Advertisement

Blockchain-Based Certificate Transparency and Revocation Transparency

  • Ze Wang
  • Jingqiang LinEmail author
  • Quanwei Cai
  • Qiongxiao Wang
  • Jiwu Jing
  • Daren Zha
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10958)

Abstract

Traditional X.509 public key infrastructures (PKIs) depend on certification authorities (CAs) to sign certificates, used in SSL/TLS to authenticate web servers and establish secure channels. However, recent security incidents indicate that CAs may (be compromised to) sign fraudulent certificates. In this paper, we propose blockchain-based certificate transparency and revocation transparency. Our scheme is compatible with X.509 PKIs but significantly reinforces the security guarantees of a certificate. The CA-signed certificates and their revocation status information of an SSL/TLS web server are published by the subject (i.e., the web server) as a transaction, and miners of the community append it to the global certificate blockchain after verifying the transaction and mining a block. The certificate blockchain acts as append-only public logs to monitor CAs’ certificate signing and revocation operations, and an SSL/TLS web server is granted with the cooperative control on its certificates to balance the absolute authority of CAs in traditional PKIs. We implement the prototype system with Firefox and Nginx, and the experimental results show that it introduces reasonable overheads.

Keywords

PKI SSL TLS Blockchain Transparency Trust 

References

  1. 1.
    Abadi, M., Birrell, A., Mironov, I., Wobber, T., Xie, Y.: Global authentication in an untrustworthy world. In: 14th USENIX Conference on Hot Topics in Operating Systems (HotOS) (2013)Google Scholar
  2. 2.
    Alexa: Alexa Top 1M Websites (2017). http://s3.amazonaws.com/alexa-static/top-1m.csv.zip
  3. 3.
    Alicherry, M., Keromytis, A.: Doublecheck: multi-path verification against man-in-the-middle attacks. In: 14th IEEE Symposium on Computers and Communications (ISCC), pp. 557–563 (2009)Google Scholar
  4. 4.
    Arends, R., Austein, R., Larson, M., Massey, D., Rose, S.: DNS Security Introduction and Requirements. Technical report, IETF RFC 4033 (2005)Google Scholar
  5. 5.
    Arthur, C.: Rogue Web Certificate Could Have Been Used to Attack Iran Dissidents, August 2011. https://iranian.com/main/news/2011/08/30/rogue-web-certificate-could-have-been-used-attack-iran-dissidents.html
  6. 6.
    Ateniese, G., Mangard, S.: A new approach to DNS security (DNSSEC). In: 8th ACM Conference on Computer and Communications Security (CCS), pp. 86–95 (2001)Google Scholar
  7. 7.
    Basin, D., Cremers, C., Kim, H., Perrig, A., Sasse, R., Szalachowski, P.: ARPKI: attack resilient public-key infrastructure. In: 21st ACM Conference on Computer and Communications Security (CCS), pp. 382–393 (2014)Google Scholar
  8. 8.
    bitcoin.org: Bitcoin Developer Guide (2016). https://bitcoin.org/en/developer-guide
  9. 9.
    Braun, J., Volk, F., Classen, J., Buchmann, J., Mühlhäuser, M.: CA trust management for the web PKI. J. Comput. Secur. 22(6), 913–959 (2014)CrossRefGoogle Scholar
  10. 10.
    Clark, J., van Oorschot, P.: SoK: SSL and HTTPS: revisiting past challenges and evaluating certificate trust model enhancements. In: 34th IEEE Symposium on Security and Privacy (S&P), pp. 511–525 (2013)Google Scholar
  11. 11.
    Comodo Group Inc.: Comodo Report of Incident, March 2011. https://www.comodo.com/Comodo-Fraud-Incident-2011-03-23.html
  12. 12.
    Cooper, D., Santesson, S., Farrell, S., Boeyen, S., Housley, R., Polk, W.: Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile. Technical report, IETF RFC 5280 (2008)Google Scholar
  13. 13.
    Dacosta, I., Ahamad, M., Traynor, P.: Trust no one else: detecting MITM attacks against SSL/TLS without third-parties. In: Foresti, S., Yung, M., Martinelli, F. (eds.) ESORICS 2012. LNCS, vol. 7459, pp. 199–216. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-33167-1_12CrossRefGoogle Scholar
  14. 14.
    Dierks, T., Rescorla, E.: The Transport Layer Security (TLS) Protocol. Technical report, IETF RFC 5246 (2008)Google Scholar
  15. 15.
    Eckersley, P.: A Syrian Man-in-the-Middle Attack against Facebook, May 2011. https://www.eff.org/deeplinks/2011/05/syrian-man-middle-against-facebook
