Advertisement

Planet Formation and Disk-Planet Interactions

  • Wilhelm KleyEmail author
Chapter
Part of the Saas-Fee Advanced Course book series (SAASFEE, volume 45)

Abstract

This review is based on lectures given at the 45th Saas-Fee Advanced Course “From Protoplanetary Disks to Planet Formation” held in March 2015 in Les Diablerets, Switzerland. Starting with an overview of the main characterictics of the Solar System and the extrasolar planets, we describe the planet formation process in terms of the sequential accretion scenario. First the growth processes of dust particles to planetesimals and subsequently to terrestrial planets or planetary cores are presented. This is followed by the formation process of the giant planets either by core accretion or gravitational instability. Finally, the dynamical evolution of the orbital elements as driven by disk-planet interaction and the overall evolution of multi-object systems is presented.

Notes

Acknowledgements

This text is based on a series of lectures on the topic Planet formation and disk-planet interactions given at the 45th “Saas-Fee Advanced Course” of the Swiss Society for Astrophysics and Astronomy (SSAA) held in Les Diablerets in March 2015. I acknowledge generous support from the SSAA, and would like to thank the organisers (Marc Audard, Yann Alibert and, Michael R. Meyer, Martine Logossou) for providing such a nice and stimulating atmosphere. I thank Giovanni Picogna for a reading of the manuscript.

References

  1. 1.
    Aarseth, S.J.: From NBODY1 to NBODY6: the growth of an industry. PASP 111, 1333–1346 (1999).  https://doi.org/10.1086/316455ADSCrossRefGoogle Scholar
  2. 2.
    Adams, F.C., Laughlin, G.: Migration and dynamical relaxation in crowded systems of giant planets. Icarus 163, 290–306 (2003).  https://doi.org/10.1016/S0019-1035(03)00081-2ADSCrossRefGoogle Scholar
  3. 3.
    Adams, F.C., Laughlin, G., Bloch, A.M.: Turbulence implies that mean motion resonances are rare. ApJ 683, 1117–1128 (2008).  https://doi.org/10.1086/589986ADSCrossRefGoogle Scholar
  4. 4.
    ALMA Partnership, Brogan, C.L., Pérez, L.M., Hunter, T.R., Dent, W.R.F., Hales, A.S., Hills, R.E., Corder, S., Fomalont, E.B., Vlahakis, C., Asaki, Y., Barkats, D., Hirota, A., Hodge, J.A., Impellizzeri, C.M.V., Kneissl, R., Liuzzo, E., Lucas, R., Marcelino, N., Matsushita, S., Nakanishi, K., Phillips, N., Richards, A.M.S., Toledo, I., Aladro, R., Broguiere, D., Cortes, J.R., Cortes, P.C., Espada, D., Galarza, F., Garcia-Appadoo, D., Guzman-Ramirez, L., Humphreys, E.M., Jung, T., Kameno, S., Laing, R.A., Leon, S., Marconi, G., Mignano, A., Nikolic, B., Nyman, L.A., Radiszcz, M., Remijan, A., Rodón, J.A., Sawada, T., Takahashi, S., Tilanus, R.P.J., Vila Vilaro, B., Watson, L.C., Wiklind, T., Akiyama, E., Chapillon, E., de Gregorio-Monsalvo, I., Di Francesco, J., Gueth, F., Kawamura, A., Lee, C.F., Nguyen Luong, Q., Mangum, J., Pietu, V., Sanhueza, P., Saigo, K., Takakuwa, S., Ubach, C., van Kempen, T., Wootten, A., Castro-Carrizo, A., Francke, H., Gallardo, J., Garcia, J., Gonzalez, S., Hill, T., Kaminski, T., Kurono, Y., Liu, H.Y., Lopez, C., Morales, F., Plarre, K., Schieven, G., Testi, L., Videla, L., Villard, E., Andreani, P., Hibbard, J.E., Tatematsu, K.: The 2014 ALMA Long Baseline Campaign: first results from high angular resolution observations toward the HL Tau region. ApJ  808, L3 (2015).  https://doi.org/10.1088/2041-8205/808/1/L3
  5. 5.
    Andrews, S.M., Williams, J.P.: High-resolution submillimeter constraints on circumstellar disk structure. ApJ 659, 705–728 (2007).  https://doi.org/10.1086/511741ADSCrossRefGoogle Scholar
  6. 6.
    Armitage, P.J.: Astrophysics of Planet Formation (2010)Google Scholar
  7. 7.
    Artymowicz, P.: On the wave excitation and a generalized torque formula for Lindblad resonances excited by external potential. ApJ 419, 155 (1993).  https://doi.org/10.1086/173469ADSCrossRefGoogle Scholar
  8. 8.
    Artymowicz, P.: Dynamics of gaseous disks with planets. In: Caroff, L., Moon, L.J., Backman, D., Praton, E. (eds.) Debris Disks and the Formation of Planets. Astronomical Society of the Pacific Conference Series, vol. 324, p. 39 (2004)Google Scholar
  9. 9.
    Artymowicz, P.: Migration Type III. In: KITP Conference: Planet Formation: Terrestrial and Extra Solar (2004)Google Scholar
  10. 10.
    Artymowicz, P., Lubow, S.H.: Dynamics of binary-disk interaction. 1: Resonances and disk gap sizes. ApJ  421, 651–667 (1994).  https://doi.org/10.1086/173679ADSCrossRefGoogle Scholar
  11. 11.
    Balbus, S.A., Hawley, J.F.: A powerful local shear instability in weakly magnetized disks. I—Linear analysis. II—Nonlinear evolution. ApJ  376, 214–233 (1991).  https://doi.org/10.1086/170270ADSCrossRefGoogle Scholar
  12. 12.
    Balmforth, N.J., Korycansky, D.G.: Non-linear dynamics of the corotation torque. MNRAS 326, 833–851 (2001).  https://doi.org/10.1046/j.1365-8711.2001.04619.xADSCrossRefGoogle Scholar
  13. 13.
    Baraffe, I., Chabrier, G., Fortney, J., Sotin, C.: Planetary Internal Structures. Protostars and Planets VI,  pp. 763–786 (2014).  https://doi.org/10.2458/azu_uapress_9780816531240-ch033Google Scholar
  14. 14.
    Barker, A.J., Ogilvie, G.I.: On the tidal evolution of Hot Jupiters on inclined orbits. MNRAS 395, 2268–2287 (2009).  https://doi.org/10.1111/j.1365-2966.2009.14694.xADSCrossRefGoogle Scholar
  15. 15.
    Baruteau, C., Crida, A., Paardekooper, S.J., Masset, F., Guilet, J., Bitsch, B., Nelson, R., Kley, W., Papaloizou, J.: Planet-Disk Interactions and Early Evolution of Planetary Systems. Protostars and Planets VI,  pp. 667–689 (2014).  https://doi.org/10.2458/azu_uapress_9780816531240-ch029Google Scholar
  16. 16.
    Baruteau, C., Fromang, S., Nelson, R.P., Masset, F.: Corotation torques experienced by planets embedded in weakly magnetized turbulent discs. A&A 533, A84 (2011).  https://doi.org/10.1051/0004-6361/201117227ADSCrossRefGoogle Scholar
  17. 17.
    Baruteau, C., Lin, D.N.C.: Protoplanetary migration in turbulent isothermal disks. ApJ 709, 759–773 (2010).  https://doi.org/10.1088/0004-637X/709/2/759ADSCrossRefGoogle Scholar
  18. 18.
    Baruteau, C., Masset, F.: On the corotation torque in a radiatively inefficient disk. ApJ 672, 1054–1067 (2008).  https://doi.org/10.1086/523667ADSCrossRefGoogle Scholar
  19. 19.
    Baruteau, C., Masset, F.: Type I planetary migration in a self-gravitating disk. ApJ 678, 483–497 (2008).  https://doi.org/10.1086/529487ADSCrossRefGoogle Scholar
  20. 20.
    Baruteau, C., Masset, F.: Recent developments in planet migration theory. In: Souchay, J., Mathis, S., Tokieda, T. (eds.) Lecture Notes in Physics, vol. 861, p. 201. Springer, Berlin (2013).  https://doi.org/10.1007/978-3-642-32961-6_6CrossRefGoogle Scholar
  21. 21.
    Baruteau, C., Meru, F., Paardekooper, S.J.: Rapid inward migration of planets formed by gravitational instability. MNRAS 416, 1971–1982 (2011).  https://doi.org/10.1111/j.1365-2966.2011.19172.xADSCrossRefGoogle Scholar
  22. 22.
    Batygin, K., Morbidelli, A.: Dissipative divergence of resonant orbits. AJ 145, 1 (2013).  https://doi.org/10.1088/0004-6256/145/1/1ADSCrossRefGoogle Scholar
  23. 23.
    Beaugé, C., Ferraz-Mello, S., Michtchenko, T.A.: Extrasolar planets in mean-motion resonance: apses alignment and asymmetric stationary solutions. ApJ 593, 1124–1133 (2003).  https://doi.org/10.1086/376568ADSCrossRefGoogle Scholar
  24. 24.
    Benítez-Llambay, P., Masset, F., Koenigsberger, G., Szulágyi, J.: Planet heating prevents inward migration of planetary cores. Nature 520, 63–65 (2015).  https://doi.org/10.1038/nature14277ADSCrossRefGoogle Scholar
  25. 25.
    Benz, W., Anic, A., Horner, J., Whitby, J.A.: The origin of Mercury. Space Sci. Rev. 132, 189–202 (2007).  https://doi.org/10.1007/s11214-007-9284-1ADSCrossRefGoogle Scholar
  26. 26.
    Benz, W., Asphaug, E.: Impact simulations with fracture. I—Method and tests. Icarus 107, 98 (1994).  https://doi.org/10.1006/icar.1994.1009ADSCrossRefGoogle Scholar
  27. 27.
    Benz, W., Asphaug, E.: Catastrophic disruptions revisited. Icarus 142, 5–20 (1999).  https://doi.org/10.1006/icar.1999.6204ADSCrossRefGoogle Scholar
  28. 28.
    Benz, W., Slattery, W.L., Cameron, A.G.W.: The origin of the moon and the single-impact hypothesis. I. Icarus 66, 515–535 (1986).  https://doi.org/10.1016/0019-1035(86)90088-6ADSCrossRefGoogle Scholar
  29. 29.
    Binney, J., Tremaine, S.: Galactic dynamics (1987)Google Scholar
  30. 30.
    Bitsch, B., Crida, A., Libert, A.S., Lega, E.: Highly inclined and eccentric massive planets. I. Planet-disc interactions. A&A 555, A124 (2013).  https://doi.org/10.1051/0004-6361/201220310ADSCrossRefGoogle Scholar
  31. 31.
    Bitsch, B., Johansen, A., Lambrechts, M., Morbidelli, A.: The structure of protoplanetary discs around evolving young stars. A&A 575, A28 (2015).  https://doi.org/10.1051/0004-6361/201424964ADSCrossRefGoogle Scholar
  32. 32.
    Bitsch, B., Kley, W.: Orbital evolution of eccentric planets in radiative discs. A&A 523, A30 (2010).  https://doi.org/10.1051/0004-6361/201014414ADSCrossRefGoogle Scholar
  33. 33.
    Bitsch, B., Kley, W.: Evolution of inclined planets in three-dimensional radiative discs. A&A 530, A41 (2011).  https://doi.org/10.1051/0004-6361/201016179ADSCrossRefzbMATHGoogle Scholar
  34. 34.
