Compound Objects Comparators in Application to Similarity Detection and Object Recognition

  • Łukasz SosnowskiEmail author
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10810)


This article presents similarity based reasoning approach for recognition of compound objects. It contains mathematical foundations for comparators theory as well as comparators network theory. It shows also three different practical applications in field of image recognition, text recognition and risk recognition.


  1. 1.
    Aamodt, A., Plaza, E.: Case-based reasoning: foundational issues, methodological variations, and system approaches. Artif. Intell. Commun. 7(1), 39–59 (1994)Google Scholar
  2. 2.
    Agosta, L.: The Essential Guide to Data Warehousing. Essential Guide Series, Prentice Hall PTR (2000).
  3. 3.
    Aho, A.V.: Algorithms for finding patterns in strings. In: van Leeuwen, J. (ed.) Handbook of Theoretical Computer Science, vol. A, pp. 255–300. MIT Press, Cambridge (1990)Google Scholar
  4. 4.
    Allemang, D., Hendler, J.: Semantic Web for the Working Ontologist: Effective Modeling in RDFS and OWL. Morgan Kaufmann Publishers Inc., San Francisco (2008)Google Scholar
  5. 5.
    Arabas, J.: Wykłady z algorytmów ewolucyjnych. Wydawnictwo WNT, Warszawa (2004)Google Scholar
  6. 6.
    Ayodele, T.: Introduction to Machine Learning. INTECH Open Access Publisher (2010).
  7. 7.
    Barbie, M., Puppe, C., Tasnadi, A.: Non-manipulable domains for the borda count. No. 13 in Bonn econ discussion papers (2003)Google Scholar
  8. 8.
    Bembenik, R., Skonieczny, Ł., Rybiński, H., Niezgódka, M. (eds.): Intelligent Tools for Building a Scientific Information Platform. Springer, Heidelberg (2012). Scholar
  9. 9.
  10. 10.
    Berry, M.J., Linoff, G.: Data Mining Techniques: For Marketing, Sales, and Customer Support. Wiley, New York (1997)Google Scholar
  11. 11.
    Berson, A., Smith, S.J.: Data Warehousing, Data Mining, and Olap, 1st edn. McGraw-Hill Inc., New York (1997)Google Scholar
  12. 12.
    Bishop, C.: Neural Networks for Pattern Recognition. Neural Networks for Pattern Recognition. Oxford University Press, Incorporated (1995).
  13. 13.
    Böhm, C., Berchtold, S., Keim, D.A.: Searching in high-dimensional spaces: index structures for improving the performance of multimedia databases. ACM Comput. Surv. 33(3), 322–373 (2001)Google Scholar
  14. 14.
    Brams, S.J., Fishburn, P.C.: Going from theory to practice: the mixed success of approval voting. Soc. Choice Welfare 25(2–3), 457–474 (2005)zbMATHGoogle Scholar
  15. 15.
    Brun, M., et al.: Model-based evaluation of clustering validation measures. Pattern Recogn. 40(3), 807–824 (2007). Scholar
  16. 16.
    Büttcher, S., Clarke, C.L.A., Cormack, G.V.: Information Retrieval: Implementing and Evaluating Search Engines. MIT Press, Cambridge (2010). Scholar
  17. 17.
    Cantú-Paz, E., Cheung, S.C.S., Kamath, C.: Retrieval of similar objects in simulation data using machine learning techniques. In: Image Processing: Algorithms and Systems, pp. 251–258 (2004)Google Scholar
  18. 18.
    Cornelis, C., Jensen, R., Martín, G.H., Slȩzak, D.: Attribute selection with fuzzy decision reducts. Inf. Sci. 180(2), 209–224 (2010). Scholar
  19. 19.
    Cross, V., Yu, X., Hu, X.: Unifying ontological similarity measures: a theoretical and empirical investigation. Int. J. Approx. Reason. 54(7), 861–875 (2013)Google Scholar
  20. 20.
    Dasgupta, D., Michalewicz, Z.: Evolutionary Algorithms in Engineering Applications. Springer, Heidelberg (1997). Scholar
  21. 21.
    Deb, S.: Multimedia Systems and Content-based Image Retrieval. Idea Group Publishing (2004).
  22. 22.
    Elkind, E., Lang, J., Saffidine, A.: Choosing collectively optimal sets of alternatives based on the condorcet criterion. In: Walsh, T. (ed.) IJCAI, pp. 186–191. IJCAI/AAAI (2011).
