Advertisement

Clinical Decision Support

  • Vitaly HerasevichEmail author
  • Mikhail Dziadzko
  • Brian W. Pickering
Chapter

Abstract

The intensive care unit (ICU) is one of the most data-rich, process-intense environments in the modern hospital. Delivering a single process of care to a patient requires interactions between multiple individuals, highly vulnerable patients, and technology. We are at the beginning of an information revolution in healthcare focused initially on establishing the infrastructure required for electronic clinical data management and exchange. This goal will be ultimately be achieved by improved human-computer interfaces, smart clinical decision support systems, and true interoperability and data exchange between silos of care. The aim of this chapter is to discuss on the current status of clinical decision support systems in the acute care setting such as ICU.

Keywords

EMR Data Clinical decision support Situation awareness Checklists 

References

  1. 1.
    Talmor D, Shapiro N, Greenberg D, Stone PW, Neumann PJ. When is critical care medicine cost-effective? A systematic review of the cost-effectiveness literature. Crit Care Med. 2006;34(11):2738–47.  https://doi.org/10.1097/01.CCM.0000241159.18620.AB.CrossRefPubMedGoogle Scholar
  2. 2.
    Rivers E, Nguyen B, Havstad S, Ressler J, Muzzin A, Knoblich B, Peterson E, Tomlanovich M. Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med. 2001;345(19):1368–77.  https://doi.org/10.1056/NEJMoa010307.CrossRefPubMedGoogle Scholar
  3. 3.
    The Acute Respiratory Distress Syndrome Network. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med. 2000;342(18):1301–8.  https://doi.org/10.1056/NEJM200005043421801.CrossRefGoogle Scholar
  4. 4.
    Lockley SW, Barger LK, Ayas NT, Rothschild JM, Czeisler CA, Landrigan CP. Effects of health care provider work hours and sleep deprivation on safety and performance. Jt Comm J Qual Patient Saf. 2007;33(11 Suppl):7–18.CrossRefPubMedGoogle Scholar
  5. 5.
    Montgomery VL. Effect of fatigue, workload, and environment on patient safety in the pediatric intensive care unit. Pediatr Crit Care Med. 2007;8(2 Suppl):S11–6.  https://doi.org/10.1097/01.PCC.0000257735.49562.8F.CrossRefPubMedGoogle Scholar
  6. 6.
    Bracco D, Favre JB, Bissonnette B, Wasserfallen JB, Revelly JP, Ravussin P, Chiolero R. Human errors in a multidisciplinary intensive care unit: a 1-year prospective study. Intensive Care Med. 2001;27(1):137–45.CrossRefPubMedGoogle Scholar
  7. 7.
    Donchin Y, Gopher D, Olin M, Badihi Y, Biesky M, Sprung CL, Pizov R, Cotev S. A look into the nature and causes of human errors in the intensive care unit. Crit Care Med. 1995;23(2):294–300.CrossRefPubMedGoogle Scholar
  8. 8.
    Manor-Shulman O, Beyene J, Frndova H, Parshuram CS. Quantifying the volume of documented clinical information in critical illness. J Crit Care. 2008;23(2):245–50.  https://doi.org/10.1016/j.jcrc.2007.06.003.CrossRefPubMedGoogle Scholar
  9. 9.
    Gao F, Melody T, Daniels DF, Giles S, Fox S. The impact of compliance with 6-hour and 24-hour sepsis bundles on hospital mortality in patients with severe sepsis: a prospective observational study. Crit Care. 2005;9(6):R764–70.  https://doi.org/10.1186/cc3909.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Kaplan DM. Clear writing, clear thinking and the disappearing art of the problem list. J Hosp Med. 2007;2(4):199–202.  https://doi.org/10.1002/jhm.242.CrossRefPubMedGoogle Scholar
  11. 11.
    Han YY, Carcillo JA, Venkataraman ST, Clark RS, Watson RS, Nguyen TC, Bayir H, Orr RA. Unexpected increased mortality after implementation of a commercially sold computerized physician order entry system. Pediatrics. 2005;116(6):1506–12.  https://doi.org/10.1542/peds.2005-1287.CrossRefPubMedGoogle Scholar
  12. 12.
