Advertisement

Public Announcements for Epistemic Models and Hypertheories

  • Nenad SavićEmail author
  • Thomas Studer
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11600)

Abstract

Artemov has recently proposed a modernization of the semantics and proof theory of epistemic logic. We take up his approach and extend his framework with public announcements and the corresponding belief change operation. We establish a soundness and completeness result and show that our model update operation satisfies the AGM postulate of minimal change. Further, we also show that the standard approach cannot be directly employed to capture knowledge change by truthful announcements.

Keywords

Modal logic Public announcements Epistemic models Hypertheories 

References

  1. 1.
    Alchourrón, C.E., Gärdenfors, P., Makinson, D.: On the logic of theory change: partial meet contraction and revision functions. J. Symb. Log. 50(2), 510–530 (1985)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Artemov, S.N.: The logic of justification. RSL 1(4), 477–513 (2008)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Artemov, S.N.: Knowing the model. ArXiv e-prints https://arxiv.org/abs/1610.04955 (2016)
  4. 4.
    Artemov, S.N.: New foundations of epistemic logic. Talk given at OST 2018, Bern (2018). http://ost18.inf.unibe.ch/
  5. 5.
    Artemov, S.N.: Rebuilding epistemic logic. Talk given at Trends in Logic XVIII, Milan (2018). https://www.unicatt.it/meetings/trends-home
  6. 6.
    Artemov, S.N.: Revising epistemic logic. Talk given at LFCS 2018, Deerfield Beach (2018). http://lfcs.ws.gc.cuny.edu/lfcs-2018/
  7. 7.
    Brünnler, K., Flumini, D., Studer, T.: A logic of blockchain updates. In: Artemov, S., Nerode, A. (eds.) LFCS 2018. LNCS, vol. 10703, pp. 107–119. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-72056-2_7CrossRefzbMATHGoogle Scholar
  8. 8.
    Bucheli, S., Kuznets, R., Renne, B., Sack, J., Studer, T.: Justified belief change. In: Arrazola, X., Ponte, M. (eds.) LogKCA-2010, pp. 135–155. University of the Basque Country Press (2010)Google Scholar
  9. 9.
    Bucheli, S., Kuznets, R., Studer, T.: Realizing public announcements by justifications. J. Comput. Syst. Sci. 80(6), 1046–1066 (2014)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Gärdenfors, P.: Knowledge in Flux. The MIT Press, Cambridge (1988)zbMATHGoogle Scholar
  11. 11.
    Gerbrandy, J., Groeneveld, W.: Reasoning about information change. J. Log. Lang. Inf. 6(2), 147–169 (1997)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Kuznets, R., Studer, T.: Update as evidence: belief expansion. In: Artemov, S., Nerode, A. (eds.) LFCS 2013. LNCS, vol. 7734, pp. 266–279. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-35722-0_19CrossRefGoogle Scholar
  13. 13.
    Kuznets, R., Studer, T.: Logics of Proofs and Justifications. College Publications. (in preparation)Google Scholar
  14. 14.
    Plaza, J.: Logics of public communications. Synthese 158(2), 165–179 (2007). Reprinted from Emrich, M.L., et al. (eds.) Proceedings of the 4th International Symposium on Methodologies for Intelligent Systems (ISMIS 1989), pp. 201–216. Oak Ridge National Laboratory, ORNL/DSRD-24 (1989)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Renne, B.: Public communication in justification logic. J. Log. Comput. 21(6), 1005–1034 (2011). Published online July 2010MathSciNetCrossRefGoogle Scholar
  16. 16.
    Steiner, D.: Belief change functions for multi-agent systems. Ph.D. thesis, University of Bern (2009)Google Scholar
  17. 17.
    Steiner, D., Studer, T.: Total public announcements. In: Artemov, S.N., Nerode, A. (eds.) LFCS 2007. LNCS, vol. 4514, pp. 498–511. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-72734-7_35CrossRefGoogle Scholar
  18. 18.
    van Ditmarsch, H., van der Hoek, W., Kooi, B.: Dynamic Epistemic Logic. Springer, Dordrecht (2008).  https://doi.org/10.1007/978-1-4020-5839-4CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Computer ScienceUniversity of BernBernSwitzerland

Personalised recommendations