  16. 16.
    Eckersley, P.: Sovereign Key Cryptography for Internet Domains. Technical report, IETF Internet-draft (2012)Google Scholar
  17. 17.
    Eckersley, P., Burns, J.: Is the SSLiverse a Safe Place, December 2010. https://events.ccc.de/congress/2010/Fahrplan/events/4121.en.html
  18. 18.
    Engert, K.: DetecTor, September 2013. http://www.detector.io/DetecTor.pdf
  19. 19.
    Evans, C., Palmer, C., Sleevi, R.: Public Key Pinning Extension for HTTP. Technical report, IETF RFC 7469 (2015)Google Scholar
  20. 20.
    Eyal, I., Sirer, E.G.: Majority Is Not Enough: Bitcoin Mining Is Vulnerable, pp. 436–454 (2013)Google Scholar
  21. 21.
    Freier, A., Karlton, P., Kocher, P.: The Secure Sockets Layer (SSL) Protocol Version 3.0 (2011)Google Scholar
  22. 22.
    Fromknecht, C., Velicanu, D., Yakoubov, S.: A Decentralized Public Key Infrastructure with Identity Retention (2014). https://eprint.iacr.org/2014/803.pdf
  23. 23.
    Fromknecht, C., Velicanu, D., Yakoubov, S.: CertCoin: A NameCoin Based Decentralized Authentication System, Massachusetts Institute of Technology, MA, USA (2014). http://courses.csail.mit.edu/6.857/2014/files/19-fromknecht-velicann-yakoubov-certcoin.pdf
  24. 24.
  25. 25.
    Grant, A.: Search for Trust: An Analysis and Comparison of CA System Alternatives and Enhancements. Technical report, Dartmouth Computer Science, Technical Report TR2012-716 (2012)Google Scholar
  26. 26.
    Hallam-Baker, P., Stradling, R.: DNS Certification Authority Authorization (CAA) Resource Record. Technical report, IETF RFC 6844 (2013)Google Scholar
  27. 27.
    Hoffman, P., Schlyter, J.: The DNS-Based Authentication of Named Entities (DANE) Transport Layer Security (TLS) Protocol: TLSA. Technical report, IETF RFC 6698 (2012)Google Scholar
  28. 28.
    Holz, R., Riedmaier, T., Kammenhuber, N., Carle, G.: X.509 forensics: detecting and localising the SSL/TLS men-in-the-middle. In: Foresti, S., Yung, M., Martinelli, F. (eds.) ESORICS 2012. LNCS, vol. 7459, pp. 217–234. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-33167-1_13CrossRefGoogle Scholar
  29. 29.
    ICSI: The ICSI Certificate Notary (2011). https://notary.icsi.berkeley.edu/
  30. 30.
    Kasten, J., Wustrow, E., Halderman, J.A.: CAge: taming certificate authorities by inferring restricted scopes. In: Sadeghi, A.-R. (ed.) FC 2013. LNCS, vol. 7859, pp. 329–337. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-39884-1_28CrossRefGoogle Scholar
  31. 31.
    Kim, T., Huang, L., Perrig, A., Jackson, C., Gligor, V.: Accountable key infrastructure (AKI): a proposal for a public-key validation infrastructure. In: 22nd International Conference on World Wide Web (WWW), pp. 679–690 (2013)Google Scholar
  32. 32.
    Langley, A.: Public Key Pinning, May 2011. https://www.imperialviolet.org/2011/05/04/pinning.html
  33. 33.
    Langley, A.: Further Improving Digital Certificate Security, December 2013. https://security.googleblog.com/2013/12/further-improving-digital-certificate.html
  34. 34.
    Laurie, B., Kasper, E.: Revocation Transparency (2012). http://sump2.links.org/files/RevocationTransparency.pdf
  35. 35.
    Laurie, B., Langley, A., Kasper, E., Google: Certificate Transparency. Technical report, IETF RFC 6962 (2014)Google Scholar
  36. 36.
    Lewison, K., Coralla, F.: Backing Rich Credentials with a Blockchain PKI (2016). http://pomcor.com/techreports/BlockchainPKI.pdf
  37. 37.
    Liu, Y., Tome, W., Zhang, L., Choffnes, D., et al.: An end-to-end measurement of certificate revocation in the web’s PKI. In: 15th Internet Measurement Conference (IMC), pp. 183–196 (2015)Google Scholar
  38. 38.
    Marlinspike, M.: Convergence, September 2011. https://github.com/moxie0/Convergence
  39. 39.
    Marlinspike, M.: Trust Assertions for Certificate Keys. Technical report, IETF Internet-draft (2013)Google Scholar
  40. 40.
    Matsumoto, S., Reischuk, R.: IKP: turning a PKI around with decentralized automated incentives. In: 38th IEEE Symposium on Security and Privacy (S&P) (2017)Google Scholar
  41. 41.
    Melara, M., Blankstein, A., Bonneau, J., Felten, E., Freedman, M.: CONIKS: bringing key transparency to end users. In: 24th USENIX Conference on Security Symposium, pp. 383–398 (2015)Google Scholar