    Sittig DF, Ash JS, Zhang J, Osheroff JA, Shabot MM. Lessons from “Unexpected increased mortality after implementation of a commercially sold computerized physician order entry system”. Pediatrics. 2006;118(2):797–801.  https://doi.org/10.1542/peds.2005-3132.CrossRefPubMedGoogle Scholar
  13. 13.
    Ahmed A, Chandra S, Herasevich V, Gajic O, Pickering BW. The effect of two different electronic health record user interfaces on intensive care provider task load, errors of cognition, and performance. Crit Care Med. 2011;39(7):1626–34.  https://doi.org/10.1097/CCM.0b013e31821858a0.CrossRefPubMedGoogle Scholar
  14. 14.
    Institute of Medicine. To err is human. Building a safer health system. Washington, DC: National Academy Press; 2000.Google Scholar
  15. 15.
    Rebitzer JB, Rege M, Shepard C. Influence, information overload, and information technology in health care. Adv Health Econ Health Serv Res. 2008;19:43–69.CrossRefPubMedGoogle Scholar
  16. 16.
    Dowling AF Jr. Health care information systems architecture of the near future. J Soc Health Syst. 1989;1(2):77–97.PubMedGoogle Scholar
  17. 17.
    Herasevich V, Litell J, Pickering B. Electronic medical records and mHealth anytime, anywhere. Biomed Instrum Technol. 2012;Suppl:45–8.  https://doi.org/10.2345/0899-8205-46.s2.45.CrossRefPubMedGoogle Scholar
  18. 18.
    Greenes RA. Clinical decision support: the road to broad adoption. Amsterdam: Academic; 2014.Google Scholar
  19. 19.
    Hayward R. Clinical decision support tools: do they support the clinicians? Future Pract. 2004;2004:66–8.Google Scholar
  20. 20.
    Mayhall CG. Hospital epidemiology and infection control. 4th ed. Philadelphia: LWW; 2011.Google Scholar
  21. 21.
    Pryor A. Development of decision support systems. Int J Clin Monit Comput. 1990;7:137–46.CrossRefPubMedGoogle Scholar
  22. 22.
    Randolph AG, Haynes RB, Wyatt JC, Cook DJ, Guyatt GH. Users’ guides to the medical literature: XVIII. How to use an article evaluating the clinical impact of a computer-based clinical decision support system. JAMA. 1999;282(1):67–74.CrossRefPubMedGoogle Scholar
  23. 23.
    Berner ES. Clinical decision support systems. 2nd ed. New York: Springer Science & Business Media; 2007.CrossRefGoogle Scholar
  24. 24.
    Perreault LE, Metzger JB. A pragmatic framework for understanding clinical decision support. J Healthc Inf Manag. 1999;13(2):5–21.Google Scholar
  25. 25.
    Berlin A, Sorani M, Sim I. A taxonomic description of computer-based clinical decision support systems. J Biomed Inform. 2006;39(6):656–67.  https://doi.org/10.1016/j.jbi.2005.12.003.CrossRefPubMedGoogle Scholar
  26. 26.
    Campbell R. The five “rights” of clinical decision support. J AHIMA. 2013;84(10):42–47; quiz 48.PubMedGoogle Scholar
  27. 27.
    Kennedy OG, Davis GM, Heda S. Clinical information systems: 25-year history and the future. J Soc Health Syst. 1992;3(4):49–60.PubMedGoogle Scholar
  28. 28.
    Wiener F, Weil MH, Carlson RW. Computer systems for facilitating management of the critically ill. Comput Biol Med. 1982;12(1):1–15.CrossRefPubMedGoogle Scholar
  29. 29.
    Power DJ. A brief history of decision support systems. In: Decision support systems, vol. 4. Berlin: Springer; 2007. p. 1–18.Google Scholar
  30. 30.
    Ritchie D. Managing the gap: balancing advances in technology with advances in management practice. Aust Health Rev. 1997;20(1):53–65.CrossRefPubMedGoogle Scholar
  31. 31.
    O’Connor C, Friedrich JO, Scales DC, Adhikari NK. The use of wireless e-mail to improve healthcare team communication. J Am Med Inform Assoc. 2009;16(5):705–13.  https://doi.org/10.1197/jamia.M2299.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Wong DH, Gallegos Y, Weinger MB, Clack S, Slagle J, Anderson CT. Changes in intensive care unit nurse task activity after installation of a third-generation intensive care unit information system. Crit Care Med. 2003;31(10):2488–94.  https://doi.org/10.1097/01.CCM.0000089637.53301.EF.CrossRefPubMedGoogle Scholar
  33. 33.
