From Protoplanetary Disks to Planet Formation pp 151-260 | Cite as
Planet Formation and Disk-Planet Interactions
Abstract
This review is based on lectures given at the 45th Saas-Fee Advanced Course “From Protoplanetary Disks to Planet Formation” held in March 2015 in Les Diablerets, Switzerland. Starting with an overview of the main characterictics of the Solar System and the extrasolar planets, we describe the planet formation process in terms of the sequential accretion scenario. First the growth processes of dust particles to planetesimals and subsequently to terrestrial planets or planetary cores are presented. This is followed by the formation process of the giant planets either by core accretion or gravitational instability. Finally, the dynamical evolution of the orbital elements as driven by disk-planet interaction and the overall evolution of multi-object systems is presented.
Notes
Acknowledgements
This text is based on a series of lectures on the topic Planet formation and disk-planet interactions given at the 45th “Saas-Fee Advanced Course” of the Swiss Society for Astrophysics and Astronomy (SSAA) held in Les Diablerets in March 2015. I acknowledge generous support from the SSAA, and would like to thank the organisers (Marc Audard, Yann Alibert and, Michael R. Meyer, Martine Logossou) for providing such a nice and stimulating atmosphere. I thank Giovanni Picogna for a reading of the manuscript.
References
- 1.Aarseth, S.J.: From NBODY1 to NBODY6: the growth of an industry. PASP 111, 1333–1346 (1999). https://doi.org/10.1086/316455ADSCrossRefGoogle Scholar
- 2.Adams, F.C., Laughlin, G.: Migration and dynamical relaxation in crowded systems of giant planets. Icarus 163, 290–306 (2003). https://doi.org/10.1016/S0019-1035(03)00081-2ADSCrossRefGoogle Scholar
- 3.Adams, F.C., Laughlin, G., Bloch, A.M.: Turbulence implies that mean motion resonances are rare. ApJ 683, 1117–1128 (2008). https://doi.org/10.1086/589986ADSCrossRefGoogle Scholar
- 4.ALMA Partnership, Brogan, C.L., Pérez, L.M., Hunter, T.R., Dent, W.R.F., Hales, A.S., Hills, R.E., Corder, S., Fomalont, E.B., Vlahakis, C., Asaki, Y., Barkats, D., Hirota, A., Hodge, J.A., Impellizzeri, C.M.V., Kneissl, R., Liuzzo, E., Lucas, R., Marcelino, N., Matsushita, S., Nakanishi, K., Phillips, N., Richards, A.M.S., Toledo, I., Aladro, R., Broguiere, D., Cortes, J.R., Cortes, P.C., Espada, D., Galarza, F., Garcia-Appadoo, D., Guzman-Ramirez, L., Humphreys, E.M., Jung, T., Kameno, S., Laing, R.A., Leon, S., Marconi, G., Mignano, A., Nikolic, B., Nyman, L.A., Radiszcz, M., Remijan, A., Rodón, J.A., Sawada, T., Takahashi, S., Tilanus, R.P.J., Vila Vilaro, B., Watson, L.C., Wiklind, T., Akiyama, E., Chapillon, E., de Gregorio-Monsalvo, I., Di Francesco, J., Gueth, F., Kawamura, A., Lee, C.F., Nguyen Luong, Q., Mangum, J., Pietu, V., Sanhueza, P., Saigo, K., Takakuwa, S., Ubach, C., van Kempen, T., Wootten, A., Castro-Carrizo, A., Francke, H., Gallardo, J., Garcia, J., Gonzalez, S., Hill, T., Kaminski, T., Kurono, Y., Liu, H.Y., Lopez, C., Morales, F., Plarre, K., Schieven, G., Testi, L., Videla, L., Villard, E., Andreani, P., Hibbard, J.E., Tatematsu, K.: The 2014 ALMA Long Baseline Campaign: first results from high angular resolution observations toward the HL Tau region. ApJ 808, L3 (2015). https://doi.org/10.1088/2041-8205/808/1/L3
