Advertisement

Lift, Drill, Fill, and Fix (LDFF): A New Arthroscopic Treatment for Talar Osteochondral Defects

  • Jari Dahmen
  • J. Nienke Altink
  • Mikel L. Reilingh
  • Gino M. M. J. KerkhoffsEmail author
Chapter

Abstract

An osteochondral defect (OCD) to the talus is an injury of the talar articular cartilage and its subchondral bone. The injury can rigorously affect daily activities of patients leading to a deterioration of the quality of life. Despite substantial research having been conducted in the past number of decades, there is still no worldwide consensus on the optimal treatment protocol for primary and secondary symptomatic talar OCDs. In this chapter we present the historical perspective and we describe a novel arthroscopic internal fixation procedure for the treatment of talar OCDs, known as the “Lift, Drill, Fill, and Fix” (LDFF) technique.

Keywords

Ankle Talus Osteochondral lesion Defect Arthroscopy Articular cartilage Fixation techniques Minimally invasive surgery LDFF 

References

  1. 1.
    Alexander AH, Lichtman DM. Surgical treatment of transchondral talar-dome fractures (osteochondritis dissecans). Long-term follow-up. J Bone Joint Surg Am. 1980;62(4):646–52.CrossRefGoogle Scholar
  2. 2.
    Draper SD, Fallat LM. Autogenous bone grafting for the treatment of talar dome lesions. J Foot Ankle Surg. 2000;39(1):15–23.CrossRefGoogle Scholar
  3. 3.
    Hintermann B, Regazzoni P, Lampert C, Stutz G, Gachter A. Arthroscopic findings in acute fractures of the ankle. J Bone Joint Surg. 2000;82(3):345–51.CrossRefGoogle Scholar
  4. 4.
    Saxena A, Eakin C. Articular talar injuries in athletes: results of microfracture and autogenous bone graft. Am J Sports Med. 2007;35(10):1680–7.CrossRefGoogle Scholar
  5. 5.
    D’Ambrosi R, Maccario C, Serra N, Ursino C, Usuelli FG. Relationship between symptomatic osteochondral lesions of the talus and quality of life, body mass index, age, size and anatomic location. Foot Ankle Surg. 2017;24(4):365–72.CrossRefGoogle Scholar
  6. 6.
    Seo SG, Kim JS, Seo DK, Kim YK, Lee SH, Lee HS. Osteochondral lesions of the talus. Acta Orthop. 2018:1–6.Google Scholar
  7. 7.
    Elias I, Jung JW, Raikin SM, Schweitzer MW, Carrino JA, Morrison WB. Osteochondral lesions of the talus: change in MRI findings over time in talar lesions without operative intervention and implications for staging systems. Foot Ankle Int. 2006;27(3):157–66.CrossRefGoogle Scholar
  8. 8.
    Bauer M, Jonsson K, Linden B. Osteochondritis dissecans of the ankle. A 20-year follow-up study. J Bone Joint Surg. 1987;69(1):93–6.CrossRefGoogle Scholar
  9. 9.
    Klammer G, Maquieira GJ, Spahn S, Vigfusson V, Zanetti M, Espinosa N. Natural history of nonoperatively treated osteochondral lesions of the talus. Foot Ankle Int. 2014;36(1):24–31.CrossRefGoogle Scholar
  10. 10.
    Ramponi L, Yasui Y, Murawski CD, Ferkel RD, DiGiovanni CW, Kerkhoffs GM, et al. Lesion size is a predictor of clinical outcomes after bone marrow stimulation for osteochondral lesions of the talus: a systematic review. Am J Sports Med. 2016;45(7):1698–705.CrossRefGoogle Scholar
  11. 11.
    Ferkel RD, Zanotti RM, Komenda GA, Sgaglione NA, Cheng MS, Applegate GR, et al. Arthroscopic treatment of chronic osteochondral lesions of the talus: long-term results. Am J Sports Med. 2008;36(9):1750–62.CrossRefGoogle Scholar
  12. 12.
    van Bergen CJA, Kox LS, Maas M, Sierevelt IN, Kerkhoffs GMMJ, van Dijk CN. Arthroscopic treatment of osteochondral defects of the talus: outcomes at eight to twenty years of follow-up. J Bone Joint Surg Am. 2013;95(6):519–25.CrossRefGoogle Scholar
  13. 13.
    Reilingh ML, van Bergen CJ, Blankevoort L, Gerards RM, van Eekeren IC, Kerkhoffs GM, et al. Computed tomography analysis of osteochondral defects of the talus after arthroscopic debridement and microfracture. Knee Surg Sports Traumatol Arthrosc. 2016;24(4):1286–92.CrossRefGoogle Scholar
  14. 14.
    Seow D, Yasui Y, Hutchinson ID, Hurley ET, Shimozono Y, Kennedy JG. The subchondral bone is affected by bone marrow stimulation: a systematic review of preclinical animal studies. Cartilage. 2017:1947603517711220.Google Scholar
  15. 15.
    Shimozono Y, Coale M, Yasui Y, O’Halloran A, Deyer TW, Kennedy JG. Subchondral bone degradation after microfracture for osteochondral lesions of the talus: an MRI analysis. Am J Sports Med. 2018;46(3):642–8.CrossRefGoogle Scholar
  16. 16.
    Marsh JL, Buckwalter J, Gelberman R, Dirschl D, Olson S, Brown T, et al. Articular fractures: does an anatomic reduction really change the result? J Bone Joint Surg Am. 2002;84(7):1259–71.CrossRefGoogle Scholar
