The Undecidability of FO3 and the Calculus of Relations with Just One Binary Relation
Conference paper
First Online:
Abstract
The validity problem for first-order logic is a well-known undecidable problem. The undecidability also holds even for \(\mathsf {FO}3\) and (equational formulas of) the calculus of relations. In this paper we tighten these undecidability results to the following: (1) \(\mathsf {FO}3\) with just one binary relation is undecidable even without equality; and (2) the calculus of relations with just one character and with only composition, union, and complement is undecidable. Additionally we prove that the finite validity problem is also undecidable for the above two classes.
Keywords
First-order logic The calculus of relations UndecidabilityReferences
- 1.Andréka, H., Bredikhin, D.A.: The equational theory of union-free algebras of relations. Algebr. Univers. 33(4), 516–532 (1995). https://doi.org/10.1007/BF01225472MathSciNetCrossRefzbMATHGoogle Scholar
- 2.Boolos, G.S., Burgess, J.P., Jeffrey, R.C.: Computability and Logic. 5th edn., p. 350. Cambridge University Press, Cambridge (2007). https://doi.org/10.1017/CBO9780511804076
- 3.Börger, E., Grädel, E., Gurevich, Y.: The Classical Decision Problem, p. 482. Springer, Heidelberg (1997)CrossRefGoogle Scholar
- 4.Church, A.: A note on the Entscheidungsproblem. J. Symb. Log. 1(1), 40–41 (1936). https://doi.org/10.2307/2269326CrossRefzbMATHGoogle Scholar
- 5.Givant, S.: The calculus of relations as a foundation for mathematics. J. Autom. Reason. 37(4), 277–322 (2007). https://doi.org/10.1007/s10817-006-9062-xMathSciNetCrossRefzbMATHGoogle Scholar
- 6.Gödel, K.: Die Vollständigkeit der Axiome des logischen Funktionenkalküls. Monatshefte für Mathematik und Physik 37(1), 349–360 (1930). https://doi.org/10.1007/BF01696781MathSciNetCrossRefzbMATHGoogle Scholar
- 7.Grädel, E., Kolaitis, P.G., Vardi, M.Y.: On the decision problem for two-variable first-order logic. Bull. Symb. Log. 3(01), 53–69 (1997). https://doi.org/10.2307/421196MathSciNetCrossRefzbMATHGoogle Scholar
- 8.Herbrand, J.: Sur le problème fondamental de la logique mathématique. Sprawozdania z posiedezen Towarzysta Naukowego Warszawskiego, Wydzial III 24, 12–56 (1931)zbMATHGoogle Scholar
- 9.Kahr, A.S., Moore, E.F., Wang, H.: Entscheidungsproblem reduced to the AEA case. Proc. Natl. Acad. Sci. 48(3), 365–377 (1962). https://doi.org/10.1073/pnas.48.3.365CrossRefzbMATHGoogle Scholar
- 10.Kalmár, L.: Zuriickftihrung des Entscheidungsproblems auf den Fall von Formelnmit einer einzigen, bindren, Funktionsvariablen. In: Compositiomathematica, p. 4 (1936)Google Scholar
- 11.Lewis, H.R.: Complexity results for classes of quantificational formulas. J. Comput. Syst. Sci. 21(3), 317–353 (1980). https://doi.org/10.1016/0022-0000(80)90027-6MathSciNetCrossRefzbMATHGoogle Scholar
- 12.Löwenheim, L.: Über Möglichkeiten im Relativkalköl. Mathematische Annalen 76(4), 447–470 (1915)MathSciNetCrossRefGoogle Scholar
- 13.Lutz, C., Sattler, U., Wolter, F.: Modal logic and the two-variable fragment. In: Fribourg, L. (ed.) CSL 2001. LNCS, vol. 2142, pp. 247–261. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44802-0_18CrossRefzbMATHGoogle Scholar
- 14.Maddux, R.D.: Relation Algebras. Studies in Logic and the Foundations of Mathematics, vol. 150, p. 758. Elsevier (2006). https://doi.org/10.1016/S0049-237X(06)80023-6
- 15.Maddux, R.D.: Undecidable semiassociative relation algebras. J. Symb. Log. 59(02), 398–418 (1994). https://doi.org/10.2307/2275397MathSciNetCrossRefzbMATHGoogle Scholar
- 16.Mortimer, M.: On languages with two variables. Math. Log. Q. 21(1), 135–140 (1975). https://doi.org/10.1002/malq.19750210118MathSciNetCrossRefzbMATHGoogle Scholar
- 17.Ramsey, F.P.: On a problem of formal logic. In: Classic Papers in Combinatorics, pp. 1–24. Birkhäuser-Verlag (2009). https://doi.org/10.1007/978-0-8176-4842-8_1Google Scholar
- 18.Büchi, J.R.: On a decision method in restricted second-order arithmetic. In: International Congress on Logic, Method, and Philosophy of Science, pp. 1–11. Stanford University Press (1962)Google Scholar
- 19.Skolem, T.: Untersuchungen über die Axiome des Klassenkalküls und ÜberProduktations- und Summationsprobleme, welche gewisse Klassen von Aussagen betreffen. In: Videnskapsselskapets skrifter, I. Matematisk-naturvidenskabelig, vol. 3, p. 37 (1919)Google Scholar
- 20.Tarski, A.: On the calculus of relations. J. Symb. Log. 6(3), 73–89 (1941). https://doi.org/10.2307/2268577MathSciNetCrossRefzbMATHGoogle Scholar
- 21.Tarski, A., Givant, S.: A Formalization of Set Theory Without Variables, vol. 41, p. 318. Colloquium Publications. American Mathematical Society (1987)Google Scholar
- 22.Trakhtenbrot, B.A.: The Impossibility of an algorithm for the decision problem in finite classes. In: Detlovs, V.K. (ed.) Nine Papers on Logic and Quantum Electrodynamics. American Mathematical Society Translations Series 2, vol. 23, pp. 1–5. American Mathematical Society (1963)Google Scholar
- 23.Turing, A.M.: On computable numbers, with an application to the Entscheidungsproblem. Proc. Lond. Math. Soc. s2–42(1), 230–265 (1937). https://doi.org/10.1112/plms/s2-42.1.230MathSciNetCrossRefzbMATHGoogle Scholar
- 24.Vardi, M.Y.: From philosophical to industrial logics. In: Ramanujam, R., Sarukkai, S. (eds.) ICLA 2009. LNCS (LNAI), vol. 5378, pp. 89–115. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-92701-3_7CrossRefGoogle Scholar
- 25.Vardi, M.Y.: Why is modal logic so robustly decidable? Technical report, p. 24 (1997)Google Scholar
- 26.Willard, R.: Hereditary undecidability of some theories of finite structures. J. Symb. Log. 59(04), 1254–1262 (1994). https://doi.org/10.2307/2275703MathSciNetCrossRefzbMATHGoogle Scholar
Copyright information
© Springer-Verlag GmbH Germany, part of Springer Nature 2019