- 5.Andrews, S.M., Williams, J.P.: High-resolution submillimeter constraints on circumstellar disk structure. ApJ 659, 705–728 (2007). https://doi.org/10.1086/511741ADSCrossRefGoogle Scholar
- 6.Armitage, P.J.: Astrophysics of Planet Formation (2010)Google Scholar
- 7.Artymowicz, P.: On the wave excitation and a generalized torque formula for Lindblad resonances excited by external potential. ApJ 419, 155 (1993). https://doi.org/10.1086/173469ADSCrossRefGoogle Scholar
- 8.Artymowicz, P.: Dynamics of gaseous disks with planets. In: Caroff, L., Moon, L.J., Backman, D., Praton, E. (eds.) Debris Disks and the Formation of Planets. Astronomical Society of the Pacific Conference Series, vol. 324, p. 39 (2004)Google Scholar
- 9.Artymowicz, P.: Migration Type III. In: KITP Conference: Planet Formation: Terrestrial and Extra Solar (2004)Google Scholar
- 10.Artymowicz, P., Lubow, S.H.: Dynamics of binary-disk interaction. 1: Resonances and disk gap sizes. ApJ 421, 651–667 (1994). https://doi.org/10.1086/173679ADSCrossRefGoogle Scholar
- 11.Balbus, S.A., Hawley, J.F.: A powerful local shear instability in weakly magnetized disks. I—Linear analysis. II—Nonlinear evolution. ApJ 376, 214–233 (1991). https://doi.org/10.1086/170270ADSCrossRefGoogle Scholar
- 12.Balmforth, N.J., Korycansky, D.G.: Non-linear dynamics of the corotation torque. MNRAS 326, 833–851 (2001). https://doi.org/10.1046/j.1365-8711.2001.04619.xADSCrossRefGoogle Scholar
- 13.Baraffe, I., Chabrier, G., Fortney, J., Sotin, C.: Planetary Internal Structures. Protostars and Planets VI, pp. 763–786 (2014). https://doi.org/10.2458/azu_uapress_9780816531240-ch033Google Scholar
- 14.Barker, A.J., Ogilvie, G.I.: On the tidal evolution of Hot Jupiters on inclined orbits. MNRAS 395, 2268–2287 (2009). https://doi.org/10.1111/j.1365-2966.2009.14694.xADSCrossRefGoogle Scholar
- 15.Baruteau, C., Crida, A., Paardekooper, S.J., Masset, F., Guilet, J., Bitsch, B., Nelson, R., Kley, W., Papaloizou, J.: Planet-Disk Interactions and Early Evolution of Planetary Systems. Protostars and Planets VI, pp. 667–689 (2014). https://doi.org/10.2458/azu_uapress_9780816531240-ch029Google Scholar
- 16.Baruteau, C., Fromang, S., Nelson, R.P., Masset, F.: Corotation torques experienced by planets embedded in weakly magnetized turbulent discs. A&A 533, A84 (2011). https://doi.org/10.1051/0004-6361/201117227ADSCrossRefGoogle Scholar
- 17.Baruteau, C., Lin, D.N.C.: Protoplanetary migration in turbulent isothermal disks. ApJ 709, 759–773 (2010). https://doi.org/10.1088/0004-637X/709/2/759ADSCrossRefGoogle Scholar
- 18.Baruteau, C., Masset, F.: On the corotation torque in a radiatively inefficient disk. ApJ 672, 1054–1067 (2008). https://doi.org/10.1086/523667ADSCrossRefGoogle Scholar
- 19.Baruteau, C., Masset, F.: Type I planetary migration in a self-gravitating disk. ApJ 678, 483–497 (2008). https://doi.org/10.1086/529487ADSCrossRefGoogle Scholar