    Bitsch, B., Kley, W.: Range of outward migration and influence of the disc’s mass on the migration of giant planet cores. A&A 536, A77 (2011).  https://doi.org/10.1051/0004-6361/201117202ADSCrossRefGoogle Scholar
  35. 35.
    Blum, J., Wurm, G.: The growth mechanisms of macroscopic bodies in protoplanetary disks. ARA&A 46, 21–56 (2008).  https://doi.org/10.1146/annurev.astro.46.060407.145152ADSCrossRefGoogle Scholar
  36. 36.
    Blum, J., Wurm, G., Kempf, S., Poppe, T., Klahr, H., Kozasa, T., Rott, M., Henning, T., Dorschner, J., Schräpler, R., Keller, H.U., Markiewicz, W.J., Mann, I., Gustafson, B.A., Giovane, F., Neuhaus, D., Fechtig, H., Grün, E., Feuerbacher, B., Kochan, H., Ratke, L., El Goresy, A., Morfill, G., Weidenschilling, S.J., Schwehm, G., Metzler, K., Ip, W.H.: Growth and form of planetary seedlings: results from a microgravity aggregation experiment. Phys. Rev. Lett. 85, 2426 (2000).  https://doi.org/10.1103/PhysRevLett.85.2426ADSCrossRefGoogle Scholar
  37. 37.
    Bodenheimer, P., Hubickyj, O., Lissauer, J.J.: Models of the in situ formation of detected extrasolar giant planets. Icarus 143, 2–14 (2000).  https://doi.org/10.1006/icar.1999.6246ADSCrossRefGoogle Scholar
  38. 38.
    Bodenheimer, P., Pollack, J.B.: Calculations of the accretion and evolution of giant planets: the effects of solid cores. Icarus 67, 391–408 (1986).  https://doi.org/10.1016/0019-1035(86)90122-3ADSCrossRefGoogle Scholar
  39. 39.
    Boley, A.C.: The two modes of gas giant planet formation. ApJ 695, L53–L57 (2009).  https://doi.org/10.1088/0004-637X/695/1/L53ADSCrossRefGoogle Scholar
  40. 40.
    Boss, A.P.: Giant planet formation by gravitational instability. Science 276, 1836–1839 (1997).  https://doi.org/10.1126/science.276.5320.1836ADSCrossRefGoogle Scholar
  41. 41.
    Burke, C.J., Bryson, S.T., Mullally, F., Rowe, J.F., Christiansen, J.L., Thompson, S.E., Coughlin, J.L., Haas, M.R., Batalha, N.M., Caldwell, D.A., Jenkins, J.M., Still, M., Barclay, T., Borucki, W.J., Chaplin, W.J., Ciardi, D.R., Clarke, B.D., Cochran, W.D., Demory, B.O., Esquerdo, G.A., Gautier III, T.N., Gilliland, R.L., Girouard, F.R., Havel, M., Henze, C.E., Howell, S.B., Huber, D., Latham, D.W., Li, J., Morehead, R.C., Morton, T.D., Pepper, J., Quintana, E., Ragozzine, D., Seader, S.E., Shah, Y., Shporer, A., Tenenbaum, P., Twicken, J.D., Wolfgang, A.: Planetary candidates observed by Kepler IV: planet sample from Q1–Q8 (22 months). ApJS 210, 19 (2014).  https://doi.org/10.1088/0067-0049/210/2/19ADSCrossRefGoogle Scholar
  42. 42.
    Cameron, A.G.W.: Physics of the primitive solar accretion disk. Moon Planets 18, 5–40 (1978).  https://doi.org/10.1007/BF00896696ADSCrossRefGoogle Scholar
  43. 43.
    Cassen, P.: Protostellar disks and planet formation. In: Queloz, D., Udry, S., Mayor, M., Benz, W., Cassen, P., Guillot, T., Quirrenbach, A. (eds.) Saas-Fee Advanced Course 31: Extrasolar planets, pp. 369–448 (2006).  https://doi.org/10.1007/978-3-540-31470-7-3
  44. 44.
    Chabrier, G., Johansen, A., Janson, M., Rafikov, R.: Giant Planet and Brown Dwarf Formation. Protostars and Planets VI,  pp. 619–642 (2014).  https://doi.org/10.2458/azu_uapress_9780816531240-ch027Google Scholar
  45. 45.
    Chambers, J.E.: A hybrid symplectic integrator that permits close encounters between massive bodies. MNRAS 304, 793–799 (1999).  https://doi.org/10.1046/j.1365-8711.1999.02379.xADSCrossRefGoogle Scholar
  46. 46.
    Chambers, J.E.: Making more terrestrial planets. Icarus 152, 205–224 (2001).  https://doi.org/10.1006/icar.2001.6639ADSCrossRefGoogle Scholar
  47. 47.
    Chambers, J.E.: Planetary accretion in the inner Solar System. Earth Planet. Sci. Lett. 223, 241–252 (2004).  https://doi.org/10.1016/j.epsl.2004.04.031ADSCrossRefGoogle Scholar
  48. 48.
    Chambers, J.E., Wetherill, G.W.: Making the terrestrial planets: N-body integrations of planetary embryos in three dimensions. Icarus 136, 304–327 (1998).  https://doi.org/10.1006/icar.1998.6007ADSCrossRefGoogle Scholar
  49. 49.
    Chatterjee, S., Ford, E.B.: Planetesimal interactions can explain the mysterious period ratios of small near-resonant planets. ApJ 803, 33 (2015).  https://doi.org/10.1088/0004-637X/803/1/33ADSCrossRefGoogle Scholar
  50. 50.
    Chavez, C.E., Georgakarakos, N., Prodan, S., Reyes-Ruiz, M., Aceves, H., Betancourt, F., Perez-Tijerina, E.: A dynamical stability study of Kepler circumbinary planetary systems with one planet. MNRAS 446, 1283–1292 (2015).  https://doi.org/10.1093/mnras/stu2142ADSCrossRefGoogle Scholar
  51. 51.
    Chiang, E., Laughlin, G.: The minimum-mass extrasolar nebula: in situ formation of close-in super-Earths. MNRAS 431, 3444–3455 (2013).  https://doi.org/10.1093/mnras/stt424ADSCrossRefGoogle Scholar
  52. 52.
    Chiang, E., Youdin, A.N.: Forming planetesimals in solar and extrasolar nebulae. Annu. Rev. Earth Planet. Sci. 38, 493–522 (2010).  https://doi.org/10.1146/annurev-earth-040809-152513ADSCrossRefGoogle Scholar
  53. 53.
    Chiang, E.I., Goldreich, P.: Spectral energy distributions of T Tauri stars with passive circumstellar disks. ApJ 490, 368–376 (1997)ADSCrossRefGoogle Scholar
  54. 54.
    Cochran, W.D., Hatzes, A.P., Butler, R.P., Marcy, G.W.: The discovery of a planetary companion to 16 Cygni B. ApJ 483, 457–463 (1997).  https://doi.org/10.1086/304245ADSCrossRefGoogle Scholar
  55. 55.
    Cossou, C., Raymond, S.N., Hersant, F., Pierens, A.: Hot super-Earths and giant planet cores from different migration histories. A&A 569, A56 (2014).  https://doi.org/10.1051/0004-6361/201424157ADSCrossRefGoogle Scholar
  56. 56.
    Cresswell, P., Dirksen, G., Kley, W., Nelson, R.P.: On the evolution of eccentric and inclined protoplanets embedded in protoplanetary disks. A&A 473, 329–342 (2007).  https://doi.org/10.1051/0004-6361:20077666ADSCrossRefGoogle Scholar
  57. 57.
    Crida, A., Batygin, K.: Spin-orbit angle distribution and the origin of (mis)aligned hot Jupiters. A&A 567, A42 (2014).  https://doi.org/10.1051/0004-6361/201323292ADSCrossRefGoogle Scholar
  58. 58.
    Crida, A., Morbidelli, A., Masset, F.: On the width and shape of gaps in protoplanetary disks. Icarus 181, 587–604 (2006).  https://doi.org/10.1016/j.icarus.2005.10.007ADSCrossRefGoogle Scholar
  59. 59.
    Crida, A., Sándor, Z., Kley, W.: Influence of an inner disc on the orbital evolution of massive planets migrating in resonance. A&A 483, 325–337 (2008).  https://doi.org/10.1051/0004-6361:20079291ADSCrossRefGoogle Scholar
  60. 60.
    D’Angelo, G., Kley, W., Henning, T.: Orbital migration and mass accretion of protoplanets in three-dimensional global computations with nested grids. ApJ 586, 540–561 (2003).  https://doi.org/10.1086/367555ADSCrossRefGoogle Scholar
  61. 61.
    D’Angelo, G., Lubow, S.H.: Three-dimensional disk-planet torques in a locally isothermal disk. ApJ 724, 730–747 (2010).  https://doi.org/10.1088/0004-637X/724/1/730ADSCrossRefGoogle Scholar
  62. 62.
    D’Angelo, G., Lubow, S.H., Bate, M.R.: Evolution of giant planets in eccentric disks. ApJ 652, 1698–1714 (2006).  https://doi.org/10.1086/508451ADSCrossRefGoogle Scholar
  63. 63.
    Demory, B.O., Seager, S.: Lack of inflated radii for Kepler giant planet candidates receiving modest stellar irradiation. ApJS 197, 12 (2011).  https://doi.org/10.1088/0067-0049/197/1/12ADSCrossRefGoogle Scholar
  64. 64.
    Desch, S.J.: Mass distribution and planet formation in the solar nebula. ApJ 671, 878–893 (2007).  https://doi.org/10.1086/522825ADSCrossRefGoogle Scholar
  65. 65.
    Desort, M., Lagrange, A.M., Galland, F., Beust, H., Udry, S., Mayor, M., Lo Curto, G.: Extrasolar planets and brown dwarfs around A-F type stars. V. A planetary system found with HARPS around the F6IV-V star HD 60532. A&A  491, 883–888 (2008).  https://doi.org/10.1051/0004-6361:200810241ADSCrossRefGoogle Scholar
  66. 66.
    Dodson-Robinson, S.E., Veras, D., Ford, E.B., Beichman, C.A.: The formation mechanism of gas giants on wide orbits. ApJ 707, 79–88 (2009).  https://doi.org/10.1088/0004-637X/707/1/79ADSCrossRefGoogle Scholar
  67. 67.
    Dominik, C., Tielens, A.G.G.M.: Resistance to rolling in the adhesive contact of two elastic spheres. Philos. Mag. Part A 72, 783–803 (1995).  https://doi.org/10.1080/01418619508243800ADSCrossRefGoogle Scholar
  68. 68.
    Dominik, C., Tielens, A.G.G.M.: The physics of dust coagulation and the structure of dust aggregates in space. ApJ 480, 647–673 (1997)ADSCrossRefGoogle Scholar
  69. 69.