    Herasevich V, Kor DJ, Subramanian A, Pickering BW. Connecting the dots: rule-based decision support systems in the modern EMR era. J Clin Monit Comput. 2013;27(4):443–8.  https://doi.org/10.1007/s10877-013-9445-6.CrossRefPubMedGoogle Scholar
  34. 34.
    CMS. Fact sheet: CMS and ONC final regulations define meaningful use and set standards for electronic health record incentive program. 2010. http://www.cms.gov/apps/media/press/factsheet.asp?Counter53787.
  35. 35.
    Castella X, Artigas A, Bion J, Kari A. A comparison of severity of illness scoring systems for intensive care unit patients: results of a multicenter, multinational study. The European/North American Severity Study Group. Crit Care Med. 1995;23(8):1327–35.CrossRefPubMedGoogle Scholar
  36. 36.
    Morris AH. Rational use of computerized protocols in the intensive care unit. Crit Care. 2001;5(5):249–54.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Weber S. Clinical decision support systems and how critical care clinicians use them. J Healthc Inform Manag. 2007;21(2):41–52.Google Scholar
  38. 38.
    Pickering BW, Gajic O, Ahmed A, Herasevich V, Keegan MT. Data utilization for medical decision making at the time of patient admission to ICU∗. Crit Care Med. 2013;41(6):1502–10.  https://doi.org/10.1097/CCM.0b013e318287f0c0.CrossRefPubMedGoogle Scholar
  39. 39.
    Martich GD. Paradise by the dashboard light∗. Crit Care Med. 2013;41(6):1586–7.  https://doi.org/10.1097/CCM.0b013e31828cec19.CrossRefPubMedGoogle Scholar
  40. 40.
    Pickering BW, Litell JM, Herasevich V, Gajic O. Clinical review: the hospital of the future - building intelligent environments to facilitate safe and effective acute care delivery. Crit Care. 2012;16(2):220.  https://doi.org/10.1186/cc11142.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Morrison C, Jones M, Blackwell A, Vuylsteke A. Electronic patient record use during ward rounds: a qualitative study of interaction between medical staff. Crit Care. 2008;12(6):R148.  https://doi.org/10.1186/cc7134.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Hales BM, Pronovost PJ. The checklist—a tool for error management and performance improvement. J Crit Care. 2006;21(3):231–5.  https://doi.org/10.1016/j.jcrc.2006.06.002.CrossRefPubMedGoogle Scholar
  43. 43.
    Arriaga AF, Bader AM, Wong JM, Lipsitz SR, Berry WR, Ziewacz JE, Hepner DL, Boorman DJ, Pozner CN, Smink DS, Gawande AA. Simulation-based trial of surgical-crisis checklists. N Engl J Med. 2013;368(3):246–53.  https://doi.org/10.1056/NEJMsa1204720.CrossRefPubMedGoogle Scholar
  44. 44.
    Haynes AB, Weiser TG, Berry WR, Lipsitz SR, Breizat AH, Dellinger EP, Herbosa T, Joseph S, Kibatala PL, Lapitan MC, Merry AF, Moorthy K, Reznick RK, Taylor B, Gawande AA. A surgical safety checklist to reduce morbidity and mortality in a global population. N Engl J Med. 2009;360(5):491–9.  https://doi.org/10.1056/NEJMsa0810119.CrossRefPubMedGoogle Scholar
  45. 45.
    Pronovost P, Needham D, Berenholtz S, Sinopoli D, Chu H, Cosgrove S, Sexton B, Hyzy R, Welsh R, Roth G, Bander J, Kepros J, Goeschel C. An intervention to decrease catheter-related bloodstream infections in the ICU. N Engl J Med. 2006;355(26):2725–32.  https://doi.org/10.1056/NEJMoa061115.CrossRefPubMedGoogle Scholar
  46. 46.
    Berenholtz SM, Pronovost PJ, Lipsett PA, Hobson D, Earsing K, Farley JE, Milanovich S, Garrett-Mayer E, Winters BD, Rubin HR, Dorman T, Perl TM. Eliminating catheter-related bloodstream infections in the intensive care unit. Crit Care Med. 2004;32(10):2014–20.CrossRefPubMedGoogle Scholar
  47. 47.