- 20.Baruteau, C., Masset, F.: Recent developments in planet migration theory. In: Souchay, J., Mathis, S., Tokieda, T. (eds.) Lecture Notes in Physics, vol. 861, p. 201. Springer, Berlin (2013). https://doi.org/10.1007/978-3-642-32961-6_6CrossRefGoogle Scholar
- 21.Baruteau, C., Meru, F., Paardekooper, S.J.: Rapid inward migration of planets formed by gravitational instability. MNRAS 416, 1971–1982 (2011). https://doi.org/10.1111/j.1365-2966.2011.19172.xADSCrossRefGoogle Scholar
- 22.Batygin, K., Morbidelli, A.: Dissipative divergence of resonant orbits. AJ 145, 1 (2013). https://doi.org/10.1088/0004-6256/145/1/1ADSCrossRefGoogle Scholar
- 23.Beaugé, C., Ferraz-Mello, S., Michtchenko, T.A.: Extrasolar planets in mean-motion resonance: apses alignment and asymmetric stationary solutions. ApJ 593, 1124–1133 (2003). https://doi.org/10.1086/376568ADSCrossRefGoogle Scholar
- 24.Benítez-Llambay, P., Masset, F., Koenigsberger, G., Szulágyi, J.: Planet heating prevents inward migration of planetary cores. Nature 520, 63–65 (2015). https://doi.org/10.1038/nature14277ADSCrossRefGoogle Scholar
- 25.Benz, W., Anic, A., Horner, J., Whitby, J.A.: The origin of Mercury. Space Sci. Rev. 132, 189–202 (2007). https://doi.org/10.1007/s11214-007-9284-1ADSCrossRefGoogle Scholar
- 26.Benz, W., Asphaug, E.: Impact simulations with fracture. I—Method and tests. Icarus 107, 98 (1994). https://doi.org/10.1006/icar.1994.1009ADSCrossRefGoogle Scholar
- 27.Benz, W., Asphaug, E.: Catastrophic disruptions revisited. Icarus 142, 5–20 (1999). https://doi.org/10.1006/icar.1999.6204ADSCrossRefGoogle Scholar
- 28.Benz, W., Slattery, W.L., Cameron, A.G.W.: The origin of the moon and the single-impact hypothesis. I. Icarus 66, 515–535 (1986). https://doi.org/10.1016/0019-1035(86)90088-6ADSCrossRefGoogle Scholar
- 29.Binney, J., Tremaine, S.: Galactic dynamics (1987)Google Scholar
- 30.Bitsch, B., Crida, A., Libert, A.S., Lega, E.: Highly inclined and eccentric massive planets. I. Planet-disc interactions. A&A 555, A124 (2013). https://doi.org/10.1051/0004-6361/201220310ADSCrossRefGoogle Scholar
- 31.Bitsch, B., Johansen, A., Lambrechts, M., Morbidelli, A.: The structure of protoplanetary discs around evolving young stars. A&A 575, A28 (2015). https://doi.org/10.1051/0004-6361/201424964ADSCrossRefGoogle Scholar
- 32.Bitsch, B., Kley, W.: Orbital evolution of eccentric planets in radiative discs. A&A 523, A30 (2010). https://doi.org/10.1051/0004-6361/201014414ADSCrossRefGoogle Scholar
- 33.Bitsch, B., Kley, W.: Evolution of inclined planets in three-dimensional radiative discs. A&A 530, A41 (2011). https://doi.org/10.1051/0004-6361/201016179ADSCrossRefzbMATHGoogle Scholar
- 34.Bitsch, B., Kley, W.: Range of outward migration and influence of the disc’s mass on the migration of giant planet cores. A&A 536, A77 (2011). https://doi.org/10.1051/0004-6361/201117202ADSCrossRefGoogle Scholar
- 35.Blum, J., Wurm, G.: The growth mechanisms of macroscopic bodies in protoplanetary disks. ARA&A 46, 21–56 (2008). https://doi.org/10.1146/annurev.astro.46.060407.145152ADSCrossRefGoogle Scholar