    Doyle, L.R., Carter, J.A., Fabrycky, D.C., Slawson, R.W., Howell, S.B., Winn, J.N., Orosz, J.A., Prša, A., Welsh, W.F., Quinn, S.N., Latham, D., Torres, G., Buchhave, L.A., Marcy, G.W., Fortney, J.J., Shporer, A., Ford, E.B., Lissauer, J.J., Ragozzine, D., Rucker, M., Batalha, N., Jenkins, J.M., Borucki, W.J., Koch, D., Middour, C.K., Hall, J.R., McCauliff, S., Fanelli, M.N., Quintana, E.V., Holman, M.J., Caldwell, D.A., Still, M., Stefanik, R.P., Brown, W.R., Esquerdo, G.A., Tang, S., Furesz, G., Geary, J.C., Berlind, P., Calkins, M.L., Short, D.R., Steffen, J.H., Sasselov, D., Dunham, E.W., Cochran, W.D., Boss, A., Haas, M.R., Buzasi, D., Fischer, D.: Kepler-16: a transiting circumbinary planet. Science 333, 1602 (2011).  https://doi.org/10.1126/science.1210923ADSCrossRefGoogle Scholar
  70. 70.
    Draine, B.T.: Interstellar dust grains. ARA&A 41, 241–289 (2003).  https://doi.org/10.1146/annurev.astro.41.011802.094840ADSCrossRefGoogle Scholar
  71. 71.
    Dubrovinsky, L., Dubrovinskaia, N., Prakapenka, V.B., Abakumov, A.M.: Implementation of micro-ball nanodiamond anvils for high-pressure studies above 6 Mbar. Nat. Commun. 3, 1163 (2012).  https://doi.org/10.1038/ncomms2160ADSCrossRefGoogle Scholar
  72. 72.
    Duffell, P.C.: A simple analytical model for gaps in protoplanetary disks. ApJ 807, L11 (2015).  https://doi.org/10.1088/2041-8205/807/1/L11ADSCrossRefGoogle Scholar
  73. 73.
    Duffell, P.C., Chiang, E.: Eccentric Jupiters via disk-planet interactions. ApJ 812, 94 (2015).  https://doi.org/10.1088/0004-637X/812/2/94ADSCrossRefGoogle Scholar
  74. 74.
    Duffell, P.C., Haiman, Z., MacFadyen, A.I., D’Orazio, D.J., Farris, B.D.: The migration of gap-opening planets is not locked to viscous disk evolution. ApJ 792, L10 (2014).  https://doi.org/10.1088/2041-8205/792/1/L10ADSCrossRefGoogle Scholar
  75. 75.
    Duffell, P.C., MacFadyen, A.I.: Gap opening by extremely low-mass planets in a viscous disk. ApJ 769, 41 (2013).  https://doi.org/10.1088/0004-637X/769/1/41ADSCrossRefGoogle Scholar
  76. 76.
    Duncan, M.J., Levison, H.F., Lee, M.H.: A multiple time step symplectic algorithm for integrating close encounters. AJ 116, 2067–2077 (1998).  https://doi.org/10.1086/300541ADSCrossRefGoogle Scholar
  77. 77.
    Dunhill, A.C., Alexander, R.D., Armitage, P.J.: A limit on eccentricity growth from global 3D simulations of disc-planet interactions. MNRAS 428, 3072–3082 (2013).  https://doi.org/10.1093/mnras/sts254ADSCrossRefGoogle Scholar
  78. 78.
    Dunhill, A.C., Cuadra, J., Dougados, C.: Precession and accretion in circumbinary discs: the case of HD 104237. MNRAS 448, 3545–3554 (2015).  https://doi.org/10.1093/mnras/stv284ADSCrossRefGoogle Scholar
  79. 79.
    Durisen, R.H., Boss, A.P., Mayer, L., Nelson, A.F., Quinn, T., Rice, W.K.M.: Gravitational Instabilities in Gaseous Protoplanetary Disks and Implications for Giant Planet Formation. Protostars and Planets V,  pp. 607–622 (2007)Google Scholar
  80. 80.
    Dürmann, C., Kley, W.: Migration of massive planets in accreting disks. A&A 574, A52 (2015).  https://doi.org/10.1051/0004-6361/201424837ADSCrossRefGoogle Scholar
  81. 81.
    Dvorak, R., Froeschle, C., Froeschle, C.: Stability of outer planetary orbits (P-types) in binaries. A&A 226, 335–342 (1989)ADSGoogle Scholar
  82. 82.
    Edgar, R.G.: Giant planet migration in viscous power-law disks. ApJ 663, 1325–1334 (2007).  https://doi.org/10.1086/518591ADSCrossRefGoogle Scholar
  83. 83.
    Fabrycky, D., Tremaine, S.: Shrinking binary and planetary orbits by Kozai cycles with tidal friction. ApJ 669, 1298–1315 (2007).  https://doi.org/10.1086/521702ADSCrossRefGoogle Scholar
  84. 84.
    Fabrycky, D.C., Murray-Clay, R.A.: Stability of the directly imaged multiplanet system HR 8799: resonance and masses. ApJ 710, 1408–1421 (2010).  https://doi.org/10.1088/0004-637X/710/2/1408ADSCrossRefGoogle Scholar
  85. 85.
    Fahr, H., Willerding, E.A.: Die Entstehung von Sonnensystemen. Spektrum Akademischer Verlag (1998)Google Scholar
  86. 86.
    Ford, E.B., Rasio, F.A.: Origins of eccentric extrasolar planets: testing the planet-planet scattering model. ApJ 686, 621–636 (2008).  https://doi.org/10.1086/590926ADSCrossRefGoogle Scholar
  87. 87.
    Fortney, J.J., Nettelmann, N.: The interior structure, composition, and evolution of giant planets. Space Sci. Rev. 152, 423–447 (2010).  https://doi.org/10.1007/s11214-009-9582-xADSCrossRefGoogle Scholar
  88. 88.
    Fung, J., Artymowicz, P., Wu, Y.: The 3D flow field around an embedded planet. ApJ 811, 101 (2015).  https://doi.org/10.1088/0004-637X/811/2/101ADSCrossRefGoogle Scholar
  89. 89.
    Fung, J., Shi, J.M., Chiang, E.: How empty are disk gaps opened by giant planets? ApJ 782, 88 (2014).  https://doi.org/10.1088/0004-637X/782/2/88ADSCrossRefGoogle Scholar
  90. 90.
    Gammie, C.F.: Nonlinear outcome of gravitational instability in cooling, gaseous disks. ApJ 553, 174–183 (2001).  https://doi.org/10.1086/320631ADSCrossRefGoogle Scholar
  91. 91.
    Garaud, P., Meru, F., Galvagni, M., Olczak, C.: From dust to planetesimals: an improved model for collisional growth in protoplanetary disks. ApJ 764, 146 (2013).  https://doi.org/10.1088/0004-637X/764/2/146ADSCrossRefGoogle Scholar
  92. 92.
    Geretshauser, R.J., Meru, F., Speith, R., Kley, W.: The four-population model: a new classification scheme for pre-planetesimal collisions. A&A 531, A166 (2011).  https://doi.org/10.1051/0004-6361/201116901ADSCrossRefGoogle Scholar
  93. 93.
    Goldreich, P., Lithwick, Y., Sari, R.: Planet formation by coagulation: a focus on Uranus and Neptune. ARA&A 42, 549–601 (2004).  https://doi.org/10.1146/annurev.astro.42.053102.134004ADSCrossRefGoogle Scholar
  94. 94.
    Goldreich, P., Sari, R.: Eccentricity evolution for planets in gaseous disks. ApJ 585, 1024–1037 (2003).  https://doi.org/10.1086/346202ADSCrossRefGoogle Scholar
  95. 95.
    Goldreich, P., Tremaine, S.: The excitation of density waves at the Lindblad and corotation resonances by an external potential. ApJ 233, 857–871 (1979).  https://doi.org/10.1086/157448ADSMathSciNetCrossRefGoogle Scholar
  96. 96.
    Goldreich, P., Tremaine, S.: Disk-satellite interactions. ApJ 241, 425–441 (1980).  https://doi.org/10.1086/158356ADSMathSciNetCrossRefGoogle Scholar
  97. 97.
    Goldreich, P., Ward, W.R.: The formation of planetesimals. ApJ 183, 1051–1062 (1973).  https://doi.org/10.1086/152291ADSCrossRefGoogle Scholar
  98. 98.
    Goździewski, K., Migaszewski, C.: Multiple mean motion resonances in the HR 8799 planetary system. MNRAS 440, 3140–3171 (2014).  https://doi.org/10.1093/mnras/stu455ADSCrossRefGoogle Scholar
  99. 99.
    Goździewski, K., Migaszewski, C., Panichi, F., Szuszkiewicz, E.: The Laplace resonance in the Kepler-60 planetary system. MNRAS 455, L104–L108 (2016).  https://doi.org/10.1093/mnrasl/slv156ADSCrossRefGoogle Scholar
  100. 100.
    Greenzweig, Y., Lissauer, J.J.: Accretion rates of protoplanets. Icarus 87, 40–77 (1990).  https://doi.org/10.1016/0019-1035(90)90021-ZADSCrossRefGoogle Scholar
  101. 101.
    Guillot, T.: The interiors of giant planets: models and outstanding questions. Annu. Rev. Earth Planet. Sci. 33, 493–530 (2005).  https://doi.org/10.1146/annurev.earth.32.101802.120325ADSCrossRefGoogle Scholar
  102. 102.
    Guillot, T., Gautier, D.: Giant Planets. ArXiv e-prints  (2014)Google Scholar
  103. 103.
    Günther, R., Schäfer, C., Kley, W.: Evolution of irradiated circumbinary disks. A&A 423, 559–566 (2004).  https://doi.org/10.1051/0004-6361:20040223ADSCrossRefGoogle Scholar
  104. 104.
    Güttler, C., Blum, J., Zsom, A., Ormel, C.W., Dullemond, C.P.: The outcome of protoplanetary dust growth: pebbles, boulders, or planetesimals?. I. Mapping the zoo of laboratory collision experiments. A&A  513, A56 (2010).  https://doi.org/10.1051/0004-6361/200912852ADSCrossRefGoogle Scholar
  105. 105.
    Güttler, C., Krause, M., Geretshauser, R.J., Speith, R., Blum, J.: The physics of protoplanetesimal dust agglomerates. IV. Toward a dynamical collision model. ApJ  701, 130–141 (2009).  https://doi.org/10.1088/0004-637X/701/1/130ADSCrossRefGoogle Scholar
  106. 106.
    Haghighipour, N.: The formation and dynamics of super-earth planets. Annu. Rev. Earth Planet. Sci. 41, 469–495 (2013).  https://doi.org/10.1146/annurev-earth-042711-105340ADSCrossRefGoogle Scholar
  107. 107.
    Hamel, J.: Geschichte der Astronomie. Von den Anfängen bis zur Gegenwart (1998)Google Scholar
  108. 108.
    Hansen, B.M.S., Murray, N.: Migration then assembly: formation of Neptune-mass planets inside 1 AU. ApJ 751, 158 (2012).  https://doi.org/10.1088/0004-637X/751/2/158ADSCrossRefGoogle Scholar
  109. 109.
    Hawley, J.F., Balbus, S.A.: A powerful local shear instability in weakly magnetized disks. II. Nonlinear evolution. ApJ 376, 223 (1991).  https://doi.org/10.1086/170271ADSCrossRefGoogle Scholar
  110. 110.
    Hayashi, C.: Structure of the solar nebula, growth and decay of magnetic fields and effects of magnetic and turbulent viscosities on the nebula. Prog. Theor. Phys. Suppl. 70, 35–53 (1981).  https://doi.org/10.1143/PTPS.70.35ADSCrossRefGoogle Scholar
  111. 111.
    Hayes, W., Tremaine, S.: Fitting selected random planetary systems to Titius-Bode laws. Icarus 135, 549–557 (1998).  https://doi.org/10.1006/icar.1998.5999ADSCrossRefGoogle Scholar
  112. 112.