  23. 23.
    Faliszewski, P., Hemaspaandra, E., Hemaspaandra, L.A.: Using complexity to protect elections. Commun. ACM 53(11), 74–82 (2010)Google Scholar
  24. 24.
    Fodora, J.C., Ovchinnikov, S.: On aggregation of T-transitive fuzzy binary relations. Fuzzy Sets Syst. 72(2), 135–145 (1995). Scholar
  25. 25.
    Fokina, E.B., Friedman, S.-D.: Equivalence relations on classes of computable structures. In: Ambos-Spies, K., Löwe, B., Merkle, W. (eds.) CiE 2009. LNCS, vol. 5635, pp. 198–207. Springer, Heidelberg (2009). Scholar
  26. 26.
    Goldberg, D.: Genetic Algorithms in Search, Optimization, and Machine Learning. Artificial Intelligence, Addison-Wesley (1989).
  27. 27.
    Gomolinska, A., Wolski, M.: Rough inclusion functions and similarity indices. In: CS&P, pp. 145–156 (2013)Google Scholar
  28. 28.
    Gruber, M.: Mastering SQL, 1st edn. SYBEX Inc., Alameda (2000)Google Scholar
  29. 29.
    Gupta, K., Gupta, R.: Fuzzy equivalence relation redefined. Fuzzy Sets Syst. 79(2), 227–233 (1996). Scholar
  30. 30.
    Gwiazda, T.: Algorytmy genetyczne: kompendium. Operator krzyżowania dla problemów numerycznych. No. t. 1, Wydawnictwo Naukowe PWN (2007).
  31. 31.
    Han, L., et al.: Firegrid: an e-infrastructure for next-generation emergency response support. J. Parallel Distrib. Comput. 70(11), 1128–1141 (2010)Google Scholar
  32. 32.
    Hegenbarth, F.: Examples of free involutions on manifolds. Math. Ann. 224(2), 117–128 (1976). Scholar
  33. 33.
    ISO 31000 - Risk management (2009)Google Scholar
  34. 34.
    Iwata, T., Saito, K., Yamada, T.: Modeling user behavior in recommender systems based on maximum entropy. In: WWW, pp. 1281–1282 (2007)Google Scholar
  35. 35.
    Janusz, A., Ślȩzak, D., Nguyen, H.S.: Unsupervised similarity learning from textual data. Fundam. Inform. 119(3–4), 319–336 (2012)MathSciNetzbMATHGoogle Scholar
  36. 36.
    Kacprzyk, J.: Multistage Fuzzy Control: A Model-based Approach to Fuzzy Control and Decision Making. Wiley, Hoboken (2012)zbMATHGoogle Scholar
  37. 37.
    Klement, E.P., Pap, E., Mesiar, R.: Triangular Norms. Kluwer Academic Publishers, Dordrecht (2000). Scholar
  38. 38.
    Kolpakov, R., Raffinot, M.: Faster text fingerprinting. In: Amir, A., Turpin, A., Moffat, A. (eds.) SPIRE 2008. LNCS, vol. 5280, pp. 15–26. Springer, Heidelberg (2008). Scholar
  39. 39.
    Komorowski, J., Pawlak, Z., Polkowski, L., Skowron, A.: Rough sets: a tutorial (1998)Google Scholar
  40. 40.
    Koronacki, J., Mielniczuk, J.: Statistics: for students of technical and natural sciences (in polish). Wydawnictwa Naukowo-Techniczne (2001).
  41. 41.
    Kosiński, R.: Sztuczne sieci neuronowe: dynamika nieliniowa i chaos. Wydawnictwa Naukowo-Techniczne (2004).
  42. 42.
    Krasuski, A., Jankowski, A., Skowron, A., Ślȩzak, D.: From sensory data to decision making: a perspective on supporting a fire commander. In: Web Intelligence/IAT Workshops, pp. 229–236 (2013)Google Scholar
  43. 43.
    Krasuski, A., Janusz, A.: Semantic tagging of heterogeneous data: labeling fire & rescue incidents with threats. In: FedCSIS, pp. 77–82 (2013)Google Scholar
  44. 44.
    Kulikowski, J.L.: Toward computer-aided interpretation of situations. In: Burduk, R., Jackowski, K., Kurzynski, M., Wozniak, M., Zolnierek, A. (eds.) Proceedings of the 8th International Conference on Computer Recognition Systems CORES 2013. Advances in Intelligent Systems and Computing, vol. 226. Springer, Heidelberg (2013). Scholar
  45. 45.