- 36.Blum, J., Wurm, G., Kempf, S., Poppe, T., Klahr, H., Kozasa, T., Rott, M., Henning, T., Dorschner, J., Schräpler, R., Keller, H.U., Markiewicz, W.J., Mann, I., Gustafson, B.A., Giovane, F., Neuhaus, D., Fechtig, H., Grün, E., Feuerbacher, B., Kochan, H., Ratke, L., El Goresy, A., Morfill, G., Weidenschilling, S.J., Schwehm, G., Metzler, K., Ip, W.H.: Growth and form of planetary seedlings: results from a microgravity aggregation experiment. Phys. Rev. Lett. 85, 2426 (2000). https://doi.org/10.1103/PhysRevLett.85.2426ADSCrossRefGoogle Scholar
- 37.Bodenheimer, P., Hubickyj, O., Lissauer, J.J.: Models of the in situ formation of detected extrasolar giant planets. Icarus 143, 2–14 (2000). https://doi.org/10.1006/icar.1999.6246ADSCrossRefGoogle Scholar
- 38.Bodenheimer, P., Pollack, J.B.: Calculations of the accretion and evolution of giant planets: the effects of solid cores. Icarus 67, 391–408 (1986). https://doi.org/10.1016/0019-1035(86)90122-3ADSCrossRefGoogle Scholar
- 39.Boley, A.C.: The two modes of gas giant planet formation. ApJ 695, L53–L57 (2009). https://doi.org/10.1088/0004-637X/695/1/L53ADSCrossRefGoogle Scholar
- 40.Boss, A.P.: Giant planet formation by gravitational instability. Science 276, 1836–1839 (1997). https://doi.org/10.1126/science.276.5320.1836ADSCrossRefGoogle Scholar
- 41.Burke, C.J., Bryson, S.T., Mullally, F., Rowe, J.F., Christiansen, J.L., Thompson, S.E., Coughlin, J.L., Haas, M.R., Batalha, N.M., Caldwell, D.A., Jenkins, J.M., Still, M., Barclay, T., Borucki, W.J., Chaplin, W.J., Ciardi, D.R., Clarke, B.D., Cochran, W.D., Demory, B.O., Esquerdo, G.A., Gautier III, T.N., Gilliland, R.L., Girouard, F.R., Havel, M., Henze, C.E., Howell, S.B., Huber, D., Latham, D.W., Li, J., Morehead, R.C., Morton, T.D., Pepper, J., Quintana, E., Ragozzine, D., Seader, S.E., Shah, Y., Shporer, A., Tenenbaum, P., Twicken, J.D., Wolfgang, A.: Planetary candidates observed by Kepler IV: planet sample from Q1–Q8 (22 months). ApJS 210, 19 (2014). https://doi.org/10.1088/0067-0049/210/2/19ADSCrossRefGoogle Scholar
- 42.Cameron, A.G.W.: Physics of the primitive solar accretion disk. Moon Planets 18, 5–40 (1978). https://doi.org/10.1007/BF00896696ADSCrossRefGoogle Scholar
- 43.Cassen, P.: Protostellar disks and planet formation. In: Queloz, D., Udry, S., Mayor, M., Benz, W., Cassen, P., Guillot, T., Quirrenbach, A. (eds.) Saas-Fee Advanced Course 31: Extrasolar planets, pp. 369–448 (2006). https://doi.org/10.1007/978-3-540-31470-7-3
- 44.Chabrier, G., Johansen, A., Janson, M., Rafikov, R.: Giant Planet and Brown Dwarf Formation. Protostars and Planets VI, pp. 619–642 (2014). https://doi.org/10.2458/azu_uapress_9780816531240-ch027Google Scholar
- 45.Chambers, J.E.: A hybrid symplectic integrator that permits close encounters between massive bodies. MNRAS 304, 793–799 (1999). https://doi.org/10.1046/j.1365-8711.1999.02379.xADSCrossRefGoogle Scholar
- 46.Chambers, J.E.: Making more terrestrial planets. Icarus 152, 205–224 (2001). https://doi.org/10.1006/icar.2001.6639ADSCrossRefGoogle Scholar
- 47.Chambers, J.E.: Planetary accretion in the inner Solar System. Earth Planet. Sci. Lett. 223, 241–252 (2004). https://doi.org/10.1016/j.epsl.2004.04.031ADSCrossRefGoogle Scholar
- 48.Chambers, J.E., Wetherill, G.W.: Making the terrestrial planets: N-body integrations of planetary embryos in three dimensions. Icarus 136, 304–327 (1998). https://doi.org/10.1006/icar.1998.6007ADSCrossRefGoogle Scholar
