines possible mud cracks. Presseveröffentlichung der NASA. https://www.nasa.gov/feature/jpl/mars-rover-curiosity-examines-possible-mud-cracks. Zugegriffen: 15. Febr. 2019
  79. NASA (2018) NASA Announces Landing Site for Mars 2020 Rover. Presseveröffentlichung der NASA. https://www.nasa.gov/press-release/nasa-announces-landing-site-for-mars-2020-rover. Zugegriffen: 15. Febr. 2019
  80. Niederholtmeyer H, Chaggan C, Devaraj NK et al (2018) Communication and quorum sensing in non-living mimics of eukaryotic cells. Nat Commun 9:5027CrossRefGoogle Scholar
  81. Niemann HB, Atreya SK, Bauer SJ et al (2005) The abundances of constituents of Titan’s atmosphere from the GCMS instrument on the Huygens probe. Nature 438(7069):779–784CrossRefGoogle Scholar
  82. Niemann HB, Atreya SK, Demick JE et al (2010) Composition of Titan’s lower atmosphere and simple surface vola- tiles as measured by the Cassini-Huygens probe gas chromatograph mass spectrometer experiment. J Geophys Res 115:E12CrossRefGoogle Scholar
  83. Nimmo F, Hamilton DP, McKinnon WB et al (2016) Reorientation of Sputnik Planitia implies a subsurface ocean on Pluto. Nature 540:94–96CrossRefGoogle Scholar
  84. Nordheim TA, Hand KP, Paranicas C (2018) Preservation of potential biosignatures in the shallow subsurface of Europa. Nature Astronomy 2:673–679CrossRefGoogle Scholar
  85. Nutman AP, Bennett VC, Friend CRL et al (2016) Rapid emergence of life shown by discovery of 3,700-million-year-old microbial structures. Nature 537:535–538CrossRefGoogle Scholar
  86. Oleson SR (2016) Titan submarine: exploring the depths of Kranken Mare. Nennung des Konzepts im Vortrag NASA Glenn Research Centers auf dem NASA-Innovative-Advanced-Concepts-Symposium, Raleigh, North CarolinaGoogle Scholar
  87. Oparin A (1947) Die Entstehung des Lebens auf der Erde. Volk und Wissen, Berlin. 1924 erschien die russische Originalliteratur: Oparin A., Proiskhozhdenie zhizny, Izd. Moskovhii RabochiI, MoskauGoogle Scholar
  88. Orosei R, Lauro SE, Pettinelli E et al (2018) Radar evidence of subglacial liquid water on Mars. Science 361:490–493Google Scholar
  89. Pande S, Kost C (2017) Bacterial unculturability and the formation of intercellular metabolic networks. Trends Microbiol 25:349–361CrossRefGoogle Scholar
  90. Parness A, Frost M, Boston P et al (2012) Rock climbing robot for exploration and sample acquisition at lava tubes, steep slopes, and cliff walls. Nennung der Arbeit im Vortrag des NASA Jet Propulsion Laboratory auf dem NASA-Innovative-Advanced-Concepts-Symposium, Raleigh, North CarolinaGoogle Scholar
  91. Pasteur L (1864) On spontaneous generation: an address delivered by Louis Pasteur at the „Sorbonne Scientific Soiree“ of April 7, 1864. Revue des cours scientifics I (1863–1864):257–264. Englische Übersetzung mitsamt handschriftlichen Korrekturen von Pasteur im Auftrag von Bruno Latour, Copyright Alex Levine 1993Google Scholar
  92. Pearce BKD, Pudritz RE, Semenov DA et al (2017) Origin of the RNA world: the fate of nucleobases in warm little ponds. PNAS 114:11327–11332CrossRefGoogle Scholar
  93. Penalosa J (1983) Shoot dynamics and adaptive morphology of Ipomoea phillomega (Vell.) House (Convolvulaceae), a Tropical Rainforest Liana. Ann Bot 52(5):737–754. (u. A. in Silvertown, J, Charlesworth D (2001) Plant Population Biology 13. Blackwell Publishing, Malden.)Google Scholar