  17. 17.
    Stufkens SA, Knupp M, Horisberger M, Lampert C, Hintermann B. Cartilage lesions and the development of osteoarthritis after internal fixation of ankle fractures: a prospective study. J Bone Joint Surg Am. 2010;92(2):279–86.CrossRefGoogle Scholar
  18. 18.
    Qiu YS, Shahgaldi BF, Revell WJ, Heatley FW. Observations of subchondral plate advancement during osteochondral repair: a histomorphometric and mechanical study in the rabbit femoral condyle. Osteoarthr Cartil. 2003;11(11):810–20.CrossRefGoogle Scholar
  19. 19.
    Lambers KT, Dahmen J, Reilingh ML, van Bergen CJ, Stufkens SA, Kerkhoffs GM. No superior surgical treatment for secondary osteochondral defects of the talus. Knee Surg Sports Traumatol Arthrosc. 2017: https://doi.org/10.1007/s00167-017-4616-5.CrossRefGoogle Scholar
  20. 20.
    Hunter W. On the structure and diseases of articular cartilage. Philos Trans R Soc London Biol. 1743;42:514–21.CrossRefGoogle Scholar
  21. 21.
    Monro A. Microgeologie. Berlin: Th Billroth; 1856. p. 236.Google Scholar
  22. 22.
    Paget J. On the production of the loose bodies in joints. St Bartholomew’s Hospital Rep. 1870;6:1.Google Scholar
  23. 23.
    König F. Über freie Körper in den Gelenken. Dtsch Z Chir. 1887;27:90–109.CrossRefGoogle Scholar
  24. 24.
    Kappis M. Weitere beiträge zur traumatisch-mechanischen entstenhung der “spontanen” knorpelabiösungen. Dtsch Z Chir. 1922;171:13–29.CrossRefGoogle Scholar
  25. 25.
    Rendu A. Fracture intra-articulaire parcellaire de la poulie astraglienne. Lyon Med. 1932;150:220–2.Google Scholar
  26. 26.
    Roden S, Tillegard P, Unanderscharin L. Osteochondritis dissecans and similar lesions of the talus: report of fifty-five cases with special reference to etiology and treatment. Acta Orthop Scand. 1953;23(1):51–66.CrossRefGoogle Scholar
  27. 27.
    Berndt AL, Harty M. Transchondral fractures (osteochondritis dissecans) of the talus. J Bone Joint Surg Am. 1959;41:988–1020.CrossRefGoogle Scholar
  28. 28.
    Reilingh ML, Murawski CD, DiGiovanni CW, Dahmen J, Ferrao P, Lambers KTA, et al. Fixation techniques: an international consensus statement. Foot Ankle Int. 2018.Google Scholar
  29. 29.
    van Bergen CJ, Tuijthof GJ, Maas M, Sierevelt IN, van Dijk CN. Arthroscopic accessibility of the talus quantified by computed tomography simulation. Am J Sports Med. 2012;40(10):2318–24.CrossRefGoogle Scholar
  30. 30.
    van Bergen CJ, Tuijthof GJ, Blankevoort L, Maas M, Kerkhoffs GM, van Dijk CN. Computed tomography of the ankle in full plantar flexion: a reliable method for preoperative planning of arthroscopic access to osteochondral defects of the talus. Arthroscopy. 2012;28(7):985–92.CrossRefGoogle Scholar
  31. 31.
    van Bergen CJ, Gerards RM, Opdam KT, Terra MP, Kerkhoffs GM. Diagnosing, planning and evaluating osteochondral ankle defects with imaging modalities. World J Orthop. 2015;6(11):944–53.CrossRefGoogle Scholar
  32. 32.
    Kerkhoffs GM, Reilingh ML, Gerards RM, de Leeuw PA. Lift, drill, fill and fix (LDFF): a new arthroscopic treatment for talar osteochondral defects. Knee Surg Sports Traumatol Arthrosc. 2014;24(4):1265–71.CrossRefGoogle Scholar
  33. 33.
    Reilingh ML, Lift KGM. Drill, fill and fix (LDFF): a cartilage preservation technique in osteochondral talar defects. In: Canata GL, van Dijk CN, editors. Cartilage lesions of the ankle. Heidelberg: Springer; 2015. p. 77–85.Google Scholar
  34. 34.
    Salaffi F, Stancati A, Silvestri CA, Ciapetti A, Grassi W. Minimal clinically important changes in chronic musculoskeletal pain intensity measured on a numerical rating scale. Eur J Radiol. 2007;8:283–91.Google Scholar
  35. 35.
    Reilingh ML, Lambers KTA, Dahmen J, Opdam KTM, Kerkhoffs GM. The subchondral bone healing after fixation of an osteochondral talar defect is superior in comparison with microfracture. Knee Surg Sports Traumatol Arthrosc. 2017.Google Scholar

Copyright information

© ISAKOS 2019

Authors and Affiliations

  • Jari Dahmen
    • 1
    • 2
    • 3
  • J. Nienke Altink
    • 1
    • 2
    • 3
  • Mikel L. Reilingh
    • 1
    • 2
    • 3
  • Gino M. M. J. Kerkhoffs
    • 1
    • 2
    • 3
    Email author
  1. 1.Amsterdam UMC, University of Amsterdam, Department of Orthopaedic SurgeryAmsterdam Movement SciencesAmsterdamThe Netherlands
  2. 2.Academic Center for Evidence based Sports medicine (ACES)AmsterdamThe Netherlands
  3. 3.Amsterdam Collaboration for Health and Safety in Sports (ACHSS), International Olympic Committee (IOC) Research Center Amsterdam UMCAmsterdamThe Netherlands

Personalised recommendations