- 49.Chatterjee, S., Ford, E.B.: Planetesimal interactions can explain the mysterious period ratios of small near-resonant planets. ApJ 803, 33 (2015). https://doi.org/10.1088/0004-637X/803/1/33ADSCrossRefGoogle Scholar
- 50.Chavez, C.E., Georgakarakos, N., Prodan, S., Reyes-Ruiz, M., Aceves, H., Betancourt, F., Perez-Tijerina, E.: A dynamical stability study of Kepler circumbinary planetary systems with one planet. MNRAS 446, 1283–1292 (2015). https://doi.org/10.1093/mnras/stu2142ADSCrossRefGoogle Scholar
- 51.Chiang, E., Laughlin, G.: The minimum-mass extrasolar nebula: in situ formation of close-in super-Earths. MNRAS 431, 3444–3455 (2013). https://doi.org/10.1093/mnras/stt424ADSCrossRefGoogle Scholar
- 52.Chiang, E., Youdin, A.N.: Forming planetesimals in solar and extrasolar nebulae. Annu. Rev. Earth Planet. Sci. 38, 493–522 (2010). https://doi.org/10.1146/annurev-earth-040809-152513ADSCrossRefGoogle Scholar
- 53.Chiang, E.I., Goldreich, P.: Spectral energy distributions of T Tauri stars with passive circumstellar disks. ApJ 490, 368–376 (1997)ADSCrossRefGoogle Scholar
- 54.Cochran, W.D., Hatzes, A.P., Butler, R.P., Marcy, G.W.: The discovery of a planetary companion to 16 Cygni B. ApJ 483, 457–463 (1997). https://doi.org/10.1086/304245ADSCrossRefGoogle Scholar
- 55.Cossou, C., Raymond, S.N., Hersant, F., Pierens, A.: Hot super-Earths and giant planet cores from different migration histories. A&A 569, A56 (2014). https://doi.org/10.1051/0004-6361/201424157ADSCrossRefGoogle Scholar
- 56.Cresswell, P., Dirksen, G., Kley, W., Nelson, R.P.: On the evolution of eccentric and inclined protoplanets embedded in protoplanetary disks. A&A 473, 329–342 (2007). https://doi.org/10.1051/0004-6361:20077666ADSCrossRefGoogle Scholar
- 57.Crida, A., Batygin, K.: Spin-orbit angle distribution and the origin of (mis)aligned hot Jupiters. A&A 567, A42 (2014). https://doi.org/10.1051/0004-6361/201323292ADSCrossRefGoogle Scholar
- 58.Crida, A., Morbidelli, A., Masset, F.: On the width and shape of gaps in protoplanetary disks. Icarus 181, 587–604 (2006). https://doi.org/10.1016/j.icarus.2005.10.007ADSCrossRefGoogle Scholar
- 59.Crida, A., Sándor, Z., Kley, W.: Influence of an inner disc on the orbital evolution of massive planets migrating in resonance. A&A 483, 325–337 (2008). https://doi.org/10.1051/0004-6361:20079291ADSCrossRefGoogle Scholar
- 60.D’Angelo, G., Kley, W., Henning, T.: Orbital migration and mass accretion of protoplanets in three-dimensional global computations with nested grids. ApJ 586, 540–561 (2003). https://doi.org/10.1086/367555ADSCrossRefGoogle Scholar
- 61.D’Angelo, G., Lubow, S.H.: Three-dimensional disk-planet torques in a locally isothermal disk. ApJ 724, 730–747 (2010). https://doi.org/10.1088/0004-637X/724/1/730ADSCrossRefGoogle Scholar
- 62.D’Angelo, G., Lubow, S.H., Bate, M.R.: Evolution of giant planets in eccentric disks. ApJ 652, 1698–1714 (2006). https://doi.org/10.1086/508451ADSCrossRefGoogle Scholar
- 63.Demory, B.O., Seager, S.: Lack of inflated radii for Kepler giant planet candidates receiving modest stellar irradiation. ApJS 197, 12 (2011). https://doi.org/10.1088/0067-0049/197/1/12ADSCrossRefGoogle Scholar