    Heißelmann, D., Blum, J., Fraser, H.J., Wolling, K.: Microgravity experiments on the collisional behavior of saturnian ring particles. Icarus 206, 424–430 (2010).  https://doi.org/10.1016/j.icarus.2009.08.009ADSCrossRefGoogle Scholar
  113. 113.
    Helled, R., Bodenheimer, P., Podolak, M., Boley, A., Meru, F., Nayakshin, S., Fortney, J.J., Mayer, L., Alibert, Y., Boss, A.P.: Giant Planet Formation, Evolution, and Internal Structure. Protostars and Planets VI,  pp. 643–665 (2014).  https://doi.org/10.2458/azu_uapress_9780816531240-ch028Google Scholar
  114. 114.
    Hertz, H.: über die Berührung fester elastischer Körper. J. reine und angewandte Mathematik 94, 156–171 (1882)zbMATHGoogle Scholar
  115. 115.
    Holman, M., Touma, J., Tremaine, S.: Chaotic variations in the eccentricity of the planet orbiting 16 Cygni B. Nature 386, 254–256 (1997).  https://doi.org/10.1038/386254a0ADSCrossRefGoogle Scholar
  116. 116.
    Holman, M.J., Wiegert, P.A.: Long-term stability of planets in binary systems. AJ 117, 621–628 (1999).  https://doi.org/10.1086/300695ADSCrossRefGoogle Scholar
  117. 117.
    Ivanov, P.B., Papaloizou, J.C.B., Polnarev, A.G.: The evolution of a supermassive binary caused by an accretion disc. MNRAS 307, 79–90 (1999).  https://doi.org/10.1046/j.1365-8711.1999.02623.xADSCrossRefGoogle Scholar
  118. 118.
    Jankowski, T., Wurm, G., Kelling, T., Teiser, J., Sabolo, W., Gutiérrez, P.J., Bertini, I.: Crossing barriers in planetesimal formation: the growth of mm-dust aggregates with large constituent grains. A&A 542, A80 (2012).  https://doi.org/10.1051/0004-6361/201218984ADSCrossRefGoogle Scholar
  119. 119.
    Johansen, A., Blum, J., Tanaka, H., Ormel, C., Bizzarro, M., Rickman, H.: The Multifaceted Planetesimal Formation Process. Protostars and Planets VI,  pp. 547–570 (2014).  https://doi.org/10.2458/azu_uapress_9780816531240-ch024Google Scholar
  120. 120.
    Johansen, A., Oishi, J.S., Mac Low, M.M., Klahr, H., Henning, T., Youdin, A.: Rapid planetesimal formation in turbulent circumstellar disks. Nature 448, 1022–1025 (2007).  https://doi.org/10.1038/nature06086ADSCrossRefGoogle Scholar
  121. 121.
    Johnson, K.L., Kendall, K., Roberts, A.D.: Surface energy and the contact of elastic solids. R. Soc. Lond. Proc. Ser. A 324, 301–313 (1971).  https://doi.org/10.1098/rspa.1971.0141ADSCrossRefGoogle Scholar
  122. 122.
    Jurić, M., Tremaine, S.: Dynamical origin of extrasolar planet eccentricity distribution. ApJ 686, 603–620 (2008).  https://doi.org/10.1086/590047ADSCrossRefGoogle Scholar
  123. 123.
    Kanagawa, K.D., Muto, T., Tanaka, H., Tanigawa, T., Takeuchi, T., Tsukagoshi, T., Momose, M.: Mass estimates of a giant planet in a protoplanetary disk from the gap structures. ApJ 806, L15 (2015).  https://doi.org/10.1088/2041-8205/806/1/L15ADSCrossRefGoogle Scholar
  124. 124.
    Kant, I.: Allgemeine Naturgeschichte und Theorie des Himmels (1755)Google Scholar
  125. 125.
    Kippenhahn, R., Weigert, A.: Stellar Structure and Evolution (1990)Google Scholar
  126. 126.
    Kley, W.: Mass flow and accretion through gaps in accretion discs. MNRAS 303, 696–710 (1999).  https://doi.org/10.1046/j.1365-8711.1999.02198.xADSCrossRefGoogle Scholar
  127. 127.
    Kley, W., Bitsch, B., Klahr, H.: Planet migration in three-dimensional radiative discs. A&A 506, 971–987 (2009).  https://doi.org/10.1051/0004-6361/200912072ADSCrossRefzbMATHGoogle Scholar
  128. 128.
    Kley, W., Crida, A.: Migration of protoplanets in radiative discs. A&A 487, L9–L12 (2008).  https://doi.org/10.1051/0004-6361:200810033ADSCrossRefGoogle Scholar
  129. 129.
    Kley, W., Dirksen, G.: Disk eccentricity and embedded planets. A&A 447, 369–377 (2006).  https://doi.org/10.1051/0004-6361:20053914ADSCrossRefGoogle Scholar
  130. 130.
    Kley, W., Haghighipour, N.: Modeling circumbinary planets: the case of Kepler-38. A&A 564, A72 (2014).  https://doi.org/10.1051/0004-6361/201323235ADSCrossRefGoogle Scholar
  131. 131.
    Kley, W., Haghighipour, N.: Evolution of circumbinary planets around eccentric binaries: the case of Kepler-34. A&A 581, A20 (2015).  https://doi.org/10.1051/0004-6361/201526648ADSCrossRefGoogle Scholar
  132. 132.
    Kley, W., Müller, T.W.A., Kolb, S.M., Benítez-Llambay, P., Masset, F.: Low-mass planets in nearly inviscid disks: numerical treatment. A&A 546, A99 (2012).  https://doi.org/10.1051/0004-6361/201219719ADSCrossRefGoogle Scholar
  133. 133.
    Kley, W., Nelson, R.P.: Planet-disk interaction and orbital evolution. ARA&A 50, 211–249 (2012).  https://doi.org/10.1146/annurev-astro-081811-125523ADSCrossRefGoogle Scholar
  134. 134.
    Kley, W., Peitz, J., Bryden, G.: Evolution of planetary systems in resonance. A&A 414, 735–747 (2004).  https://doi.org/10.1051/0004-6361:20031589ADSCrossRefGoogle Scholar
  135. 135.
    Kokubo, E.: Planetary accretion: from planitesimals to protoplanets. In: Schielicke R.E. (ed.) Reviews in Modern Astronomy, vol. 14, p. 117 (2001)Google Scholar
  136. 136.
    Kokubo, E., Ida, S.: Oligarchic growth of protoplanets. Icarus 131, 171–178 (1998).  https://doi.org/10.1006/icar.1997.5840ADSCrossRefGoogle Scholar
  137. 137.
    Kokubo, E., Ida, S.: Formation of protoplanet systems and diversity of planetary systems. ApJ 581, 666–680 (2002).  https://doi.org/10.1086/344105ADSCrossRefGoogle Scholar
  138. 138.
    Kominami, J., Ida, S.: The effect of tidal interaction with a gas disk on formation of terrestrial planets. Icarus 157, 43–56 (2002).  https://doi.org/10.1006/icar.2001.6811ADSCrossRefGoogle Scholar
  139. 139.
    Kozai, Y.: Secular perturbations of asteroids with high inclination and eccentricity. AJ 67, 591 (1962).  https://doi.org/10.1086/108790ADSMathSciNetCrossRefGoogle Scholar
  140. 140.
    Kratter, K.M., Murray-Clay, R.A., Youdin, A.N.: The runts of the litter: why planets formed through gravitational instability can only be failed binary stars. ApJ 710, 1375–1386 (2010).  https://doi.org/10.1088/0004-637X/710/2/1375ADSCrossRefGoogle Scholar
  141. 141.
    Krause, M., Blum, J.: Growth and form of planetary seedlings: results from a sounding rocket microgravity aggregation experiment. Phys. Rev. Lett. 93(2), 021103 (2004).  https://doi.org/10.1103/PhysRevLett.93.021103ADSCrossRefGoogle Scholar
  142. 142.
    Kretke, K.A., Lin, D.N.C.: Grain retention and formation of planetesimals near the snow line in MRI-driven turbulent protoplanetary disks. ApJ 664, L55–L58 (2007).  https://doi.org/10.1086/520718ADSCrossRefGoogle Scholar
  143. 143.
    Kuiper, G.P.: On the origin of the solar system. Proc. Natl. Acad. Sci. 37, 1–14 (1951).  https://doi.org/10.1073/pnas.37.1.1ADSCrossRefGoogle Scholar
  144. 144.
    Lambrechts, M., Johansen, A.: Rapid growth of gas-giant cores by pebble accretion. A&A 544, A32 (2012).  https://doi.org/10.1051/0004-6361/201219127ADSCrossRefGoogle Scholar
  145. 145.
    Laplace, P.S.: Exposition du système du monde (1776)Google Scholar
  146. 146.
    Laughlin, G., Korchagin, V., Adams, F.C.: The dynamics of heavy gaseous disks. ApJ 504, 945–966 (1998).  https://doi.org/10.1086/306117ADSCrossRefGoogle Scholar
  147. 147.
    Laughlin, G., Steinacker, A., Adams, F.C.: Type I planetary migration with MHD turbulence. ApJ 608, 489–496 (2004).  https://doi.org/10.1086/386316ADSCrossRefGoogle Scholar
  148. 148.
    Lee, M.H., Peale, S.J.: Dynamics and origin of the 2:1 orbital resonances of the GJ 876 planets. ApJ 567, 596–609 (2002).  https://doi.org/10.1086/338504ADSCrossRefGoogle Scholar
  149. 149.
    Lega, E., Crida, A., Bitsch, B., Morbidelli, A.: Migration of earth-sized planets in 3D radiative discs. MNRAS 440, 683–695 (2014).  https://doi.org/10.1093/mnras/stu304ADSCrossRefGoogle Scholar
  150. 150.
    Leinhardt, Z.M., Richardson, D.C.: N-body simulations of planetesimal evolution: effect of varying impactor mass ratio. Icarus 159, 306–313 (2002).  https://doi.org/10.1006/icar.2002.6909ADSCrossRefGoogle Scholar
  151. 151.
    Leinhardt, Z.M., Richardson, D.C., Quinn, T.: Direct N-body simulations of rubble pile collisions. Icarus 146, 133–151 (2000).  https://doi.org/10.1006/icar.2000.6370ADSCrossRefGoogle Scholar
  152. 152.
    Leinhardt, Z.M., Stewart, S.T.: Full numerical simulations of catastrophic small body collisions. Icarus 199, 542–559 (2009).  https://doi.org/10.1016/j.icarus.2008.09.013ADSCrossRefGoogle Scholar
  153. 153.
    Li, H., Lubow, S.H., Li, S., Lin, D.N.C.: Type I planet migration in nearly laminar disks. ApJ 690, L52–L55 (2009).  https://doi.org/10.1088/0004-637X/690/1/L52ADSCrossRefGoogle Scholar
  154. 154.
    Lin, C.C., Shu, F.H.: On the spiral structure of disk galaxies. ApJ 140, 646 (1964).  https://doi.org/10.1086/147955ADSMathSciNetCrossRefGoogle Scholar
  155. 155.
    Lin, D.N.C., Bodenheimer, P., Richardson, D.C.: Orbital migration of the planetary companion of 51 Pegasi to its present location. Nature 380, 606–607 (1996).  https://doi.org/10.1038/380606a0ADSCrossRefGoogle Scholar
  156. 156.