    World Alliance for Patient Safety. WHO surgical safety checklist and implementation manual. Geneva: WHO; 2008. http://www.who.int/patientsafety/safesurgery/ss_checklist/en/. Accessed 14 Jan.Google Scholar
  48. 48.
    Haugen AS, Softeland E, Almeland SK, Sevdalis N, Vonen B, Eide GE, Nortvedt MW, Harthug S. Effect of the World Health Organization checklist on patient outcomes: a stepped wedge cluster randomized controlled trial. Ann Surg. 2014.  https://doi.org/10.1097/SLA.0000000000000716
  49. 49.
    HAS. Critère 26.a. Organisation du bloc operatoire. Manuel de certification des établissements de santé V2010; 2010.Google Scholar
  50. 50.
    Weiss CH, Wunderink RG. Prompting physicians to address a daily checklist for antibiotics: do we need a co-pilot in the ICU? Curr Opin Crit Care. 2013;19(5):448–52.  https://doi.org/10.1097/MCC.0b013e328364d538.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Bosk CL, Dixon-Woods M, Goeschel CA, Pronovost PJ. Reality check for checklists. Lancet. 2009;374(9688):444–5.CrossRefPubMedGoogle Scholar
  52. 52.
    Rice S. Reality check on surgical checklists. Mod Healthc. 2014;44(11):11.PubMedGoogle Scholar
  53. 53.
    Centofanti JE, Duan EH, Hoad NC, Swinton ME, Perri D, Waugh L, Cook DJ. Use of a daily goals checklist for morning ICU rounds: a mixed-methods study. Crit Care Med. 2014;42(8):1797–803.  https://doi.org/10.1097/CCM.0000000000000331.CrossRefPubMedGoogle Scholar
  54. 54.
    Thongprayoon C, Harrison AM, O’Horo JC, Berrios RA, Pickering BW, Herasevich V. The effect of an electronic checklist on critical care provider workload, errors, and performance. J Intensive Care Med. 2014.  https://doi.org/10.1177/0885066614558015
  55. 55.
    Kashiouris M, O’Horo JC, Pickering BW, Herasevich V. Diagnostic performance of electronic syndromic surveillance systems in acute care: a systematic review. Appl Clin Inform. 2013;4(2):212–24.  https://doi.org/10.4338/ACI-2012-12-RA-0053.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Silber JH, Williams SV, Krakauer H, Schwartz JS. Hospital and patient characteristics associated with death after surgery. A study of adverse occurrence and failure to rescue. Med Care. 1992;30(7):615–29.CrossRefPubMedGoogle Scholar
  57. 57.
    AHRQ. Failure to rescue. PSNET. 2014. psnet.ahrq.gov. Accessed Jan 2015.
  58. 58.
    Clarke SP, Aiken LH. Failure to rescue. Am J Nurs. 2003;103(1):42–7.CrossRefPubMedGoogle Scholar
  59. 59.
    Herasevich V, Yilmaz M, Khan H, Chute CG, Gajic O. Rule base system for identification of patients with specific critical care syndromes: the “sniffer” for acute lung injury. AMIA Annu Symp Proc. 2007;2007:972.Google Scholar
  60. 60.
    Herasevich V, Yilmaz M, Khan H, Hubmayr RD, Gajic O. Validation of an electronic surveillance system for acute lung injury. Intensive Care Med. 2009;35(6):1018–23.  https://doi.org/10.1007/s00134-009-1460-1.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Harrison AM, Thongprayoon C, Kashyap R, Chute CG, Gajic O, Pickering BW, Herasevich V. Developing the surveillance algorithm for detection of failure to recognize and treat severe sepsis. Mayo Clin Proc. 2015.  https://doi.org/10.1016/j.mayocp.2014.11.014
  62. 62.
    Herasevich V, Afessa B, Chute CG, Gajic O. Designing and testing computer based screening engine for severe sepsis/septic shock. AMIA Annu Symp Proc. 2008;2008:966.Google Scholar
  63. 63.
    Umscheid CA, Betesh J, Van Zandbergen C, Hanish A, Tait G, Mikkelsen ME, French B, Fuchs BD. Development, implementation, and impact of an automated early warning and response system for sepsis. J Hosp Med. 2014.  https://doi.org/10.1002/jhm.2259
  64. 64.