- 64.Desch, S.J.: Mass distribution and planet formation in the solar nebula. ApJ 671, 878–893 (2007). https://doi.org/10.1086/522825ADSCrossRefGoogle Scholar
- 65.Desort, M., Lagrange, A.M., Galland, F., Beust, H., Udry, S., Mayor, M., Lo Curto, G.: Extrasolar planets and brown dwarfs around A-F type stars. V. A planetary system found with HARPS around the F6IV-V star HD 60532. A&A 491, 883–888 (2008). https://doi.org/10.1051/0004-6361:200810241ADSCrossRefGoogle Scholar
- 66.Dodson-Robinson, S.E., Veras, D., Ford, E.B., Beichman, C.A.: The formation mechanism of gas giants on wide orbits. ApJ 707, 79–88 (2009). https://doi.org/10.1088/0004-637X/707/1/79ADSCrossRefGoogle Scholar
- 67.Dominik, C., Tielens, A.G.G.M.: Resistance to rolling in the adhesive contact of two elastic spheres. Philos. Mag. Part A 72, 783–803 (1995). https://doi.org/10.1080/01418619508243800ADSCrossRefGoogle Scholar
- 68.Dominik, C., Tielens, A.G.G.M.: The physics of dust coagulation and the structure of dust aggregates in space. ApJ 480, 647–673 (1997)ADSCrossRefGoogle Scholar
- 69.Doyle, L.R., Carter, J.A., Fabrycky, D.C., Slawson, R.W., Howell, S.B., Winn, J.N., Orosz, J.A., Prša, A., Welsh, W.F., Quinn, S.N., Latham, D., Torres, G., Buchhave, L.A., Marcy, G.W., Fortney, J.J., Shporer, A., Ford, E.B., Lissauer, J.J., Ragozzine, D., Rucker, M., Batalha, N., Jenkins, J.M., Borucki, W.J., Koch, D., Middour, C.K., Hall, J.R., McCauliff, S., Fanelli, M.N., Quintana, E.V., Holman, M.J., Caldwell, D.A., Still, M., Stefanik, R.P., Brown, W.R., Esquerdo, G.A., Tang, S., Furesz, G., Geary, J.C., Berlind, P., Calkins, M.L., Short, D.R., Steffen, J.H., Sasselov, D., Dunham, E.W., Cochran, W.D., Boss, A., Haas, M.R., Buzasi, D., Fischer, D.: Kepler-16: a transiting circumbinary planet. Science 333, 1602 (2011). https://doi.org/10.1126/science.1210923ADSCrossRefGoogle Scholar
- 70.Draine, B.T.: Interstellar dust grains. ARA&A 41, 241–289 (2003). https://doi.org/10.1146/annurev.astro.41.011802.094840ADSCrossRefGoogle Scholar
- 71.Dubrovinsky, L., Dubrovinskaia, N., Prakapenka, V.B., Abakumov, A.M.: Implementation of micro-ball nanodiamond anvils for high-pressure studies above 6 Mbar. Nat. Commun. 3, 1163 (2012). https://doi.org/10.1038/ncomms2160ADSCrossRefGoogle Scholar
- 72.Duffell, P.C.: A simple analytical model for gaps in protoplanetary disks. ApJ 807, L11 (2015). https://doi.org/10.1088/2041-8205/807/1/L11ADSCrossRefGoogle Scholar
- 73.Duffell, P.C., Chiang, E.: Eccentric Jupiters via disk-planet interactions. ApJ 812, 94 (2015). https://doi.org/10.1088/0004-637X/812/2/94ADSCrossRefGoogle Scholar
- 74.Duffell, P.C., Haiman, Z., MacFadyen, A.I., D’Orazio, D.J., Farris, B.D.: The migration of gap-opening planets is not locked to viscous disk evolution. ApJ 792, L10 (2014). https://doi.org/10.1088/2041-8205/792/1/L10ADSCrossRefGoogle Scholar
- 75.Duffell, P.C., MacFadyen, A.I.: Gap opening by extremely low-mass planets in a viscous disk. ApJ 769, 41 (2013). https://doi.org/10.1088/0004-637X/769/1/41ADSCrossRefGoogle Scholar
