Advertisement

Lightweight Blockchain Logging for Data-Intensive Applications

  • Yuzhe (Richard) TangEmail author
  • Zihao Xing
  • Cheng Xu
  • Ju Chen
  • Jianliang Xu
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10958)

Abstract

With the recent success of cryptocurrency, Blockchain’s design opens the door of building trustworthy distributed systems. A common paradigm is to repurpose the Blockchain as an append-only log that logs the application events in time order for subsequent auditing and query verification. While this paradigm reaps the security benefit, it faces technical challenges especially when being used for data-intensive applications.

Instead of treating Blockchain as a time-ordered log, we propose to lay the log-structured merge tree (LSM tree) over the Blockchain for efficient and lightweight logging. Comparing other data structures, the LSM tree is advantageous in supporting efficient writes while enabling random-access reads. In our system design, only a small digest of an LSM tree is persisted in the Blockchain and minimal store operations are carried out by smart contracts. With the implementation in Ethereum/Solidity, we evaluate the proposed logging scheme and demonstrate its performance efficiency and effectiveness in cost saving.

References

  1. 1.
  2. 2.
  3. 3.
  4. 4.
    Ethereum project. https://www.ethereum.org/
  5. 5.
    Facebook RocksDB. http://rocksdb.org/
  6. 6.
  7. 7.
  8. 8.
  9. 9.
  10. 10.
  11. 11.
  12. 12.
    Ali, M., Nelson, J.C., Shea, R., Freedman, M.J.: Blockstack: a global naming and storage system secured by blockchains. In: Gulati, A., Weatherspoon, H. (eds.) 2016 USENIX Annual Technical Conference, USENIX ATC 2016, Denver, CO, USA, 22–24 June 2016, pp. 181–194. USENIX Association (2016)Google Scholar
  13. 13.
    Azaria, A., Ekblaw, A., Vieira, T., Lippman, A.: MedRec: using blockchain for medical data access and permission management. In: Awan, I., Younas, M. (eds.) 2nd International Conference on Open and Big Data, OBD 2016, Vienna, Austria, 22–24 August 2016, pp. 25–30. IEEE Computer Society (2016)Google Scholar
  14. 14.
    Ben-Sasson, E., Chiesa, A., Genkin, D., Tromer, E., Virza, M.: SNARKs for C: verifying program executions succinctly and in zero knowledge. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 90–108. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-40084-1_6CrossRefzbMATHGoogle Scholar
  15. 15.
    Chang, F., et al.: Bigtable: a distributed storage system for structured data (awarded best paper!). In: OSDI, pp. 205–218 (2006)Google Scholar
  16. 16.
    Chung, H., Iorga, M., Voas, J.M., Lee, S.: Alexa, can I trust you? IEEE Comput. 50(9), 100–104 (2017)CrossRefGoogle Scholar
  17. 17.
    Elmasri, R., Navathe, S.B.: Fundamentals of Database Systems, 2nd edn. Benjamin/Cummings, Redwood City (1994)zbMATHGoogle Scholar
  18. 18.
    Gordon, S.D., Katz, J., Liu, F.-H., Shi, E., Zhou, H.-S.: Multi-client verifiable computation with stronger security guarantees. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9015, pp. 144–168. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-46497-7_6CrossRefGoogle Scholar
  19. 19.
    Kalodner, H.A., Carlsten, M., Ellenbogen, P., Bonneau, J., Narayanan, A.: An empirical study of namecoin and lessons for decentralized namespace design. In: 14th Annual Workshop on the Economics of Information Security, WEIS 2015, Delft, The Netherlands, 22–23 June 2015 (2015)Google Scholar
  20. 20.
    Katz, J., Lindell, Y.: Introduction to Modern Cryptography. Chapman and Hall/CRC Press (2007)Google Scholar
  21. 21.
    Li, F., Hadjieleftheriou, M., Kollios, G., Reyzin, L.: Dynamic authenticated index structures for outsourced databases. In: SIGMOD Conference, pp. 121–132 (2006)Google Scholar
  22. 22.
    Merkle, R.C.: Protocols for public key cryptosystems. In: IEEE Symposium on Security and Privacy, pp. 122–134 (1980)Google Scholar
  23. 23.
    Narayanan, A., Bonneau, J., Felten, E.W., Miller, A., Goldfeder, S.: Bitcoin and Cryptocurrency Technologies - A Comprehensive Introduction. Princeton University Press, Princeton (2016)zbMATHGoogle Scholar
  24. 24.
    O’Neil, P.E., Cheng, E., Gawlick, D., O’Neil, E.J.: The log-structured merge-tree (LSM-tree). Acta Inf. 33(4), 351–385 (1996)CrossRefGoogle Scholar
  25. 25.
    Papamanthou, C., Shi, E., Tamassia, R., Yi, K.: Streaming authenticated data structures. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 353–370. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-38348-9_22CrossRefGoogle Scholar
  26. 26.
    Papamanthou, C., Tamassia, R., Triandopoulos, N.: Authenticated hash tables based on cryptographic accumulators. Algorithmica 74(2), 664–712 (2016)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Rosenblum, M.: The Design and Implementation of a Log-Structured File-System. Kluwer, Norwell (1995)CrossRefGoogle Scholar
  28. 28.
    Silberschatz, A., Korth, H.F., Sudarshan, S.: Database System Concepts, 5th edn. McGraw-Hill Book Company, Boston (2005)zbMATHGoogle Scholar
  29. 29.
    Tamassia, R.: Authenticated data structures. In: Di Battista, G., Zwick, U. (eds.) ESA 2003. LNCS, vol. 2832, pp. 2–5. Springer, Heidelberg (2003).  https://doi.org/10.1007/978-3-540-39658-1_2CrossRefGoogle Scholar
  30. 30.
    Terry, D.: Replicated data consistency explained through baseball. Commun. ACM 56(12), 82–89 (2013)CrossRefGoogle Scholar
  31. 31.
    Tomescu, A., Devadas, S.: Catena: efficient non-equivocation via bitcoin. In: 2017 IEEE Symposium on Security and Privacy, SP 2017, San Jose, CA, USA, 22–26 May 2017, pp. 393–409. IEEE Computer Society (2017)Google Scholar
  32. 32.
    Zhang, Y., Katz, J., Papamanthou, C.: IntegriDB: verifiable SQL for outsourced databases. In: Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security, Denver, CO, USA, 12–16 October 2015, pp. 1480–1491 (2015)Google Scholar
  33. 33.
    Zhang, Y., Katz, J., Papamanthou, C.: An expressive (zero-knowledge) set accumulator. In: 2017 IEEE European Symposium on Security and Privacy, EuroS&P 2017, Paris, France, 26–28 April 2017, pp. 158–173. IEEE (2017)Google Scholar
  34. 34.
    Zyskind, G., Nathan, O., Pentland, A.: Decentralizing privacy: using blockchain to protect personal data. In: 2015 IEEE Symposium on Security and Privacy Workshops, SPW 2015, San Jose, CA, USA, 21–22 May 2015, pp. 180–184. IEEE Computer Society (2015)Google Scholar

Copyright information

© International Financial Cryptography Association 2019

Authors and Affiliations

  • Yuzhe (Richard) Tang
    • 1
    Email author
  • Zihao Xing
    • 1
  • Cheng Xu
    • 2
  • Ju Chen
    • 1
  • Jianliang Xu
    • 2
  1. 1.Syracuse UniversitySyracuseUSA
  2. 2.Hong Kong Baptist UniversityKowloon TongHong Kong

Personalised recommendations