    Lin, D.N.C., Papaloizou, J.: Tidal torques on accretion discs in binary systems with extreme mass ratios. MNRAS 186, 799–812 (1979)ADSCrossRefGoogle Scholar
  157. 157.
    Lin, D.N.C., Papaloizou, J.: On the tidal interaction between protoplanets and the protoplanetary disk. III—Orbital migration of protoplanets. ApJ  309, 846–857 (1986).  https://doi.org/10.1086/164653ADSCrossRefGoogle Scholar
  158. 158.
    Lissauer, J.J.: Timescales for planetary accretion and the structure of the protoplanetary disk. Icarus 69, 249–265 (1987).  https://doi.org/10.1016/0019-1035(87)90104-7ADSCrossRefGoogle Scholar
  159. 159.
    Lissauer, J.J.: Planet formation. ARA&A 31, 129–174 (1993).  https://doi.org/10.1146/annurev.aa.31.090193.001021ADSCrossRefGoogle Scholar
  160. 160.
    Lissauer, J.J., Stewart, G.R.: Growth of planets from planetesimals. In: Levy, E.H., Lunine, J.I. (eds.) Protostars and Planets III, pp. 1061–1088 (1993)Google Scholar
  161. 161.
    Lithwick, Y., Wu, Y.: Resonant repulsion of Kepler planet pairs. ApJ 756, L11 (2012).  https://doi.org/10.1088/2041-8205/756/1/L11ADSCrossRefGoogle Scholar
  162. 162.
    Lubow, S.H., Seibert, M., Artymowicz, P.: Disk accretion onto high-mass planets. ApJ 526, 1001–1012 (1999).  https://doi.org/10.1086/308045ADSCrossRefGoogle Scholar
  163. 163.
    Lynden-Bell, D., Pringle, J.E.: The evolution of viscous discs and the origin of the nebular variables. MNRAS 168, 603–637 (1974)ADSCrossRefGoogle Scholar
  164. 164.
    Mac Low, M.M., Klessen, R.S.: Control of star formation by supersonic turbulence. Rev. Mod. Phys. 76, 125–194 (2004).  https://doi.org/10.1103/RevModPhys.76.125ADSCrossRefGoogle Scholar
  165. 165.
    Madhusudhan, N., Lee, K.K.M., Mousis, O.: A possible carbon-rich interior in super-Earth 55 Cancri e. ApJ 759, L40 (2012).  https://doi.org/10.1088/2041-8205/759/2/L40ADSCrossRefGoogle Scholar
  166. 166.
    Marboeuf, U., Thiabaud, A., Alibert, Y., Cabral, N., Benz, W.: From planetesimals to planets: volatile molecules. A&A 570, A36 (2014).  https://doi.org/10.1051/0004-6361/201423431ADSCrossRefGoogle Scholar
  167. 167.
    Marcy, G.W., Butler, R.P., Fischer, D., Vogt, S.S., Lissauer, J.J., Rivera, E.J.: A pair of resonant planets orbiting GJ 876. ApJ 556, 296–301 (2001).  https://doi.org/10.1086/321552ADSCrossRefGoogle Scholar
  168. 168.
    Marcy, G.W., Isaacson, H., Howard, A.W., Rowe, J.F., Jenkins, J.M., Bryson, S.T., Latham, D.W., Howell, S.B., Gautier III, T.N., Batalha, N.M., Rogers, L., Ciardi, D., Fischer, D.A., Gilliland, R.L., Kjeldsen, H., Christensen-Dalsgaard, J., Huber, D., Chaplin, W.J., Basu, S., Buchhave, L.A., Quinn, S.N., Borucki, W.J., Koch, D.G., Hunter, R., Caldwell, D.A., Van Cleve, J., Kolbl, R., Weiss, L.M., Petigura, E., Seager, S., Morton, T., Johnson, J.A., Ballard, S., Burke, C., Cochran, W.D., Endl, M., MacQueen, P., Everett, M.E., Lissauer, J.J., Ford, E.B., Torres, G., Fressin, F., Brown, T.M., Steffen, J.H., Charbonneau, D., Basri, G.S., Sasselov, D.D., Winn, J., Sanchis-Ojeda, R., Christiansen, J., Adams, E., Henze, C., Dupree, A., Fabrycky, D.C., Fortney, J.J., Tarter, J., Holman, M.J., Tenenbaum, P., Shporer, A., Lucas, P.W., Welsh, W.F., Orosz, J.A., Bedding, T.R., Campante, T.L., Davies, G.R., Elsworth, Y., Handberg, R., Hekker, S., Karoff, C., Kawaler, S.D., Lund, M.N., Lundkvist, M., Metcalfe, T.S., Miglio, A., Silva Aguirre, V., Stello, D., White, T.R., Boss, A., Devore, E., Gould, A., Prsa, A., Agol, E., Barclay, T., Coughlin, J., Brugamyer, E., Mullally, F., Quintana, E.V., Still, M., Thompson, S.E., Morrison, D., Twicken, J.D., Désert, J.M., Carter, J., Crepp, J.R., Hébrard, G., Santerne, A., Moutou, C., Sobeck, C., Hudgins, D., Haas, M.R., Robertson, P., Lillo-Box, J., Barrado, D.: Masses, radii, and orbits of small Kepler planets: the transition from gaseous to rocky planets. ApJS  210, 20 (2014).  https://doi.org/10.1088/0067-0049/210/2/20ADSCrossRefGoogle Scholar
  169. 169.
    Marois, C., Macintosh, B., Barman, T., Zuckerman, B., Song, I., Patience, J., Lafrenière, D., Doyon, R.: Direct imaging of multiple planets orbiting the star HR 8799. Science 322, 1348 (2008).  https://doi.org/10.1126/science.1166585ADSCrossRefGoogle Scholar
  170. 170.
    Marois, C., Zuckerman, B., Konopacky, Q.M., Macintosh, B., Barman, T.: Images of a fourth planet orbiting HR 8799. Nature 468, 1080–1083 (2010).  https://doi.org/10.1038/nature09684ADSCrossRefGoogle Scholar
  171. 171.
    Martí, J.G., Giuppone, C.A., Beaugé, C.: Dynamical analysis of the Gliese-876 Laplace resonance. MNRAS 433, 928–934 (2013).  https://doi.org/10.1093/mnras/stt765ADSCrossRefGoogle Scholar
  172. 172.
    Marzari, F., Nelson, A.F.: Interaction of a giant planet in an inclined orbit with a circumstellar disk. ApJ 705, 1575–1583 (2009).  https://doi.org/10.1088/0004-637X/705/2/1575ADSCrossRefGoogle Scholar
  173. 173.
    Marzari, F., Thebault, P., Scholl, H., Picogna, G., Baruteau, C.: Influence of the circumbinary disk gravity on planetesimal accumulation in the Kepler-16 system. A&A 553, A71 (2013).  https://doi.org/10.1051/0004-6361/201220893ADSCrossRefGoogle Scholar
  174. 174.
    Masset, F.: FARGO: a fast eulerian transport algorithm for differentially rotating disks. A&AS 141, 165–173 (2000).  https://doi.org/10.1051/aas:2000116ADSCrossRefGoogle Scholar
  175. 175.
    Masset, F.S.: The co-orbital corotation torque in a viscous disk: numerical simulations. A&A 387, 605–623 (2002).  https://doi.org/10.1051/0004-6361:20020240ADSCrossRefGoogle Scholar
  176. 176.
    Masset, F.S., Casoli, J.: Saturated torque formula for planetary migration in viscous disks with thermal diffusion: recipe for protoplanet population synthesis. ApJ 723, 1393–1417 (2010).  https://doi.org/10.1088/0004-637X/723/2/1393ADSCrossRefGoogle Scholar
  177. 177.
    Masset, F.S., Morbidelli, A., Crida, A., Ferreira, J.: Disk surface density transitions as protoplanet traps. ApJ 642, 478–487 (2006).  https://doi.org/10.1086/500967ADSCrossRefGoogle Scholar
  178. 178.
    Masset, F.S., Papaloizou, J.C.B.: Runaway migration and the formation of Hot Jupiters. ApJ 588, 494–508 (2003).  https://doi.org/10.1086/373892ADSCrossRefGoogle Scholar
  179. 179.
    Mathis, J.S., Rumpl, W., Nordsieck, K.H.: The size distribution of interstellar grains. ApJ 217, 425–433 (1977).  https://doi.org/10.1086/155591ADSCrossRefGoogle Scholar
  180. 180.
    Mayer, L., Quinn, T., Wadsley, J., Stadel, J.: Formation of giant planets by fragmentation of protoplanetary disks. Science 298, 1756–1759 (2002).  https://doi.org/10.1126/science.1077635ADSCrossRefGoogle Scholar
  181. 181.
    Mayer, L., Quinn, T., Wadsley, J., Stadel, J.: The evolution of gravitationally unstable protoplanetary disks: fragmentation and possible giant planet formation. ApJ 609, 1045–1064 (2004).  https://doi.org/10.1086/421288ADSCrossRefGoogle Scholar
  182. 182.
    Mayor, M., Queloz, D.: A Jupiter-mass companion to a solar-type star. Nature 378, 355–359 (1995).  https://doi.org/10.1038/378355a0ADSCrossRefGoogle Scholar
  183. 183.
    McCaughrean, M.J., O’dell, C.R.: Direct imaging of circumstellar disks in the orion nebula. AJ  111, 1977 (1996).  https://doi.org/10.1086/117934ADSCrossRefGoogle Scholar
  184. 184.
    Mejía, A.C., Durisen, R.H., Pickett, M.K., Cai, K.: The thermal regulation of gravitational instabilities in protoplanetary disks. II. Extended simulations with varied cooling rates. ApJ  619, 1098–1113 (2005).  https://doi.org/10.1086/426707ADSCrossRefGoogle Scholar
  185. 185.
    Meru, F., Bate, M.R.: Non-convergence of the critical cooling time-scale for fragmentation of self-gravitating discs. MNRAS 411, L1–L5 (2011).  https://doi.org/10.1111/j.1745-3933.2010.00978.xADSCrossRefGoogle Scholar
  186. 186.
    Meru, F., Bate, M.R.: On the convergence of the critical cooling time-scale for the fragmentation of self-gravitating discs. MNRAS 427, 2022–2046 (2012).  https://doi.org/10.1111/j.1365-2966.2012.22035.xADSCrossRefGoogle Scholar
  187. 187.
    Meschiari, S.: Circumbinary planet formation in the Kepler-16 system. I. N-body simulations. ApJ 752, 71 (2012).  https://doi.org/10.1088/0004-637X/752/1/71ADSCrossRefGoogle Scholar
  188. 188.
    Michael, S., Durisen, R.H., Boley, A.C.: Migration of gas giant planets in gravitationally unstable disks. ApJ 737, L42 (2011).  https://doi.org/10.1088/2041-8205/737/2/L42ADSCrossRefGoogle Scholar
  189. 189.
    Mills, S.M., Fabrycky, D.C., Migaszewski, C., Ford, E.B., Petigura, E., Isaacson, H.: A resonant chain of four transiting, sub-Neptune planets. Nature 533, 509–512 (2016).  https://doi.org/10.1038/nature17445ADSCrossRefGoogle Scholar
  190. 190.
    Mizuno, H.: Formation of the Giant Planets. Prog. Theor. Phys. 64, 544–557 (1980).  https://doi.org/10.1143/PTP.64.544ADSCrossRefGoogle Scholar
  191. 191.