- 76.Duncan, M.J., Levison, H.F., Lee, M.H.: A multiple time step symplectic algorithm for integrating close encounters. AJ 116, 2067–2077 (1998). https://doi.org/10.1086/300541ADSCrossRefGoogle Scholar
- 77.Dunhill, A.C., Alexander, R.D., Armitage, P.J.: A limit on eccentricity growth from global 3D simulations of disc-planet interactions. MNRAS 428, 3072–3082 (2013). https://doi.org/10.1093/mnras/sts254ADSCrossRefGoogle Scholar
- 78.Dunhill, A.C., Cuadra, J., Dougados, C.: Precession and accretion in circumbinary discs: the case of HD 104237. MNRAS 448, 3545–3554 (2015). https://doi.org/10.1093/mnras/stv284ADSCrossRefGoogle Scholar
- 79.Durisen, R.H., Boss, A.P., Mayer, L., Nelson, A.F., Quinn, T., Rice, W.K.M.: Gravitational Instabilities in Gaseous Protoplanetary Disks and Implications for Giant Planet Formation. Protostars and Planets V, pp. 607–622 (2007)Google Scholar
- 80.Dürmann, C., Kley, W.: Migration of massive planets in accreting disks. A&A 574, A52 (2015). https://doi.org/10.1051/0004-6361/201424837ADSCrossRefGoogle Scholar
- 81.Dvorak, R., Froeschle, C., Froeschle, C.: Stability of outer planetary orbits (P-types) in binaries. A&A 226, 335–342 (1989)ADSGoogle Scholar
- 82.Edgar, R.G.: Giant planet migration in viscous power-law disks. ApJ 663, 1325–1334 (2007). https://doi.org/10.1086/518591ADSCrossRefGoogle Scholar
- 83.Fabrycky, D., Tremaine, S.: Shrinking binary and planetary orbits by Kozai cycles with tidal friction. ApJ 669, 1298–1315 (2007). https://doi.org/10.1086/521702ADSCrossRefGoogle Scholar
- 84.Fabrycky, D.C., Murray-Clay, R.A.: Stability of the directly imaged multiplanet system HR 8799: resonance and masses. ApJ 710, 1408–1421 (2010). https://doi.org/10.1088/0004-637X/710/2/1408ADSCrossRefGoogle Scholar
- 85.Fahr, H., Willerding, E.A.: Die Entstehung von Sonnensystemen. Spektrum Akademischer Verlag (1998)Google Scholar
- 86.Ford, E.B., Rasio, F.A.: Origins of eccentric extrasolar planets: testing the planet-planet scattering model. ApJ 686, 621–636 (2008). https://doi.org/10.1086/590926ADSCrossRefGoogle Scholar
- 87.Fortney, J.J., Nettelmann, N.: The interior structure, composition, and evolution of giant planets. Space Sci. Rev. 152, 423–447 (2010). https://doi.org/10.1007/s11214-009-9582-xADSCrossRefGoogle Scholar
- 88.Fung, J., Artymowicz, P., Wu, Y.: The 3D flow field around an embedded planet. ApJ 811, 101 (2015). https://doi.org/10.1088/0004-637X/811/2/101ADSCrossRefGoogle Scholar
- 89.Fung, J., Shi, J.M., Chiang, E.: How empty are disk gaps opened by giant planets? ApJ 782, 88 (2014). https://doi.org/10.1088/0004-637X/782/2/88ADSCrossRefGoogle Scholar
- 90.Gammie, C.F.: Nonlinear outcome of gravitational instability in cooling, gaseous disks. ApJ 553, 174–183 (2001). https://doi.org/10.1086/320631ADSCrossRefGoogle Scholar
- 91.Garaud, P., Meru, F., Galvagni, M., Olczak, C.: From dust to planetesimals: an improved model for collisional growth in protoplanetary disks. ApJ 764, 146 (2013). https://doi.org/10.1088/0004-637X/764/2/146ADSCrossRefGoogle Scholar
- 92.Geretshauser, R.J., Meru, F., Speith, R., Kley, W.: The four-population model: a new classification scheme for pre-planetesimal collisions. A&A 531, A166 (2011). https://doi.org/10.1051/0004-6361/201116901ADSCrossRefGoogle Scholar