    Toll E. A piece of my mind. The cost of technology. JAMA. 2012;307(23):2497–8.  https://doi.org/10.1001/jama.2012.4946.CrossRefPubMedGoogle Scholar
  65. 65.
    Sclafani J, Tirrell TF, Franko OI. Mobile tablet use among academic physicians and trainees. J Med Syst. 2013;37(1):9903.  https://doi.org/10.1007/s10916-012-9903-6.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Prgomet M, Georgiou A, Westbrook JI. The impact of mobile handheld technology on hospital physicians’ work practices and patient care: a systematic review. J Am Med Inform Assoc. 2009;16(6):792–801.  https://doi.org/10.1197/jamia.M3215.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Fargen KM, O’Connor T, Raymond S, Sporrer JM, Friedman WA. An observational study of hospital paging practices and workflow interruption among on-call junior neurological surgery residents. J Grad Med Educ. 2012;4(4):467–71.  https://doi.org/10.4300/JGME-D-11-00306.1.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Reddy MC, McDonald DW, Pratt W, Shabot MM. Technology, work, and information flows: lessons from the implementation of a wireless alert pager system. J Biomed Inform. 2005;38(3):229–38.  https://doi.org/10.1016/j.jbi.2004.11.010.CrossRefPubMedGoogle Scholar
  69. 69.
    Reddy MC, Pratt W, McDonald DW, Shabot MM. Challenges to physicians’ use of a wireless alert pager. AMIA Annu Symp Proc. 2003;2003:544–8.PubMedCentralGoogle Scholar
  70. 70.
    Ighani F, Kapoor KG, Gibran SK, Davis GH, Prager TC, Chuang AZ, Godley B. A comparison of two-way text versus conventional paging systems in an academic ophthalmology department. J Med Syst. 2010;34(4):677–84.  https://doi.org/10.1007/s10916-009-9281-x.CrossRefPubMedGoogle Scholar
  71. 71.
    Wu R, Rossos P, Quan S, Reeves S, Lo V, Wong B, Cheung M, Morra D. An evaluation of the use of smartphones to communicate between clinicians: a mixed-methods study. J Med Internet Res. 2011;13(3):e59.  https://doi.org/10.2196/jmir.1655.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Epstein RH, Dexter F, Rothman B. Communication latencies of wireless devices suitable for time-critical messaging to anesthesia providers. Anesth Analg. 2013;116(4):911–8.  https://doi.org/10.1213/ANE.0b013e31826bb60e.CrossRefPubMedGoogle Scholar
  73. 73.
    Rothman BS, Dexter F, Epstein RH. Communication latencies of Apple push notification messages relevant for delivery of time-critical information to anesthesia providers. Anesth Analg. 2013;117(2):398–404.  https://doi.org/10.1213/ANE.0b013e318299a7f7.CrossRefPubMedGoogle Scholar
  74. 74.
  75. 75.
    Breslow MJ. Remote ICU care programs: current status. J Crit Care. 2007;22(1):66–76.  https://doi.org/10.1016/j.jcrc.2007.01.006.CrossRefPubMedGoogle Scholar
  76. 76.
    Wilcox ME, Adhikari NK. The effect of telemedicine in critically ill patients: systematic review and meta-analysis. Crit Care. 2012;16(4):R127.  https://doi.org/10.1186/cc11429.CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Adhikari S, Blaivas M, Lyon M, Shiver S. Transfer of real-time ultrasound video of FAST examinations from a simulated disaster scene via a mobile phone. Prehosp Disaster Med. 2014;29(3):290–3.  https://doi.org/10.1017/S1049023X14000375.CrossRefPubMedGoogle Scholar
  78. 78.
    Brunetti ND, De Gennaro L, Pellegrino PL, Dellegrottaglie G, Antonelli G, Di Biase M. Atrial fibrillation with symptoms other than palpitations: incremental diagnostic sensitivity with at-home tele-cardiology assessment for emergency medical service. Eur J Prev Cardiol. 2012;19(3):306–13.  https://doi.org/10.1177/1741826711406060.CrossRefPubMedGoogle Scholar
  79. 79.