    Levitin, G., Lisnianski, A.: Reliability optimization for weighted voting system. Rel. Eng. Sys. Saf. 71(2), 131–138 (2001)Google Scholar
  46. 46.
    Lin, X., Yacoub, S., Burns, J., Simske, S.: Performance analysis of pattern classifier combination by plurality voting. Pattern Recogn. Lett. 24(12), 1959–1969 (2003)Google Scholar
  47. 47.
    Luckham, D.: The Power of Events: an Introduction to Complex Event Processing in Distributed Enterprise Systems. The Power of Events: An Introduction to Complex Event Processing in Distributed Enterprise Systems, ADDISON WESLEY Publishing Company Incorporated (2002).
  48. 48.
    MacParthalain, N., Jensen, R.: Simultaneous feature and instance selection using fuzzy-rough bireducts. In: FUZZ-IEEE 2013, IEEE International Conference on Fuzzy Systems, Hyderabad, India, 7–10 July 2013, Proceedings, pp. 1–8 (2013).
  49. 49.
    Maedche, A., Staab, S.: Comparing ontologies – similarity measures and a comparison study. Technical report, Institute AIFB, University of Karlsruhe, March 2001Google Scholar
  50. 50.
    Mallik, A., Chaudhury, S., Ghosh, H.: Nrityakosha: preserving the intangible heritage of indian classical dance. JOCCH 4(3), 11 (2011)Google Scholar
  51. 51.
    Malmstadt, H., Enke, C., Crouch, S.: Electronic Analog Measurements and Transducers: Instrumentation for Scientists Series 1. Analog Measurements and Transducers. Benjamin (1973).
  52. 52.
    Marin, N., Medina, J.M., Pons, O., Sanchez, D., Vila, M.A.: Complex object comparison in a fuzzy context. Inf. Softw. Technol. 45, 431–444 (2003)Google Scholar
  53. 53.
    Mas, M., Monserrat, M., Torrens, J.: Modus ponens and modus tollens in discrete implications. Int. J. Approx. Reason. 49(2), 422–435 (2008). Scholar
  54. 54.
    McKelvey, R.D., Patty, J.W.: A theory of voting in large elections. Game Econ. Behav. 57(1), 155–180 (2006). Scholar
  55. 55.
    Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs, 3rd edn. Springer-Verlag, London (1996). Scholar
  56. 56.
    Mitchell, T.M.: Machine Learning. McGraw Hill Series in Computer Science. McGraw-Hill, New York (1997)zbMATHGoogle Scholar
  57. 57.
    Molodtsov, D.: Soft set theory - first results. Comput. Math. Appl. 37(4–5), 19–31 (1999). Scholar
  58. 58.
    Navarro, G.: A guided tour to approximate string matching. ACM Comput. Surv. 33(1), 31–88 (2001). Scholar
  59. 59.
    Nesenbergs, M., Mowery, V.O.: Logic synthesis of some high-speed digital comparators. Bell Syst. Tech. J. 38, 19–44 (1959)Google Scholar
  60. 60.
    Nguyen, S.H., Bazan, J., Skowron, A., Nguyen, H.S.: Layered learning for concept synthesis. LNCS Trans. Rough Sets 1(3100), 187–208 (2004)zbMATHGoogle Scholar
  61. 61.
    Pal, S., Shiu, S.: Foundations of Soft Case-Based Reasoning. Wiley Series on Intelligent Systems, Wiley (2004). Scholar
  62. 62.
    Pawlak, Z.: On rough sets. Bull. EATCS 24, 94–108 (1984)Google Scholar
  63. 63.
    Pawlak, Z.: Rough set theory. KI 15(3), 38–39 (2001)MathSciNetGoogle Scholar
  64. 64.
    Pawlak, Z., Skowron, A.: Rough sets: some extensions. Inf. Sci. 177(1), 28–40 (2007)MathSciNetzbMATHGoogle Scholar
  65. 65.
    Pedrycz, W., Skowron, A., Kreinovich, V.: Handbook of Granular Computing. Wiley (2008).
  66. 66.
    Pekalska, E., Duin, R.P.W.: The Dissimilarity Representation for Pattern Recognition. Foundations and Applications (Machine Perception and Artificial Intelligence). World Scientific Publishing Co., River Edge (2005)zbMATHGoogle Scholar
  67. 67.
