Advertisement

Data Standards, Device Interfaces, and Interoperability

  • Richard MobergEmail author
  • Christopher G. Wilson
  • Ryan Goldstein
Chapter

Abstract

In this chapter, we discuss challenges to standardizing data acquisition and interoperability in the neurocritical care realm. Currently, neurocritical care practitioners are limited in the scope and depth of the data that can be acquired and analyzed in real time or retrospectively because the devices, equipment, and applications are not well integrated or designed for those purposes. We provide a brief background pertinent to critical care data standards and an overview of the current “state of the art.” Specifically, we summarize the current data standards—both formally defined and de facto—as well as provide an overview of the software and hardware interfaces typically found on critical care instrumentation. Next, we discuss the challenges that must be overcome to provide hardware and software interoperability within neurocritical care facilities. Finally, we provide examples of successful standards development and deployment in other fields with suggestions for neurocritical care practitioners to adopt into their current workflow. Overcoming the challenges to interoperability of medical devices will help to expand the diagnostic and prognostic tools available in neurocritical care.

Keywords

Monitors Medical device Plug and play Interoperability Data format 

Notes

Acknowledgment

The authors would like to thank Jan Wittenber for his thoughtful review and comments to this chapter.

References

  1. 1.
  2. 2.
    Goldman JM, Schrenker RA, Jackson JL, Whitehead SF. Plug-and-play in the operating room of the future. Biomed Instrum Technol. 2005;39(3):194–9.PubMedGoogle Scholar
  3. 3.
    Kemp B. SignalML from an EDF+ perspective. Comput Methods Programs Biomed. 2004;76(3):261–3.  https://doi.org/10.1016/j.cmpb.2004.05.008.CrossRefPubMedGoogle Scholar
  4. 4.
    Kemp B, Olivan J. European data format ‘plus’ (EDF+), an EDF alike standard format for the exchange of physiological data. Clin Neurophysiol. 2003;114(9):1755–61.CrossRefGoogle Scholar
  5. 5.
    Kemp B, Varri A, Rosa AC, Nielsen KD, Gade J. A simple format for exchange of digitized polygraphic recordings. Electroencephalogr Clin Neurophysiol. 1992;82(5):391–3.CrossRefGoogle Scholar
  6. 6.
    Bidgood WD Jr, Horii SC, Prior FW, Van Syckle DE. Understanding and using DICOM, the data interchange standard for biomedical imaging. J Am Med Inform Assoc. 1997;4(3):199–212.CrossRefGoogle Scholar
  7. 7.
    Graham RN, Perriss RW, Scarsbrook AF. DICOM demystified: a review of digital file formats and their use in radiological practice. Clin Radiol. 2005;60(11):1133–40.  https://doi.org/10.1016/j.crad.2005.07.003.CrossRefPubMedGoogle Scholar
  8. 8.
    Wang Y, Best DE, Hoffman JG, Horii SC, Lehr JL, Lodwick GS, Morse RR, Murphy LL, Nelson OL, Perry J, et al. ACR-NEMA digital imaging and communications standards: minimum requirements. Radiology. 1988;166(2):529–32.  https://doi.org/10.1148/radiology.166.2.3336730.CrossRefPubMedGoogle Scholar
  9. 9.
    Dougherty MT, Folk MJ, Zadok E, Bernstein HJ, Bernstein FC, Eliceiri KW, Benger W, Best C. Unifying biological image formats with HDF5. Commun ACM. 2009;52(10):42–7.  https://doi.org/10.1145/1562764.1562781.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Mason CE, Zumbo P, Sanders S, Folk M, Robinson D, Aydt R, Gollery M, Welsh M, Olson NE, Smith TM. Standardizing the next generation of bioinformatics software development with BioHDF (HDF5). Adv Exp Med Biol. 2010;680:693–700.  https://doi.org/10.1007/978-1-4419-5913-3_77.CrossRefPubMedGoogle Scholar
  11. 11.
    Chesnut RM, Temkin N, Carney N, Dikmen S, Rondina C, Videtta W, Petroni G, Lujan S, Pridgeon J, Barber J, Machamer J, Chaddock K, Celix JM, Cherner M, Hendrix T, Global Neurotrauma Research G. A trial of intracranial-pressure monitoring in traumatic brain injury. N Engl J Med. 2012;367(26):2471–81.  https://doi.org/10.1056/NEJMoa1207363.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Clarke M, Bogia D, Hassing K, Steubesand L, Chan T, Ayyagari D. Developing a standard for personal health devices based on 11073. Conf Proc IEEE Eng Med Biol Soc. 2007;2007:6175–7.  https://doi.org/10.1109/IEMBS.2007.4353764.CrossRefPubMedGoogle Scholar
  13. 13.
    Benjamin DM. Reducing medication errors and increasing patient safety: case studies in clinical pharmacology. J Clin Pharmacol. 2003;43(7):768–83.CrossRefGoogle Scholar
  14. 14.
    Eichhorn JH. Prevention of intraoperative anesthesia accidents and related severe injury through safety monitoring. Anesthesiology. 1989;70(4):572–7.CrossRefGoogle Scholar
  15. 15.
    Etches RC. Respiratory depression associated with patient-controlled analgesia: a review of eight cases. Can J Anaesth. 1994;41(2):125–32.  https://doi.org/10.1007/BF03009805.CrossRefPubMedGoogle Scholar
  16. 16.
    White PF. Mishaps with patient-controlled analgesia. Anesthesiology. 1987;66(1):81–3.CrossRefGoogle Scholar
  17. 17.
    Bezroukov N. Open source software development as a special type of academic research: critique of vulgar Raymondism. First Monday. 1999;4(10)Google Scholar
  18. 18.
    Raymond ES. The cathedral & the bazaar. Sebastopol, CA: O’Reilly Media Inc.; 2001.Google Scholar
  19. 19.
    Jurney R. Agile data science. 1st ed. Sebastopol, CA: O’Reilly Media Inc.; 2013.Google Scholar
  20. 20.
    O’Neil C, Schutt R. Doing data science: straight talk from the frontline. 1st ed. Sebastopol, CA: O’Reilly Media Inc.; 2013.Google Scholar

Copyright information

© Springer-Verlag GmbH Germany 2020

Authors and Affiliations

  • Richard Moberg
    • 1
    Email author
  • Christopher G. Wilson
    • 2
  • Ryan Goldstein
    • 1
  1. 1.Moberg Research, Inc.AmblerUSA
  2. 2.Lawrence D. Longo Center for Perinatal BiologyLoma Linda UniversityLoma LindaUSA

Personalised recommendations