    Mizuno, H., Nakazawa, K., Hayashi, C.: Instability of a gaseous envelope surrounding a planetary core and formation of giant planets. Progr. Theor. Phys. 60, 699–710 (1978).  https://doi.org/10.1143/PTP.60.699ADSCrossRefGoogle Scholar
  192. 192.
    Monaghan, J.J.: Smoothed particle hydrodynamics. Rep. Prog. Phys. 68, 1703–1759 (2005).  https://doi.org/10.1088/0034-4885/68/8/R01ADSMathSciNetCrossRefzbMATHGoogle Scholar
  193. 193.
    Montmerle, T., Augereau, J.C., Chaussidon, M., Gounelle, M., Marty, B., Morbidelli, A.: From Suns to life: a chronological approach to the history of life on Earth 3. Solar system formation and early evolution: the first 100 million years. Earth Moon Planets  98, 39–95 (2006).  https://doi.org/10.1007/s11038-006-9087-5ADSCrossRefGoogle Scholar
  194. 194.
    Morbidelli, A., Lunine, J.I., O’Brien, D.P., Raymond, S.N., Walsh, K.J.: Building terrestrial planets. Annu. Rev. Earth Planet. Sci. 40, 251–275 (2012).  https://doi.org/10.1146/annurev-earth-042711-105319ADSCrossRefGoogle Scholar
  195. 195.
    Mordasini, C., Alibert, Y., Klahr, H., Henning, T.: Characterization of exoplanets from their formation. I. Models of combined planet formation and evolution. A&A  547, A111 (2012).  https://doi.org/10.1051/0004-6361/201118457ADSCrossRefGoogle Scholar
  196. 196.
    Mordasini, C., Mollière, P., Dittkrist, K.M., Jin, S., Alibert, Y.: Global models of planet formation and evolution. Int. J. Astrobiol. 14, 201–232 (2015).  https://doi.org/10.1017/S1473550414000263CrossRefGoogle Scholar
  197. 197.
    Müller, T.W.A., Kley, W., Meru, F.: Treating gravity in thin-disk simulations. A&A 541, A123 (2012).  https://doi.org/10.1051/0004-6361/201118737ADSCrossRefGoogle Scholar
  198. 198.
    Murray, C.D., Dermott, S.F.: Solar system dynamics (1999)Google Scholar
  199. 199.
    Nayakshin, S.: Formation of planets by tidal downsizing of giant planet embryos. MNRAS 408, L36–L40 (2010).  https://doi.org/10.1111/j.1745-3933.2010.00923.xADSCrossRefGoogle Scholar
  200. 200.
    Nelson, R.P.: On the orbital evolution of low mass protoplanets in turbulent, magnetised disks. A&A 443, 1067–1085 (2005).  https://doi.org/10.1051/0004-6361:20042605ADSCrossRefGoogle Scholar
  201. 201.
    Nelson, R.P., Papaloizou, J.C.B.: The interaction of giant planets with a disc with MHD turbulence—IV. Migration rates of embedded protoplanets. MNRAS 350, 849–864 (2004).  https://doi.org/10.1111/j.1365-2966.2004.07406.xADSCrossRefGoogle Scholar
  202. 202.
    Nelson, R.P., Papaloizou, J.C.B., Masset, F., Kley, W.: The migration and growth of protoplanets in protostellar discs. MNRAS 318, 18–36 (2000).  https://doi.org/10.1046/j.1365-8711.2000.03605.xADSCrossRefGoogle Scholar
  203. 203.
    O’Brien, D.P., Morbidelli, A., Levison, H.F.: Terrestrial planet formation with strong dynamical friction. Icarus 184, 39–58 (2006).  https://doi.org/10.1016/j.icarus.2006.04.005ADSCrossRefGoogle Scholar
  204. 204.
    Paardekooper, S.J.: Numerical convergence in self-gravitating shearing sheet simulations and the stochastic nature of disc fragmentation. MNRAS 421, 3286–3299 (2012).  https://doi.org/10.1111/j.1365-2966.2012.20553.xADSCrossRefGoogle Scholar
  205. 205.
    Paardekooper, S.J., Baruteau, C., Crida, A., Kley, W.: A torque formula for non-isothermal type I planetary migration—I. Unsaturated horseshoe drag. MNRAS 401, 1950–1964 (2010).  https://doi.org/10.1111/j.1365-2966.2009.15782.xADSCrossRefGoogle Scholar
  206. 206.
    Paardekooper, S.J., Baruteau, C., Kley, W.: A torque formula for non-isothermal Type I planetary migration—II. Effects of diffusion. MNRAS 410, 293–303 (2011).  https://doi.org/10.1111/j.1365-2966.2010.17442.xADSCrossRefGoogle Scholar
  207. 207.
    Paardekooper, S.J., Leinhardt, Z.M., Thébault, P., Baruteau, C.: How not to build tatooine: the difficulty of in situ formation of circumbinary planets Kepler 16b, Kepler 34b, and Kepler 35b. ApJ 754, L16 (2012).  https://doi.org/10.1088/2041-8205/754/1/L16ADSCrossRefGoogle Scholar
  208. 208.
    Paardekooper, S.J., Mellema, G.: Halting Type I planet migration in non-isothermal disks. A&A 459, L17–L20 (2006).  https://doi.org/10.1051/0004-6361:20066304ADSCrossRefGoogle Scholar
  209. 209.
    Paardekooper, S.J., Papaloizou, J.C.B.: On disc protoplanet interactions in a non-barotropic disc with thermal diffusion. A&A 485, 877–895 (2008).  https://doi.org/10.1051/0004-6361:20078702ADSCrossRefzbMATHGoogle Scholar
  210. 210.
    Paardekooper, S.J., Rein, H., Kley, W.: The formation of systems with closely spaced low-mass planets and the application to Kepler-36. MNRAS 434, 3018–3029 (2013).  https://doi.org/10.1093/mnras/stt1224ADSCrossRefGoogle Scholar
  211. 211.
    Papaloizou, J.C.B., Larwood, J.D.: On the orbital evolution and growth of protoplanets embedded in a gaseous disc. MNRAS 315, 823–833 (2000).  https://doi.org/10.1046/j.1365-8711.2000.03466.xADSCrossRefGoogle Scholar
  212. 212.
    Papaloizou, J.C.B., Nelson, R.P.: Models of accreting gas giant protoplanets in protostellar disks. A&A 433, 247–265 (2005).  https://doi.org/10.1051/0004-6361:20042029ADSCrossRefGoogle Scholar
  213. 213.
    Papaloizou, J.C.B., Nelson, R.P., Kley, W., Masset, F.S., Artymowicz, P.: Disk-Planet Interactions During Planet Formation. Protostars and Planets V,  pp. 655–668 (2007)Google Scholar
  214. 214.
    Papaloizou, J.C.B., Nelson, R.P., Masset, F.: Orbital eccentricity growth through disc-companion tidal interaction. A&A 366, 263–275 (2001).  https://doi.org/10.1051/0004-6361:20000011ADSCrossRefGoogle Scholar
  215. 215.
    Paszun, D., Dominik, C.: Numerical determination of the material properties of porous dust cakes. A&A 484, 859–868 (2008).  https://doi.org/10.1051/0004-6361:20079262ADSCrossRefGoogle Scholar
  216. 216.
    Pepliński, A., Artymowicz, P., Mellema, G.: Numerical simulations of type III planetary migration—II. Inward migration of massive planets. MNRAS 386, 179–198 (2008).  https://doi.org/10.1111/j.1365-2966.2008.13046.xADSCrossRefGoogle Scholar
  217. 217.
    Pepliński, A., Artymowicz, P., Mellema, G.: Numerical simulations of Type III planetary migration—III. Outward migration of massive planets. MNRAS 387, 1063–1079 (2008).  https://doi.org/10.1111/j.1365-2966.2008.13339.xADSCrossRefGoogle Scholar
  218. 218.
    Perri, F., Cameron, A.G.W.: Hydrodynamic instability of the solar nebula in the presence of a planetary core. Icarus 22, 416–425 (1974).  https://doi.org/10.1016/0019-1035(74)90074-8ADSCrossRefGoogle Scholar
  219. 219.
    Perryman, M.: The Exoplanet Handbook (2011)Google Scholar
  220. 220.
    Petigura, E.A., Howard, A.W., Marcy, G.W.: Prevalence of Earth-size planets orbiting Sun-like stars. Proc. Natl. Acad. Sci. 110, 19273–19278 (2013)ADSCrossRefGoogle Scholar
  221. 221.
    Pierens, A., Huré, J.M.: How does disk gravity really influence Type-I migration? A&A 433, L37–L40 (2005).  https://doi.org/10.1051/0004-6361:200500099ADSCrossRefGoogle Scholar
  222. 222.
    Pierens, A., Nelson, R.P.: On the migration of protoplanets embedded in circumbinary disks. A&A 472, 993–1001 (2007).  https://doi.org/10.1051/0004-6361:20077659ADSCrossRefzbMATHGoogle Scholar
  223. 223.
    Pierens, A., Nelson, R.P.: Constraints on resonant-trapping for two planets embedded in a protoplanetary disc. A&A 482, 333–340 (2008).  https://doi.org/10.1051/0004-6361:20079062ADSCrossRefzbMATHGoogle Scholar
  224. 224.
    Pierens, A., Nelson, R.P.: Migration and gas accretion scenarios for the Kepler 16, 34, and 35 circumbinary planets. A&A 556, A134 (2013).  https://doi.org/10.1051/0004-6361/201321777ADSCrossRefGoogle Scholar
  225. 225.
    Pollack, J.B., Hubickyj, O., Bodenheimer, P., Lissauer, J.J., Podolak, M., Greenzweig, Y.: Formation of the giant planets by concurrent accretion of solids and gas. Icarus 124, 62–85 (1996).  https://doi.org/10.1006/icar.1996.0190ADSCrossRefGoogle Scholar
  226. 226.
    Poppe, T., Blum, J., Henning, T.: Analogous experiments on the stickiness of micron-sized preplanetary dust. ApJ 533, 454–471 (2000).  https://doi.org/10.1086/308626ADSCrossRefGoogle Scholar
  227. 227.
    Pringle, J.E.: Accretion discs in astrophysics. ARA&A 19, 137–162 (1981).  https://doi.org/10.1146/annurev.aa.19.090181.001033ADSCrossRefGoogle Scholar
  228. 228.
    Quirrenbach, A.: Detection and characterization of extrasolar planets. In: Queloz, D., Udry, S., Mayor, M., Benz, W., Cassen, P., Guillot, T., Quirrenbach, A. (eds.) Saas-Fee Advanced Course 31: Extrasolar Planets, pp. 1–242 (2006).  https://doi.org/10.1007/978-3-540-31470-7_1
  229. 229.
    Rafikov, R.R.: Planet migration and gap formation by tidally induced shocks. ApJ 572, 566–579 (2002).  https://doi.org/10.1086/340228ADSCrossRefGoogle Scholar
  230. 230.
    Rafikov, R.R.: Can giant planets form by direct gravitational instability? ApJ 621, L69–L72 (2005).  https://doi.org/10.1086/428899ADSCrossRefGoogle Scholar
  231. 231.