    Peters, J.F.: Near sets: an introduction. Math. Comput. Sci. 7(1), 3–9 (2013)MathSciNetzbMATHGoogle Scholar
  68. 68.
    Polkowski, L.: Approximate Reasoning by Parts: An Introduction to Rough Mereology. Intelligent Systems Reference Library. Springer, Heidelberg (2011). Scholar
  69. 69.
    Polkowski, L., Artiemjew, P.: Granular Computing in Decision Approximation. ISRL, vol. 77. Springer, Cham (2015). Scholar
  70. 70.
    Quackenbush, R.W.: On the composition of idempotent functions. Algebra Univers. 1(1), 7–12 (1971). Scholar
  71. 71.
    Rasmusen, E.: Games and Information: An Introduction to Game Theory. Blackwell (2001).
  72. 72.
    Rinaldi, A.M.: An ontology-driven approach for semantic information retrieval on the web. ACM Trans. Internet Technol. 9, 10:1–10:24 (2009). Scholar
  73. 73.
    Riza, L.S., et al.: Implementing algorithms of rough set theory and fuzzy rough set theory in the R package “roughsets”. Inf. Sci. 287, 68–89 (2014). Scholar
  74. 74.
    Rumbaugh, J., Jacobson, I., Booch, G.: Unified Modeling Language Reference Manual, 2nd edn. Pearson Higher Education, London (2004)Google Scholar
  75. 75.
    Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Neurocomputing: Foundations of Research. Learning Representations by Back-propagating Errors, pp. 696–699. MIT Press, Cambridge (1988). Scholar
  76. 76.
    Russ, J.: The Image Processing Handbook, 6th edn. Taylor & Francis, Abingdon-on-Thames (2011). Scholar
  77. 77.
    Rutkowski, L.: Computational Intelligence: Methods and Techniques. Springer, Heidelberg (2008). Scholar
  78. 78.
    Saari, D.G.: The Optimal Ranking Method is the Borda Count. Discussion Papers 638, Northwestern University, Center for Mathematical Studies in Economics and Management Science, January 1985.
  79. 79.
    Saari, D.G., Merlin, V.R.: The Copeland Method. I: Relat. Dictionary 8, 51–76 (1996)MathSciNetzbMATHGoogle Scholar
  80. 80.
    Schickel-Zuber, V., Faltings, B.: OSS: a semantic similarity function based on hierarchical ontologies. In: Proceedings of the 20th International Joint Conference on Artificial Intelligence, IJCAI 2007, pp. 551–556. Morgan Kaufmann Publishers Inc., San Francisco (2007).
  81. 81.
    Serpico, S., Bruzzone, L., Roli, F.: An experimental comparison of neural and statistical non-parametric algorithms for supervised classification of remote-sensing images. Pattern Recogn. Lett. 17(13), 1331–1341 (1996). Special Issue on Non-conventional Pattern Analysis in Remote SensingGoogle Scholar
  82. 82.
    Shannon, C.E.: A mathematical theory of communication. The Bell Syst. Tech. J. 27, 379–423, 623–656 (July, October 1948). Scholar
  83. 83.
    Skowron, A., Polkowski, L.: Rough mereological foundations for design, analysis, synthesis, and control in distributed systems. In: Proceedings The Second Joint Annual Conference on Information Sciences, Wrightsville Beach, NC, pp. 129–156 (1998)Google Scholar
  84. 84.
    Ślȩzak, D., Sosnowski, Ł.: SQL-based compound object comparators: a case study of images stored in ICE. In: Kim, T., Kim, H.-K., Khan, M.K., Kiumi, A., Fang, W., Ślęzak, D. (eds.) ASEA 2010. CCIS, vol. 117, pp. 303–316. Springer, Heidelberg (2010). Scholar
  85. 85.
    Ślȩzak, D.: Approximate reducts in decision tables. In: 6th International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems, pp. 1159–1164. Universidad de Granada (1996)Google Scholar
  86. 86.
    Ślȩzak, D., Janusz, A.: Ensembles of bireducts: towards robust classification and simple representation. In: Kim, T., et al. (eds.) FGIT 2011. LNCS, vol. 7105, pp. 64–77. Springer, Heidelberg (2011). Scholar
  87. 87.
