A Modal Aleatoric Calculus for Probabilistic Reasoning

  • Tim FrenchEmail author
  • Andrew Gozzard
  • Mark Reynolds
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11600)


We consider multi-agent systems where agents actions and beliefs are determined aleatorically, or “by the throw of dice”. This system consists of possible worlds that assign distributions to independent random variables, and agents who assign probabilities to these possible worlds. We present a novel syntax and semantics for such system, and show that they generalise Modal Logic. We also give a sound and complete calculus for reasoning in the base semantics, and a sound calculus for the full modal semantics, that we conjecture to be complete. Finally we discuss some application to reasoning about game playing agents.


Probabilistic modal logic Proof theory Multi-agent systems 


  1. 1.
    Baltag, A., Smets, S.: Group belief dynamics under iterated revision: fixed points and cycles of joint upgrades. In: Proceedings of 12th TARK, pp. 41–50 (2009)Google Scholar
  2. 2.
    Bovens, L., Hartmann, S.: Bayesian Epistemology. Oxford University Press, Oxford (2003)zbMATHGoogle Scholar
  3. 3.
    Cohen, W.W., Yang, F., Mazaitis, K.R.: TensorLog: deep learning meets probabilistic DBs. arXiv preprint arXiv:1707.05390 (2017)
  4. 4.
    De Finetti, B.: Theory of Probability: A Critical Introductory Treatment. Wiley, Chichester (1970)Google Scholar
  5. 5.
    van Ditmarsch, H., van der Hoek, W., Kooi, B.: Dynamic Epistemic Logic. Synthese Library, vol. 337. Springer, Dordrecht (2007)CrossRefGoogle Scholar
  6. 6.
    Fagin, R., Halpern, J.Y., Megiddo, N.: A logic for reasoning about probabilities. Inf. Comput. 87(1–2), 78–128 (1990)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Feldman, Y.A., Harel, D.: A probabilistic dynamic logic. In: Proceedings of the Fourteenth Annual ACM Symposium on Theory of Computing, pp. 181–195 (1982)Google Scholar
  8. 8.
    French, T., Gozzard, A., Reynolds, M.: A modal aleatoric calculus for probabalistic reasoning: extended version (2019).
  9. 9.
    Hailperin, T.: Boole’s Logic and Probability: A Critical Exposition from the Standpoint of Contemporary Algebra, Logic and Probability Theory. North-Holland Pub. Co., Amsterdam (1976)zbMATHGoogle Scholar
  10. 10.
    Halpern, J.Y.: Reasoning About Uncertainty. MIT Press, Cambridge (2017)CrossRefGoogle Scholar
  11. 11.
    Hintikka, J.: Knowledge and Belief. Cornell University Press, Ithaca (1962)zbMATHGoogle Scholar
  12. 12.
    Hommersom, A., Lucas, P.J.: Generalising the interaction rules in probabilistic logic. In: 22nd International Joint Conference on Artificial Intelligence (2011)Google Scholar
  13. 13.
    Kooi, B.P.: Probabilistic dynamic epistemic logic. J. Log. Lang. Inf. 12(4), 381–408 (2003)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Kozen, D.: A probabilistic PDL. J. Comput. Syst. Sci. 30(2), 162–178 (1985)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Milne, P.: Bruno de Finetti and the logic of conditional events. Br. J. Philos. Sci. 48(2), 195–232 (1997)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Nilsson, N.J.: Probabilistic logic. Artif. Intell. 28(1), 71–87 (1986)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Stalnaker, R.C., Thomason, R.H.: A semantic analysis of conditional logic 1. Theoria 36(1), 23–42 (1970)CrossRefGoogle Scholar
  18. 18.
    Williamson, J.: From Bayesian epistemology to inductive logic. J. Appl. Log. 11(4), 468–486 (2013)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Zadeh, L.A.: Fuzzy sets. In: Fuzzy Sets, Fuzzy Logic, And Fuzzy Systems: Selected Papers by Lotfi A Zadeh, pp. 394–432. World Scientific (1996)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.The University of Western AustraliaPerthWestern Australia

Personalised recommendations