    Rauer, H., Catala, C., Aerts, C., Appourchaux, T., Benz, W., Brandeker, A., Christensen-Dalsgaard, J., Deleuil, M., Gizon, L., Goupil, M.J., Güdel, M., Janot-Pacheco, E., Mas-Hesse, M., Pagano, I., Piotto, G., Pollacco, D., Santos, C., Smith, A., Suárez, J.C., Szabó, R., Udry, S., Adibekyan, V., Alibert, Y., Almenara, J.M., Amaro-Seoane, P., Eiff, M.A.v., Asplund, M., Antonello, E., Barnes, S., Baudin, F., Belkacem, K., Bergemann, M., Bihain, G., Birch, A.C., Bonfils, X., Boisse, I., Bonomo, A.S., Borsa, F., Brandão, I.M., Brocato, E., Brun, S., Burleigh, M., Burston, R., Cabrera, J., Cassisi, S., Chaplin, W., Charpinet, S., Chiappini, C., Church, R.P., Csizmadia, S., Cunha, M., Damasso, M., Davies, M.B., Deeg, H.J., Díaz, R.F., Dreizler, S., Dreyer, C., Eggenberger, P., Ehrenreich, D., Eigmüller, P., Erikson, A., Farmer, R., Feltzing, S., de Oliveira Fialho, F., Figueira, P., Forveille, T., Fridlund, M., García, R.A., Giommi, P., Giuffrida, G., Godolt, M., Gomes da Silva, J., Granzer, T., Grenfell, J.L., Grotsch-Noels, A., Günther, E., Haswell, C.A., Hatzes, A.P., Hébrard, G., Hekker, S., Helled, R., Heng, K., Jenkins, J.M., Johansen, A., Khodachenko, M.L., Kislyakova, K.G., Kley, W., Kolb, U., Krivova, N., Kupka, F., Lammer, H., Lanza, A.F., Lebreton, Y., Magrin, D., Marcos-Arenal, P., Marrese, P.M., Marques, J.P., Martins, J., Mathis, S., Mathur, S., Messina, S., Miglio, A., Montalban, J., Montalto, M., Monteiro, M.J.P.F.G., Moradi, H., Moravveji, E., Mordasini, C., Morel, T., Mortier, A., Nascimbeni, V., Nelson, R.P., Nielsen, M.B., Noack, L., Norton, A.J., Ofir, A., Oshagh, M., Ouazzani, R.M., Pápics, P., Parro, V.C., Petit, P., Plez, B., Poretti, E., Quirrenbach, A., Ragazzoni, R., Raimondo, G., Rainer, M., Reese, D.R., Redmer, R., Reffert, S., Rojas-Ayala, B., Roxburgh, I.W., Salmon, S., Santerne, A., Schneider, J., Schou, J., Schuh, S., Schunker, H., Silva-Valio, A., Silvotti, R., Skillen, I., Snellen, I., Sohl, F., Sousa, S.G., Sozzetti, A., Stello, D., Strassmeier, K.G., Švanda, M., Szabó, G.M., Tkachenko, A., Valencia, D., Van Grootel, V., Vauclair, S.D., Ventura, P., Wagner, F.W., Walton, N.A., Weingrill, J., Werner, S.C., Wheatley, P.J., Zwintz, K.: The PLATO 2.0 mission. Exp. Astron.  38, 249–330 (2014).  https://doi.org/10.1007/s10686-014-9383-4ADSCrossRefGoogle Scholar
  232. 232.
    Raymond, S.N., Cossou, C.: No universal minimum-mass extrasolar nebula: evidence against in situ accretion of systems of hot super-Earths. MNRAS 440, L11–L15 (2014).  https://doi.org/10.1093/mnrasl/slu011ADSCrossRefGoogle Scholar
  233. 233.
    Raymond, S.N., Kokubo, E., Morbidelli, A., Morishima, R., Walsh, K.J.: Terrestrial Planet Formation at Home and Abroad. Protostars and Planets VI,  pp. 595–618 (2014).  https://doi.org/10.2458/azu_uapress_9780816531240-ch026Google Scholar
  234. 234.
    Raymond, S.N., O’Brien, D.P., Morbidelli, A., Kaib, N.A.: Building the terrestrial planets: constrained accretion in the inner Solar System. Icarus 203, 644–662 (2009).  https://doi.org/10.1016/j.icarus.2009.05.016ADSCrossRefGoogle Scholar
  235. 235.
    Raymond, S.N., Quinn, T., Lunine, J.I.: Making other earths: dynamical simulations of terrestrial planet formation and water delivery. Icarus 168, 1–17 (2004).  https://doi.org/10.1016/j.icarus.2003.11.019ADSCrossRefGoogle Scholar
  236. 236.
    Raymond, S.N., Quinn, T., Lunine, J.I.: High-resolution simulations of the final assembly of Earth-like planets I. Terrestrial accretion and dynamics. Icarus 183, 265–282 (2006).  https://doi.org/10.1016/j.icarus.2006.03.011ADSCrossRefGoogle Scholar
  237. 237.
    Rein, H.: Period ratios in multiplanetary systems discovered by Kepler are consistent with planet migration. MNRAS 427, L21–L24 (2012).  https://doi.org/10.1111/j.1745-3933.2012.01337.xADSCrossRefGoogle Scholar
  238. 238.
    Rein, H.: Planet-disc interaction in highly inclined systems. MNRAS 422, 3611–3616 (2012).  https://doi.org/10.1111/j.1365-2966.2012.20869.xADSCrossRefGoogle Scholar
  239. 239.
    Rein, H., Liu, S.F.: REBOUND: an open-source multi-purpose N-body code for collisional dynamics. A&A 537, A128 (2012).  https://doi.org/10.1051/0004-6361/201118085ADSCrossRefGoogle Scholar
  240. 240.
    Rice, W.K.M., Armitage, P.J., Bate, M.R., Bonnell, I.A.: The effect of cooling on the global stability of self-gravitating protoplanetary discs. MNRAS 339, 1025–1030 (2003).  https://doi.org/10.1046/j.1365-8711.2003.06253.xADSCrossRefGoogle Scholar
  241. 241.
    Rice, W.K.M., Lodato, G., Pringle, J.E., Armitage, P.J., Bonnell, I.A.: Planetesimal formation via fragmentation in self-gravitating protoplanetary discs. MNRAS 372, L9–L13 (2006).  https://doi.org/10.1111/j.1745-3933.2006.00215.xADSCrossRefGoogle Scholar
  242. 242.
    Rice, W.K.M., Paardekooper, S.J., Forgan, D.H., Armitage, P.J.: Convergence of simulations of self-gravitating accretion discs—II. Sensitivity to the implementation of radiative cooling and artificial viscosity. MNRAS  438, 1593–1602 (2014).  https://doi.org/10.1093/mnras/stt2297ADSCrossRefGoogle Scholar
  243. 243.
    Ricker, G.R., Winn, J.N., Vanderspek, R., Latham, D.W., Bakos, G.Á., Bean, J.L., Berta-Thompson, Z.K., Brown, T.M., Buchhave, L., Butler, N.R., Butler, R.P., Chaplin, W.J., Charbonneau, D., Christensen-Dalsgaard, J., Clampin, M., Deming, D., Doty, J., De Lee, N., Dressing, C., Dunham, E.W., Endl, M., Fressin, F., Ge, J., Henning, T., Holman, M.J., Howard, A.W., Ida, S., Jenkins, J.M., Jernigan, G., Johnson, J.A., Kaltenegger, L., Kawai, N., Kjeldsen, H., Laughlin, G., Levine, A.M., Lin, D., Lissauer, J.J., MacQueen, P., Marcy, G., McCullough, P.R., Morton, T.D., Narita, N., Paegert, M., Palle, E., Pepe, F., Pepper, J., Quirrenbach, A., Rinehart, S.A., Sasselov, D., Sato, B., Seager, S., Sozzetti, A., Stassun, K.G., Sullivan, P., Szentgyorgyi, A., Torres, G., Udry, S., Villasenor, J.: Transiting exoplanet survey satellite (TESS). J. Astron. Telesc. Instrum. Syst. 1(1), 014003 (2015).  https://doi.org/10.1117/1.JATIS.1.1.014003ADSCrossRefGoogle Scholar
  244. 244.
    Rivera, E.J., Laughlin, G., Butler, R.P., Vogt, S.S., Haghighipour, N., Meschiari, S.: The Lick-Carnegie exoplanet survey: a Uranus-Mass fourth planet for GJ 876 in an extrasolar Laplace configuration. ApJ 719, 890–899 (2010).  https://doi.org/10.1088/0004-637X/719/1/890ADSCrossRefGoogle Scholar
  245. 245.
    Safronov, V.S.: Evolution of the protoplanetary cloud and formation of the earth and planets (1972)Google Scholar
  246. 246.
    Sándor, Z., Kley, W., Klagyivik, P.: Stability and formation of the resonant system HD 73526. A&A 472, 981–992 (2007).  https://doi.org/10.1051/0004-6361:20077345ADSCrossRefGoogle Scholar
  247. 247.
    Saumon, D., Guillot, T.: Shock compression of deuterium and the interiors of Jupiter and Saturn. ApJ 609, 1170–1180 (2004).  https://doi.org/10.1086/421257ADSCrossRefGoogle Scholar
  248. 248.
    Schlichting, H.E., Fuentes, C.I., Trilling, D.E.: Initial planetesimal sizes and the size distribution of small Kuiper belt objects. AJ 146, 36 (2013).  https://doi.org/10.1088/0004-6256/146/2/36ADSCrossRefGoogle Scholar
  249. 249.
    Scholl, H., Marzari, F., Thébault, P.: Relative velocities among accreting planetesimals in binary systems: the circumbinary case. MNRAS 380, 1119–1126 (2007).  https://doi.org/10.1111/j.1365-2966.2007.12145.xADSCrossRefGoogle Scholar
  250. 250.
    Seizinger, A., Kley, W.: Bouncing behavior of microscopic dust aggregates. A&A 551, A65 (2013).  https://doi.org/10.1051/0004-6361/201220946ADSCrossRefGoogle Scholar
  251. 251.
    Seizinger, A., Speith, R., Kley, W.: Compression behavior of porous dust agglomerates. A&A 541, A59 (2012).  https://doi.org/10.1051/0004-6361/201218855ADSCrossRefGoogle Scholar
  252. 252.
    Shen, Y., Turner, E.L.: On the eccentricity distribution of exoplanets from radial velocity surveys. ApJ 685, 553–559 (2008).  https://doi.org/10.1086/590548ADSCrossRefGoogle Scholar
  253. 253.
    Shu, F.H.: The physics of astrophysics. Volume II: Gas dynamics (1992)Google Scholar
  254. 254.
    Silburt, A., Rein, H.: Tides alone cannot explain Kepler planets close to 2:1 MMR. MNRAS 453, 4089–4096 (2015).  https://doi.org/10.1093/mnras/stv1924ADSCrossRefGoogle Scholar
  255. 255.
    Spiegel, D.S., Burrows, A.: Spectral and photometric diagnostics of giant planet formation scenarios. ApJ 745, 174 (2012).  https://doi.org/10.1088/0004-637X/745/2/174ADSCrossRefGoogle Scholar
  256. 256.
    Stevenson, D.J.: Formation of the giant planets. Planet. Space Sci. 30, 755–764 (1982).  https://doi.org/10.1016/0032-0633(82)90108-8ADSCrossRefGoogle Scholar
  257. 257.
    Stewart, S.T., Leinhardt, Z.M.: Velocity-dependent catastrophic disruption criteria for planetesimals. ApJ 691, L133–L137 (2009).  https://doi.org/10.1088/0004-637X/691/2/L133ADSCrossRefGoogle Scholar
  258. 258.