    Śȩlzak, D., Szczuka, M.: Rough neural networks for complex concepts. In: An, A., Stefanowski, J., Ramanna, S., Butz, C.J., Pedrycz, W., Wang, G. (eds.) RSFDGrC 2007. LNCS (LNAI), vol. 4482, pp. 574–582. Springer, Heidelberg (2007). Scholar
  88. 88.
    Slowinski, R.: A generalization of the indiscernibility relation for rough set analysis of quantitative information. Riv. Matematica Economiche e Sociali 15(1), 65–78 (1992)MathSciNetzbMATHGoogle Scholar
  89. 89.
    Smith, W.D.: Range voting (2000)Google Scholar
  90. 90.
    Sosnowski, Ł.: Identification with compound object comparators technical aspects. In: Hołubiec, J. (ed.) Techniki informacyjne teoria i zastosowania, vol. 1, pp. 168–179. IBS PAN (2011)Google Scholar
  91. 91.
    Sosnowski, Ł.: Characters recognition based on network of comparators. In: Myśliński, A. (ed.) Techniki informacyjne teoria i zastosowania, vol. 4, pp. 123–134. IBS PAN (2012)Google Scholar
  92. 92.
    Sosnowski, Ł.: Applications of comparators in data processing systems. Technical Transactions Automatic Control, pp. 81–98 (2013)Google Scholar
  93. 93.
    Sosnowski, Ł.: Framework of compound object comparators. Intell. Decis. Technol. 9(4), 343–363 (2015)Google Scholar
  94. 94.
    Sosnowski, Ł., Pietruszka, A., Krasuski, A., Janusz, A.: A resemblance based approach for recognition of risks at a fire ground. In: Ślȩzak, D., Schaefer, G., Vuong, S.T., Kim, Y.-S. (eds.) AMT 2014. LNCS, vol. 8610, pp. 559–570. Springer, Cham (2014). Scholar
  95. 95.
    Sosnowski, Ł., Pietruszka, A., Łazowy, S.: Election algorithms applied to the global aggregation in networks of comparators. In: M. Ganzha, L., Maciaszek, M.P., (ed.), Proceedings of the 2014 Federated Conference on Computer Science and Information Systems. Annals of Computer Science and Information Systems, vol. 2, pp. 135–144. IEEE (2014).
  96. 96.
    Sosnowski, Ł., Ślȩzak, D.: Comparators for compound object identification. In: Kuznetsov, S.O., Ślęzak, D., Hepting, D.H., Mirkin, B.G. (eds.) RSFDGrC 2011. LNCS (LNAI), vol. 6743, pp. 342–349. Springer, Heidelberg (2011). Scholar
  97. 97.
    Sosnowski, Ł., Ślȩzak, D.: Learning in comparator networks. In: Kacprzyk, J., Szmidt, E., Zadrożny, S., Atanassov, K.T., Krawczak, M. (eds.) IWIFSGN/EUSFLAT -2017. AISC, vol. 643, pp. 316–327. Springer, Cham (2018). Scholar
  98. 98.
    Sosnowski, Ł., Ślȩzak, D.: RDBMS framework for contour identification. In: Szczuka, M., Czaja, L., Skowron, A., Kacprzak, M. (eds.) CS&P, pp. 487–498. Białystok University of Technology, Pułtusk (2011). electronic editionGoogle Scholar
  99. 99.
    Sosnowski, Ł., Ślȩzak, D.: How to design a network of comparators. In: Imamura, K., Usui, S., Shirao, T., Kasamatsu, T., Schwabe, L., Zhong, N. (eds.) BHI 2013. LNCS (LNAI), vol. 8211, pp. 389–398. Springer, Cham (2013). Scholar
  100. 100.
    Sosnowski, Ł., Ślȩzak, D.: Networks of compound object comparators. In: FUZZ-IEEE, pp. 1–8 (2013)Google Scholar
  101. 101.
    Sosnowski, Ł., Ślȩzak, D.: Fuzzy set interpretation of comparator networks. In: Kryszkiewicz, M., Bandyopadhyay, S., Rybinski, H., Pal, S.K. (eds.) PReMI 2015. LNCS, vol. 9124, pp. 345–353. Springer, Cham (2015). Scholar
  102. 102.
    Sosnowski, L., Szczuka, M.S.: Recognition of compound objects based on network of comparators. In: Proceedings of FedCSIS 2016, Position Papers, pp. 33–40 (2016)Google Scholar
  103. 103.