  42. 42.
    Micheloni, A., Fuchs, K., Herrmann, D., Federrath, H.: Laribus: privacy-preserving detection of fake SSL certificates with a social P2P notary network. In: 8th International Conference on Availability, Reliability and Security (ARES), pp. 1–10 (2013)Google Scholar
  43. 43.
    University of Michigan. Censys, April 2016. https://censys.io/
  44. 44.
    Microsoft: MS01-017: Erroneous VeriSign-Issued Digital Certificates Pose Spoofing Hazard, March 2001. https://technet.microsoft.com/library/security/ms01-017
  45. 45.
    Morton, B.: Public Announcements Concerning the Security Advisory, January 2013. https://www.entrust.com/turktrust-unauthorized-ca-certificates
  46. 46.
    Morton, B.: More Google Fraudulent Certificates, July 2014. https://www.entrust.com/google-fraudulent-certificates/
  47. 47.
    Muneeb, A., Jude, N., Ryan, S., Michael, J.: Blockstack: a global naming and storage system secured by blockchains. In: 2016 USENIX Annual Technical Conference, pp. 181–194 (2016)Google Scholar
  48. 48.
    Nakamoto, S.: Bitcoin: A Peer-to-Peer Electronic Cash System (2008). https://bitcoin.org/bitcoin.pdf
  49. 49.
    Namecoin Team: Namecoin (2011). https://www.namecoin.org/
  50. 50.
    PSYC: Certificate Patrol (2014). http://patrol.psyced.org/
  51. 51.
    Ryan, M.: Enhanced certificate transparency and end-to-end encrypted mail. In: 21st ISOC Network and Distributed System Security Symposium (NDSS) (2014)Google Scholar
  52. 52.
    Soghoian, C., Stamm, S.: Certified lies: detecting and defeating government interception attacks against SSL (Short Paper). In: Danezis, G. (ed.) FC 2011. LNCS, vol. 7035, pp. 250–259. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-27576-0_20CrossRefGoogle Scholar
  53. 53.
    Sotirov, A., Stevens, M.: MD5 Considered Harmful Today, December 2008. http://www.win.tue.nl/hashclash/rogue-ca/
  54. 54.
    SSL Shopper: SSL Certificate for Mozilla.com Issued Without Validation, December 2008. https://www.sslshopper.com/article-ssl-certificate-for-mozilla.com-issued-without-validation.html
  55. 55.
    Start Commercial (StartCom) Limited: Critical Event Report, December 2008. https://blog.startcom.org/wp-content/uploads/2009/01/ciritical-event-report-12-20-2008.pdf
  56. 56.
    Szalachowski, P., Matsumoto, S., Perrig, A.: PoliCert: secure and flexible TLS certificate management. In: 21st ACM Conference on Computer and Communications Security (CCS), pp. 406–417 (2014)Google Scholar
  57. 57.
    Vandersloot, B., Amann, J., Bernhard, M., Durumeric, Z., et al.: Towards a complete view of the certificate ecosystem. In: 16th Internet Measurement Conference (IMC), pp. 543–549 (2016)Google Scholar
  58. 58.
    VASCO Data Security International Inc.: DigiNotar Reports Security Incident, August 2011. https://www.vasco.com/about-vasco/press/2011/news _diginotar _reports _security _incident.html
  59. 59.
    Wendlandt, D., Andersen, D., Perrig, A.: Perspectives: improving SSH-style host authentication with multi-path probing. In: 2008 USENIX Annual Technical Conference, pp. 321–334 (2008)Google Scholar
  60. 60.
    Wikipedia: Flame(malware), March 2017. https://en.wikipedia.org/wiki/Flame_(malware)
  61. 61.
    Wilson, K.: Distrusting New CNNIC Certificates, April 2015. https://blog.mozilla.org/security/2015/04/02/distrusting-new-cnnic-certificates/
  62. 62.
    Zusman, M.: Criminal Charges Are Not Pursued: Hacking PKI (2009). https://defcon.org/images/defcon-17/dc-17-presentations/defcon-17-zusman-hacking_pki.pdf

Copyright information

© International Financial Cryptography Association 2019

Authors and Affiliations

  • Ze Wang
    • 1
    • 2
    • 3
  • Jingqiang Lin
    • 1
    • 2
    • 3
    Email author
  • Quanwei Cai
    • 1
    • 2
  • Qiongxiao Wang
    • 1
    • 2
    • 3
  • Jiwu Jing
    • 1
    • 2
    • 3
  • Daren Zha
    • 1
    • 2
  1. 1.State Key Laboratory of Information Security, Institute of Information EngineeringChinese Academy of SciencesBeijingChina
  2. 2.Data Assurance and Communication Security Research CenterChinese Academy of SciencesBeijingChina
  3. 3.School of Cyber SecurityUniversity of Chinese Academy of SciencesBeijingChina

Personalised recommendations