    Syer, D., Clarke, C.J.: Satellites in discs: regulating the accretion luminosity. MNRAS 277, 758–766 (1995).  https://doi.org/10.1093/mnras/277.3.758ADSCrossRefGoogle Scholar
  259. 259.
    Szulágyi, J., Morbidelli, A., Crida, A., Masset, F.: Accretion of Jupiter-Mass planets in the limit of vanishing viscosity. ApJ 782, 65 (2014).  https://doi.org/10.1088/0004-637X/782/2/65ADSCrossRefGoogle Scholar
  260. 260.
    Tanaka, H., Takeuchi, T., Ward, W.R.: Three-dimensional interaction between a planet and an isothermal gaseous disk. I. Corotation and lindblad torques and planet migration. ApJ  565, 1257–1274 (2002).  https://doi.org/10.1086/324713ADSCrossRefGoogle Scholar
  261. 261.
    Tanaka, H., Ward, W.R.: Three-dimensional Interaction between a planet and an isothermal gaseous disk. II. Eccentricity waves and bending waves. ApJ  602, 388–395 (2004).  https://doi.org/10.1086/380992ADSCrossRefGoogle Scholar
  262. 262.
    Thommes, E.W., Duncan, M.J., Levison, H.F.: Oligarchic growth of giant planets. Icarus 161, 431–455 (2003).  https://doi.org/10.1016/S0019-1035(02)00043-XADSCrossRefGoogle Scholar
  263. 263.
    Toomre, A.: On the gravitational stability of a disk of stars. ApJ 139, 1217–1238 (1964).  https://doi.org/10.1086/147861ADSCrossRefGoogle Scholar
  264. 264.
    Tsukamoto, Y., Machida, M.N., Inutsuka, S.i.: Formation, orbital and thermal evolution, and survival of planetary-mass clumps in the early phase of circumstellar disc evolution. MNRAS  436, 1667–1673 (2013).  https://doi.org/10.1093/mnras/stt1684ADSCrossRefGoogle Scholar
  265. 265.
    Udry, S., Santos, N.C.: Statistical properties of exoplanets. ARA&A 45, 397–439 (2007).  https://doi.org/10.1146/annurev.astro.45.051806.110529ADSCrossRefGoogle Scholar
  266. 266.
    Uribe, A.L., Klahr, H., Flock, M., Henning, T.: Three-dimensional magnetohydrodynamic simulations of planet migration in turbulent stratified disks. ApJ 736, 85 (2011).  https://doi.org/10.1088/0004-637X/736/2/85ADSCrossRefGoogle Scholar
  267. 267.
    Vogt, S.S., Butler, R.P., Marcy, G.W., Fischer, D.A., Henry, G.W., Laughlin, G., Wright, J.T., Johnson, J.A.: Five new multicomponent planetary systems. ApJ 632, 638–658 (2005).  https://doi.org/10.1086/432901ADSCrossRefGoogle Scholar
  268. 268.
    Vorobyov, E.I.: Formation of giant planets and brown dwarfs on wide orbits. A&A 552, A129 (2013).  https://doi.org/10.1051/0004-6361/201220601ADSCrossRefGoogle Scholar
  269. 269.
    Vorobyov, E.I., Basu, S.: The burst mode of protostellar accretion. ApJ 650, 956–969 (2006).  https://doi.org/10.1086/507320ADSCrossRefGoogle Scholar
  270. 270.
    Vorobyov, E.I., Basu, S.: Formation and survivability of giant planets on wide orbits. ApJ 714, L133–L137 (2010).  https://doi.org/10.1088/2041-8205/714/1/L133ADSCrossRefGoogle Scholar
  271. 271.
    Wada, K., Tanaka, H., Suyama, T., Kimura, H., Yamamoto, T.: Numerical simulation of dust aggregate collisions. I. Compression and disruption of two-dimensional aggregates. ApJ  661, 320–333 (2007).  https://doi.org/10.1086/514332ADSCrossRefGoogle Scholar
  272. 272.
    Wada, K., Tanaka, H., Suyama, T., Kimura, H., Yamamoto, T.: Collisional growth conditions for dust aggregates. ApJ 702, 1490–1501 (2009).  https://doi.org/10.1088/0004-637X/702/2/1490ADSCrossRefGoogle Scholar
  273. 273.
    Wada, K., Tanaka, H., Suyama, T., Kimura, H., Yamamoto, T.: The rebound condition of dust aggregates revealed by numerical simulation of their collisions. ApJ 737, 36 (2011).  https://doi.org/10.1088/0004-637X/737/1/36ADSCrossRefGoogle Scholar
  274. 274.
    Walsh, K.J., Morbidelli, A., Raymond, S.N., O’Brien, D.P., Mandell, A.M.: A low mass for Mars from Jupiter’s early gas-driven migration. Nature 475, 206–209 (2011).  https://doi.org/10.1038/nature10201ADSCrossRefGoogle Scholar
  275. 275.
    Ward, W.R.: Horsehoe orbit drag. In: Lunar and Planetary Science Conference, vol. 22, p. 1463 (1991)Google Scholar
  276. 276.
    Ward, W.R.: Protoplanet migration by nebula tides. Icarus 126, 261–281 (1997).  https://doi.org/10.1006/icar.1996.5647ADSCrossRefGoogle Scholar
  277. 277.
    Ward, W.R.: On Type III Protoplanet Migration. AGU Fall Meeting Abstracts  (2004)Google Scholar
  278. 278.
    Weidenschilling, S.J.: Aerodynamics of solid bodies in the solar nebula. MNRAS 180, 57–70 (1977)ADSCrossRefGoogle Scholar
  279. 279.
    Weidenschilling, S.J.: The distribution of mass in the planetary system and solar nebula. Ap&SS 51, 153–158 (1977).  https://doi.org/10.1007/BF00642464ADSCrossRefGoogle Scholar
  280. 280.
    Weidenschilling, S.J., Cuzzi, J.N.: Formation of planetesimals in the solar nebula. In: Levy, E.H., Lunine J.I., (eds.) Protostars and Planets III, pp. 1031–1060 (1993)Google Scholar
  281. 281.
    Weidenschilling, S.J., Spaute, D., Davis, D.R., Marzari, F., Ohtsuki, K.: Accretional evolution of a planetesimal swarm. Icarus 128, 429–455 (1997).  https://doi.org/10.1006/icar.1997.5747ADSCrossRefGoogle Scholar
  282. 282.
    Weidling, R., Güttler, C., Blum, J.: Free collisions in a microgravity many-particle experiment. I. Dust aggregate sticking at low velocities. Icarus  218, 688–700 (2012).  https://doi.org/10.1016/j.icarus.2011.10.002ADSCrossRefGoogle Scholar
  283. 283.
    Weidling, R., Güttler, C., Blum, J., Brauer, F.: The physics of protoplanetesimal dust agglomerates. III. Compaction in multiple collisions. ApJ 696, 2036–2043 (2009).  https://doi.org/10.1088/0004-637X/696/2/2036ADSCrossRefGoogle Scholar
  284. 284.
    Weizsäcker, C.F.von: Über die Entstehung des Planetensystems. Mit 2 Abbildungen. ZAp  22, 319 (1943)Google Scholar
  285. 285.
    Wetherill, G.W., Stewart, G.R.: Formation of planetary embryos—effects of fragmentation, low relative velocity, and independent variation of eccentricity and inclination. Icarus 106, 190 (1993).  https://doi.org/10.1006/icar.1993.1166ADSCrossRefGoogle Scholar
  286. 286.
    Williams, J.P., Cieza, L.A.: Protoplanetary disks and their evolution. ARA&A 49, 67–117 (2011).  https://doi.org/10.1146/annurev-astro-081710-102548ADSCrossRefGoogle Scholar
  287. 287.
    Windmark, F., Birnstiel, T., Güttler, C., Blum, J., Dullemond, C.P., Henning, T.: Planetesimal formation by sweep-up: how the bouncing barrier can be beneficial to growth. A&A 540, A73 (2012).  https://doi.org/10.1051/0004-6361/201118475ADSCrossRefGoogle Scholar
  288. 288.
    Windmark, F., Birnstiel, T., Ormel, C.W., Dullemond, C.P.: Breaking through: the effects of a velocity distribution on barriers to dust growth. A&A 544, L16 (2012).  https://doi.org/10.1051/0004-6361/201220004ADSCrossRefGoogle Scholar
  289. 289.
    Winn, J.N., Fabrycky, D., Albrecht, S., Johnson, J.A.: Hot stars with Hot Jupiters have high obliquities. ApJ 718, L145–L149 (2010).  https://doi.org/10.1088/2041-8205/718/2/L145ADSCrossRefGoogle Scholar
  290. 290.
    Winn, J.N., Fabrycky, D.C.: The occurrence and architecture of exoplanetary systems. ARA&A 53, 409–447 (2015).  https://doi.org/10.1146/annurev-astro-082214-122246ADSCrossRefGoogle Scholar
  291. 291.
    Woolfson, M.M.: The Origin and Evolution of the Solar System. The Institute of Physics Publishing (2000)Google Scholar
  292. 292.
    Wu, Y., Murray, N.: Planet migration and binary companions: the case of HD 80606b. ApJ 589, 605–614 (2003).  https://doi.org/10.1086/374598ADSCrossRefGoogle Scholar
  293. 293.
    Wurm, G., Blum, J., Colwell, J.E.: NOTE: a new mechanism relevant to the formation of planetesimals in the solar nebula. Icarus 151, 318–321 (2001).  https://doi.org/10.1006/icar.2001.6620ADSCrossRefGoogle Scholar
  294. 294.
    Wurm, G., Paraskov, G., Krauss, O.: Growth of planetesimals by impacts at 25 m/s. Icarus 178, 253–263 (2005).  https://doi.org/10.1016/j.icarus.2005.04.002ADSCrossRefGoogle Scholar
  295. 295.
    Xiang-Gruess, M., Papaloizou, J.C.B.: Interaction between massive planets on inclined orbits and circumstellar discs. MNRAS 431, 1320–1336 (2013).  https://doi.org/10.1093/mnras/stt254ADSCrossRefGoogle Scholar
  296. 296.
    Youdin, A.N.: From grains to planetesimals. In: Montmerle, T., Ehrenreich, D., Lagrange, A.M. (eds.) EAS Publications Series. EAS Publications Series, vol. 41, pp. 187–207 (2010).  https://doi.org/10.1051/eas/1041016CrossRefGoogle Scholar
  297. 297.
    Youdin, A.N., Goodman, J.: Streaming instabilities in protoplanetary disks. ApJ 620, 459–469 (2005).  https://doi.org/10.1086/426895ADSCrossRefGoogle Scholar
  298. 298.
    Zhu, Z., Hartmann, L., Nelson, R.P., Gammie, C.F.: Challenges in forming planets by gravitational instability: disk irradiation and clump migration, accretion, and tidal destruction. ApJ 746, 110 (2012).  https://doi.org/10.1088/0004-637X/746/1/110ADSCrossRefGoogle Scholar
  299. 299.
    Zsom, A., Ormel, C.W., Güttler, C., Blum, J., Dullemond, C.P.: The outcome of protoplanetary dust growth: pebbles, boulders, or planetesimals? II. Introducing the bouncing barrier. A&A 513, A57 (2010).  https://doi.org/10.1051/0004-6361/200912976ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Astronomy & AstrophysicsUniversität TübingenTübingenGermany

Personalised recommendations