    Van Dillen C, Silvestri S, Haney M, Ralls G, Zuver C, Freeman D, Diaz L, Papa L. Evaluation of an off-the-shelf mobile telemedicine model in emergency department wound assessment and management. J Telemed Telecare. 2013;19(2):84–8.  https://doi.org/10.1177/1357633X13476231.CrossRefPubMedGoogle Scholar
  80. 80.
    Yperzeele L, Van Hooff RJ, De Smedt A, Valenzuela Espinoza A, Van Dyck R, Van de Casseye R, Convents A, Hubloue I, Lauwaert D, De Keyser J, Brouns R. Feasibility of AmbulanCe-Based Telemedicine (FACT) study: safety, feasibility and reliability of third generation in-ambulance telemedicine. PLoS One. 2014;9(10):e110043.  https://doi.org/10.1371/journal.pone.0110043.CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Liddy C, Rowan MS, Afkham A, Maranger J, Keely E. Building access to specialist care through e-consultation. Open Med. 2013;7(1):e1–8.PubMedPubMedCentralGoogle Scholar
  82. 82.
    Oladosu JB, Olamoyegun MA. MESUDD: towards a multi-lingua expert system for rural m-healthcare. Int J Electron Healthc. 2012;7(2):141–56.  https://doi.org/10.1504/IJEH.2012.049875.CrossRefPubMedGoogle Scholar
  83. 83.
    Bajwa M. Emerging 21(st) century medical technologies. Pak J Med Sci. 2014;30(3):649–55.  https://doi.org/10.12669/pjms.303.5211.CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Karim S, Bajwa IS. Clinical decision support system based virtual telemedicine. Paper presented at the Intelligent Human-Machine Systems and Cybernetics (IHMSC), College of Computer Science & Technology of Zhejiang University, Hangzhou, China; 2011.Google Scholar
  85. 85.
    Carson ER, Cramp DG, Morgan A, Roudsari AV. Clinical decision support, systems methodology, and telemedicine: their role in the management of chronic disease. IEEE Trans Inf Technol Biomed. 1998;2(2):80–8.CrossRefPubMedGoogle Scholar
  86. 86.
    Chou HK, Yan SH, Lin IC, Tsai MT, Chen CC, Woung LC. A pilot study of the telecare medical support system as an intervention in dementia care: the views and experiences of primary caregivers. J Nurs Res. 2012;20(3):169–80.  https://doi.org/10.1097/jnr.0b013e318263d916.CrossRefPubMedGoogle Scholar
  87. 87.
    McCannon JB, O’Donnell WJ, Thompson BT, El-Jawahri A, Chang Y, Ananian L, Bajwa EK, Currier PF, Parikh M, Temel JS, Cooper Z, Wiener RS, Volandes AE. Augmenting communication and decision making in the intensive care unit with a cardiopulmonary resuscitation video decision support tool: a temporal intervention study. J Palliat Med. 2012;15(12):1382–7.  https://doi.org/10.1089/jpm.2012.0215.CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Ewen EF, Zhao L, Kolm P, Jurkovitz C, Fidan D, White HD, Gallo R, Weintraub WS. Determining the in-hospital cost of bleeding in patients undergoing percutaneous coronary intervention. J Interv Cardiol. 2009;22(3):266–73.  https://doi.org/10.1111/j.1540-8183.2009.00431.x.CrossRefPubMedGoogle Scholar
  89. 89.
    Kush R, Alschuler L, Ruggeri R, Cassells S, Gupta N, Bain L, Claise K, Shah M, Nahm M. Implementing single source: the STARBRITE proof-of-concept study. J Am Med Inform Assoc. 2007;14(5):662–73.  https://doi.org/10.1197/jamia.M2157.CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Pawlson LG, Scholle SH, Powers A. Comparison of administrative-only versus administrative plus chart review data for reporting HEDIS hybrid measures. Am J Manag Care. 2007;13(10):553–8.PubMedGoogle Scholar
  91. 91.
    Goldman JM, Schrenker RA, Jackson JL, Whitehead SF. Plug-and-play in the operating room of the future. Biomed Instrum Technol. 2005;39(3):194–9.PubMedGoogle Scholar
  92. 92.