  94. Phillips CB, Pappalardo RT (2014) Europa clipper mission concept: exploring Jupiter’s ocean moon. EOS Trans AGU 95:165–167CrossRefGoogle Scholar
  95. Postberg F, Kempf S, Schmidt J et al (2009) Sodium salts in E-ring ice grains from an ocean below the surface of Enceladus. Nature 459:1098–1101CrossRefGoogle Scholar
  96. Postberg F, Schmidt J, Hillier J et al (2011) A salt-water reservoir as the source of a compositionally stratified plume on Enceladus. Nature 474:620–622CrossRefGoogle Scholar
  97. Postberg F, Khawaja N, Abel B et al (2018) Macromolecular organic compounds from the depths of Enceladus. Nature 558:564–568CrossRefGoogle Scholar
  98. Powner MW, Gerland B, Sutherland JD (2009) Synthesis of activated pyrimidine ribonucleotides in prebiotically plausible conditions. Nature 459:239–242CrossRefGoogle Scholar
  99. Rustom A, Saffrich R, Markovic I et al (2004) Nanotubular highways for intercellular organelle transport. Science 303:1007–1010CrossRefGoogle Scholar
  100. Raulin F (2005) Exo-astrobiological aspects of Europa and Titan: From observations to speculations. Space Sci Rev 116(1):471–486CrossRefGoogle Scholar
  101. Ramirez RM, Kopparapu R, Zugger ME et al (2014) Warming early Mars with CO2 and H2. Nat Geosci 7:59–63CrossRefGoogle Scholar
  102. Sagan C, Salpeter EE (1976) Particles, environments and possible ecologies in the Jovian atmosphere. Astrophys J Suppl 32:737–755CrossRefGoogle Scholar
  103. Salinas-de-Leon P, Phillips B, Ebert D et al (2018) Deep-sea hydrothermal vents as natural egg-case incubators at the Galapagos Rift. Sci Rep 8:1788CrossRefGoogle Scholar
  104. Schuergers N, Lenn T, Kampmann R et al (2016) Cyanobacteria use micro-optics to sense light direction. eLife 5:e12620CrossRefGoogle Scholar
  105. Schulz F, Alteio L, Goudeau D et al (2018) Hidden diversity of soil giant viruses. Nat Commun 9:4881CrossRefGoogle Scholar
  106. Schvarcz CR, Steward GF (2018) A giant virus infecting green algae encodes key fermentation genes. Virology 518:423–433CrossRefGoogle Scholar
  107. Sender R, Fuchs S, Milo R (2016) Revised estimates for the number of human and bacteria cells in the body. PLoS Biol 14(8):e1002533CrossRefGoogle Scholar
  108. Shematovich VI (2018) Ocean worlds in the outer regions of the solar system (Review). Sol Syst Res 52:371–381CrossRefGoogle Scholar
  109. Sojo V, Herschy B, Whicher A et al (2016) The origion of life in alkaline hydrothermal vents. Astrobiology 16:181–197CrossRefGoogle Scholar
  110. Squyres SW, Arvidson RE, Bollen D et al (2006) Overview of the opportunity Mars exploration Rover Mission to Meridiani Planum: Eagle crater to Purgatory Ripple. JGR Planets 111:E12Google Scholar
  111. Stamenkovic V, Ward LM, Mischna M, Fischer WW (2018) O2 solubility in Martian near-surface environemnts and implications for aerobic life. Nat Geosci 11:905–909CrossRefGoogle Scholar
  112. Stevens AH, Childers D, Fox-Powell M et al (2019) Growth, viability, and death of Planktonic and biofilm Sphingomonas desiccabilis in simulated Martian brines. Astrobiology 19:87–98CrossRefGoogle Scholar
  113. Stofan ER (2007) The lakes of Titan. Nature 445:61–64CrossRefGoogle Scholar
