Advertisement

Model Theory for Sheaves of Modules

  • Mike PrestEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11600)

Abstract

We describe how the model theory of modules is adapted to deal with sheaves of modules.

Keywords

Model theory Sheaves Multisorted Modules 

References

  1. 1.
    Adámek, J., Rosický, J.: Locally Presentable and Accessible Categories. London Mathematical Society Lecture Note Series, vol. 189. Cambridge University Press, Cambridge (1994)CrossRefGoogle Scholar
  2. 2.
    Borceux, F., Van den Bossche, G.: Algebra in a Localic Topos with Applications to Ring Theory. LNM, vol. 1038. Springer, Heidelberg (1983).  https://doi.org/10.1007/BFb0073030CrossRefzbMATHGoogle Scholar
  3. 3.
    Eklof, P., Sabbagh, G.: Model-completions and modules. Ann. Math. Logic 2(3), 251–295 (1971)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Freyd, P.: Abelian Categories. Harper and Row, New York (1964)zbMATHGoogle Scholar
  5. 5.
    Garavaglia, S.: Dimension and rank in the model theory of modules. Preprint, University of Michigan (1979). Revised 1980Google Scholar
  6. 6.
    Gruson, L., Jensen, C.U.: Modules algébriquement compact et foncteurs \(\mathop {\varprojlim }\nolimits ^{(i)}\). C. R. Acad. Sci. Paris 276, 1651–1653 (1973)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Iversen, B.: Cohomology of Sheaves. Springer, Heidelberg (1986).  https://doi.org/10.1007/978-3-642-82783-9CrossRefzbMATHGoogle Scholar
  8. 8.
    Prest, M.: Model Theory and Modules. London Mathematical Society Lecture Note Series, vol. 130. Cambridge University Press, Cambridge (1988)CrossRefGoogle Scholar
  9. 9.
    Prest, M.: Purity, Spectra and Localisation. Encyclopedia of Mathematics and its Applications, vol. 121. Cambridge University Press, Cambridge (2009)CrossRefGoogle Scholar
  10. 10.
    Prest, M.: Definable Additive Categories: Purity and Model Theory. Memoirs of the American Mathematical Society, vol. 210/no. 987. American Mathematical Society, Providence (2011)zbMATHGoogle Scholar
  11. 11.
    Prest, M.: Abelian categories and definable additive categories. arXiv:1202.0426
  12. 12.
    Prest, M.: Modules as exact functors. In: Proceedings of 2016 Auslander Distinguished Lectures and Conference, Contemporary Mathematics, vol. 716. American Mathematical Society. arXiv:1801.08015 (to appear)
  13. 13.
    Prest, M.: Multisorted modules and their model theory. In: Contemporary Mathematics. arXiv:1807.11889 (to appear)
  14. 14.
    Prest, M., Puninskaya, V., Ralph, A.: Some model theory of sheaves of modules. J. Symbolic Logic 69(4), 1187–1199 (2004)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Prest, M., Ralph, A.: On sheafification of modules. Preprint, University of Manchester (2001). Revised 2004. https://personalpages.manchester.ac.uk/staff/mike.prest/publications.html
  16. 16.
    Prest, M., Ralph, A.: Locally finitely presented categories of sheaves of modules. Preprint, University of Manchester (2001). Revised 2004 and 2018. https://personalpages.manchester.ac.uk/staff/mike.prest/publications.html
  17. 17.
    Prest, M., Slávik, A.: Purity in categories of sheaves. Preprint. arXiv:1809.08981 (2018)
  18. 18.
    Rothmaler, Ph.: A trivial remark on purity. In: Proceedings of the 9th Easter Conference on Model Theory, Gosen 1991, Seminarber. 112, Humboldt-Univ. zu Berlin, p. 127 (1991)Google Scholar
  19. 19.
    Sabbagh, G.: Sous-modules purs, existentiellement clos et élementaires. C. R. Acad. Sci. Paris 272, 1289–1292 (1971)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Stenström, B.: Rings of Quotients. Springer, Heidelberg (1975).  https://doi.org/10.1007/978-3-642-66066-5CrossRefzbMATHGoogle Scholar
  21. 21.
    Tennison, B.R.: Sheaf Theory. London Mathematical Society Lecture Note Series, vol. 20. Cambridge University Press, Cambridge (1975)CrossRefGoogle Scholar
  22. 22.
    Ziegler, M.: Model theory of modules. Ann. Pure Appl. Logic 26(2), 149–213 (1984)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of MathematicsUniversity of ManchesterManchesterUK

Personalised recommendations