    Patel VL, Zhang J, Yoskowitz NA, Green R, Sayan OR. Translational cognition for decision support in critical care environments: a review. J Biomed Inform. 2008;41(3):413–31.  https://doi.org/10.1016/j.jbi.2008.01.013.CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Shneiderman B. Designing the user interface: strategies for effective human-computer interaction. 5th ed. Upper Saddle River, NJ: Prentice Hall; 2009.Google Scholar
  94. 94.
    Chang YJ, Tsai CY, Yeh ML, Li YC. Assessing the impact of user interface to the usability of a clinical decision support system. AMIA Annu Symp Proc. 2003;2003:808.Google Scholar
  95. 95.
    Jaspers MW, Peute LW, Lauteslager A, Bakker PJ. Pre-post evaluation of physicians’ satisfaction with a redesigned electronic medical record system. Stud Health Technol Inform. 2008;136:303–8.PubMedGoogle Scholar
  96. 96.
    Kuqi K, Eveleigh T, Holzer T, Sarkani S, Levin JE, Crowley RS. Design of electronic medical record user interfaces: a matrix-based method for improving usability. J Healthc Eng. 2013;4(3):427–52.  https://doi.org/10.1260/2040-2295.4.3.427.CrossRefPubMedGoogle Scholar
  97. 97.
    Zheng K, Padman R, Johnson MP. User interface optimization for an electronic medical record system. Stud Health Technol Inform. 2007;129(Pt 2):1058–62.PubMedGoogle Scholar
  98. 98.
    Duncan JR, Evens RG. Using information to optimize medical outcomes. JAMA. 2009;301(22):2383–5.  https://doi.org/10.1001/jama.2009.827.CrossRefPubMedGoogle Scholar
  99. 99.
    Mack EH, Wheeler DS, Embi PJ. Clinical decision support systems in the pediatric intensive care unit. Pediatr Crit Care Med. 2009;10(1):23–8.  https://doi.org/10.1097/PCC.0b013e3181936b23.CrossRefPubMedGoogle Scholar
  100. 100.
    Ammenwerth E, Shaw NT. Bad health informatics can kill—is evaluation the answer? Methods Inf Med. 2005;44(1):1–3.  https://doi.org/10.1267/METH05010001.CrossRefPubMedGoogle Scholar
  101. 101.
    Ash J. Organizational factors that influence information technology diffusion in academic health sciences centers. J Am Med Inform Assoc. 1997;4(2):102–11.CrossRefPubMedPubMedCentralGoogle Scholar
  102. 102.
    Manjoney R. Clinical information systems market - an insider’s view. J Crit Care. 2004;19(4):215–20.  https://doi.org/10.1016/j.jcrc.2004.09.004.CrossRefPubMedGoogle Scholar
  103. 103.
    Frassica JJ. CIS: where are we going and what should we demand from industry? J Crit Care. 2004;19(4):226–33.  https://doi.org/10.1016/j.jcrc.2004.10.001.CrossRefPubMedGoogle Scholar
  104. 104.
    Melichar JK. Doctors and computers. Poor system design and little investment mean hospital doctors do not use computers. BMJ. 2003;326(7382):220.CrossRefPubMedPubMedCentralGoogle Scholar
  105. 105.
    Ash JS, Bates DW. Factors and forces affecting EHR system adoption: report of a 2004 ACMI discussion. J Am Med Inform Assoc. 2005;12(1):8–12.  https://doi.org/10.1197/jamia.M1684.CrossRefPubMedPubMedCentralGoogle Scholar
  106. 106.
    Gallegos A. Doctors strike back at EHR vendor with class-action suit. Am Med News. 2013. http://www.amednews.com/article/20130506/profession/130509973/2/.
  107. 107.
    I’m 1000 times more important than you and need this issue resolved right now or people will die. 2014. http://www.reddit.com/r/talesfromtechsupport/comments/2q9qka/im_1000_times_more_important_than_you_and_need/.
  108. 108.
    Lorenzi NM, Riley RT, Blyth AJ, Southon G, Dixon BJ. Antecedents of the people and organizational aspects of medical informatics: review of the literature. J Am Med Inform Assoc. 1997;4(2):79–93.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2020

Authors and Affiliations

  • Vitaly Herasevich
    • 1
    Email author
  • Mikhail Dziadzko
    • 1
  • Brian W. Pickering
    • 1
  1. 1.Division of Critical Care, Department of Anesthesiology and Perioperative MedicineMayo ClinicRochesterUSA

Personalised recommendations