  114. Strobel DF (2010) Molecular hydrogen in Titan’s atmosphere: implications of the measured tropospheric and thermospheric mole fractions. Icarus 208(2):878–886CrossRefGoogle Scholar
  115. Squyres SW, Arvidson RE, Bell JF et al (2012) Ancient impact and aqueous processes at Endeavour Crater, Mars. Science 336:570–576CrossRefGoogle Scholar
  116. Taubner R-S, Pappenreiter P, Zwicker J et al (2018) Biological methane production under putative Enceladus-like conditions. Nat Commun 9:748CrossRefGoogle Scholar
  117. Tinoco I Jr, Bustamante C (1999) How RNA folds. J Mol Biol 293(2):271–281CrossRefGoogle Scholar
  118. Toyota T, Maru N, Hanczyc MM et al (2009) Self-propelled oil droplets consuming >fuel< surfactant. J Am Chem Soc 131(14):5012fCrossRefGoogle Scholar
  119. Trainer MG, Brinckerhoff WB, Freissinet C et al (2018a) Dragonfly: investigating the surface composition of Titan. 49th Lunar andPlanetary Science Conference, Document ID 20180003047Google Scholar
  120. Trainer MG, Brinckerhoff WB, Freissinet C et al (2018b) Dragonfly: investigating the surface composition of Titan. NASA-Pressemitteilung. https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20180003047.pdf. Zugegriffen: 15. Febr. 2019
  121. Tyler RH (2008) Strong ocean tidal flow and heating on moons of the outer planets. Nature 456:770–772CrossRefGoogle Scholar
  122. Van Thienen P, Vlaar NJ, Van den Berg AP (2005) Assessment of the cooling capacity of plate tectonics and flood volcanism in the evolution of Earth, Mars and Venus. Phys Earth Planet Inter 150:287–315CrossRefGoogle Scholar
  123. Viedma C (2007) Chiral symmetry breaking and complete chiral purity by thermodynamic-kinetic feedback near equilibrium: implications for the origin of biochirality. Astrobiology 7:312–319CrossRefGoogle Scholar
  124. Wächtershäuser G (1988) Pyrite formation, the first energy source for life: A hypothesis. Syst Appl Microbiol 10(3):207–210CrossRefGoogle Scholar
  125. Wächtershäuser G (1992) Groundworks for an evolutionary biochemistry: the iron-sulphur world. Prog Biophys Mol Biol 58(2):85–201CrossRefGoogle Scholar
  126. Webster CR, Mahaffy PR, Flesch GJ et al (2013) Isotope ratios of H, C, and O in CO2 and H2O of the Martian atmosphere. Science 341:260–263CrossRefGoogle Scholar
  127. Williams RME, Grotzinger JP, Dietrich WE et al (2013) Martian fluvial conglomerates at gale crater. Science 340:1068–1072CrossRefGoogle Scholar
  128. Wolfe-Simon F, Switzer Blum J, Kulp TR et al (2010) A Bacterium that can grow by using arsenic instead of phosphorus. Science 323(6034):1163–1166CrossRefGoogle Scholar
  129. Yamamoto M, Nakamura R, Oguri K et al (2013) Generation of electricity and illumination by an environmental fuel cell in deep-sea hydrothermal vents. Angew Chem Int Ed 52:10758–10761CrossRefGoogle Scholar
  130. Yarus M (2010) Getting past the RNA world: the initial Darwinian Ancestor. RNA worlds: from Life’s origins to diversity in gene regulation. Cold Spring Habror Laboratory Press, New York, S 43–50Google Scholar
  131. Yates JS, Palmer PI, Biller B et al (2017) Atmospheric Habitable Zones in Y Dwarf Atmospheres. Astrophys J 836:184CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2019

Authors and Affiliations

  • Aleksandar Janjic
    • 1
  1. 1.Technische Universität MünchenFreisingDeutschland

Personalised recommendations