    Staab, S., Maedche, A.: Knowledge portals: ontologies at work. AI Mag. 22(2), 63–75 (2001)Google Scholar
  104. 104.
    Stahl, A., Gabel, T.: Using evolution programs to learn local similarity measures. In: Ashley, K.D., Bridge, D.G. (eds.) ICCBR 2003. LNCS (LNAI), vol. 2689, pp. 537–551. Springer, Heidelberg (2003). Scholar
  105. 105.
    Sundaram, N., et al.: Streaming similarity search over one billion tweets using parallel locality-sensitive hashing. PVLDB 6(14), 1930–1941 (2013)Google Scholar
  106. 106.
    Szczuka, M., Ślȩzak, D.: Feedforward neural networks for compound signals. Theoret. Comput. Sci. 412(42), 5960–5973 (2011)MathSciNetzbMATHGoogle Scholar
  107. 107.
    Szczuka, M.: The use of rough set methods in knowledge discovery in databases. In: Kuznetsov, S.O., Ślȩzak, D., Hepting, D.H., Mirkin, B.G. (eds.) RSFDGrC 2011. LNCS (LNAI), vol. 6743, pp. 28–30. Springer, Heidelberg (2011). Scholar
  108. 108.
    Szczuka, M.S., Sosnowski, Ł., Krasuski, A., Kreński, K.: Using domain knowledge in initial stages of KDD: optimization of compound object processing. Fundam. Inform. 129(4), 341–364 (2014)MathSciNetGoogle Scholar
  109. 109.
    Tho, D.: Perceptron Problem in Neural Network. GRIN Verlag (2010).
  110. 110.
    Tietze, U., Schenk, C., Gamm, E.: Electronic Circuits. Springer, Heidelberg (2008). Scholar
  111. 111.
    Turksen, I.: Interval valued fuzzy sets based on normal forms. Fuzzy Sets Syst. 20(2), 191–210 (1986). Scholar
  112. 112.
    Tversky, A., Shafir, E.: Preference, Belief, and Similarity: Selected Writings. MIT Press, Cambridge (2004)Google Scholar
  113. 113.
    Wilkinson, B.: The Essence of Digital Design. Essence of Engineering. Prentice Hall, Upper Saddle River (1998). Scholar
  114. 114.
    Yager, R.R., Filev, D.: Summarizing data using a similarity based mountain method. Inf. Sci. 178(3), 816–826 (2008)MathSciNetzbMATHGoogle Scholar
  115. 115.
    Yang, X., Lin, T.Y., Yang, J., Li, Y., Yu, D.: Combination of interval-valued fuzzy set and soft set. Comput. Math. Appl. 58(3), 521–527 (2009). Scholar
  116. 116.
    Zadeh, L.A.: The concept of a linguistic variable and its application to approximate reasoning. J. Inf. Sci. 8(3), 199–249 (1975)MathSciNetzbMATHGoogle Scholar
  117. 117.
    Zadeh, L.A.: Fuzzy sets. Inf. Control 8(3), 338–353 (1965)zbMATHGoogle Scholar
  118. 118.
    Zadeh, L.A.: Toward a theory of fuzzy information granulation and its centrality in human reasoning and fuzzy logic. Fuzzy Sets Syst. 90(2), 111–127 (1997)MathSciNetzbMATHGoogle Scholar
  119. 119.
    Zadeh, L.A.: Computing with Words - Principal Concepts and Ideas. Studies in Fuzziness and Soft Computing, vol. 277. Springer, Heidelberg (2012). Scholar
  120. 120.
    Zadeh, P.D.H., Reformat, M.: Feature-based similarity assessment in ontology using fuzzy set theory. In: FUZZ-IEEE, pp. 1–7 (2012)Google Scholar
  121. 121.
    Zhao, Y., Luo, F., Wong, S.K.M., Yao, Y.: A general definition of an attribute reduct. In: Yao, J.T., Lingras, P., Wu, W.-Z., Szczuka, M., Cercone, N.J., Ślęzak, D. (eds.) RSKT 2007. LNCS (LNAI), vol. 4481, pp. 101–108. Springer, Heidelberg (2007). Scholar
  122. 122.
    Zhou, J., Pedrycz, W., Miao, D.: Shadowed sets in the characterization of rough-fuzzy clustering. Pattern Recogn. 44(8), 1738–1749 (2011). Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Systems Research InstitutePolish Academy of SciencesWarsawPoland

Personalised recommendations