- 93.Goldreich, P., Lithwick, Y., Sari, R.: Planet formation by coagulation: a focus on Uranus and Neptune. ARA&A 42, 549–601 (2004). https://doi.org/10.1146/annurev.astro.42.053102.134004ADSCrossRefGoogle Scholar
- 94.Goldreich, P., Sari, R.: Eccentricity evolution for planets in gaseous disks. ApJ 585, 1024–1037 (2003). https://doi.org/10.1086/346202ADSCrossRefGoogle Scholar
- 95.Goldreich, P., Tremaine, S.: The excitation of density waves at the Lindblad and corotation resonances by an external potential. ApJ 233, 857–871 (1979). https://doi.org/10.1086/157448ADSMathSciNetCrossRefGoogle Scholar
- 96.Goldreich, P., Tremaine, S.: Disk-satellite interactions. ApJ 241, 425–441 (1980). https://doi.org/10.1086/158356ADSMathSciNetCrossRefGoogle Scholar
- 97.Goldreich, P., Ward, W.R.: The formation of planetesimals. ApJ 183, 1051–1062 (1973). https://doi.org/10.1086/152291ADSCrossRefGoogle Scholar
- 98.Goździewski, K., Migaszewski, C.: Multiple mean motion resonances in the HR 8799 planetary system. MNRAS 440, 3140–3171 (2014). https://doi.org/10.1093/mnras/stu455ADSCrossRefGoogle Scholar
- 99.Goździewski, K., Migaszewski, C., Panichi, F., Szuszkiewicz, E.: The Laplace resonance in the Kepler-60 planetary system. MNRAS 455, L104–L108 (2016). https://doi.org/10.1093/mnrasl/slv156ADSCrossRefGoogle Scholar
- 100.Greenzweig, Y., Lissauer, J.J.: Accretion rates of protoplanets. Icarus 87, 40–77 (1990). https://doi.org/10.1016/0019-1035(90)90021-ZADSCrossRefGoogle Scholar
- 101.Guillot, T.: The interiors of giant planets: models and outstanding questions. Annu. Rev. Earth Planet. Sci. 33, 493–530 (2005). https://doi.org/10.1146/annurev.earth.32.101802.120325ADSCrossRefGoogle Scholar
- 102.Guillot, T., Gautier, D.: Giant Planets. ArXiv e-prints (2014)Google Scholar
- 103.Günther, R., Schäfer, C., Kley, W.: Evolution of irradiated circumbinary disks. A&A 423, 559–566 (2004). https://doi.org/10.1051/0004-6361:20040223ADSCrossRefGoogle Scholar
- 104.Güttler, C., Blum, J., Zsom, A., Ormel, C.W., Dullemond, C.P.: The outcome of protoplanetary dust growth: pebbles, boulders, or planetesimals?. I. Mapping the zoo of laboratory collision experiments. A&A 513, A56 (2010). https://doi.org/10.1051/0004-6361/200912852ADSCrossRefGoogle Scholar
- 105.Güttler, C., Krause, M., Geretshauser, R.J., Speith, R., Blum, J.: The physics of protoplanetesimal dust agglomerates. IV. Toward a dynamical collision model. ApJ 701, 130–141 (2009). https://doi.org/10.1088/0004-637X/701/1/130ADSCrossRefGoogle Scholar
- 106.Haghighipour, N.: The formation and dynamics of super-earth planets. Annu. Rev. Earth Planet. Sci. 41, 469–495 (2013). https://doi.org/10.1146/annurev-earth-042711-105340ADSCrossRefGoogle Scholar
- 107.Hamel, J.: Geschichte der Astronomie. Von den Anfängen bis zur Gegenwart (1998)Google Scholar
- 108.Hansen, B.M.S., Murray, N.: Migration then assembly: formation of Neptune-mass planets inside 1 AU. ApJ 751, 158 (2012). https://doi.org/10.1088/0004-637X/751/2/158ADSCrossRefGoogle Scholar
- 109.Hawley, J.F., Balbus, S.A.: A powerful local shear instability in weakly magnetized disks. II. Nonlinear evolution. ApJ 376, 223 (1991). https://doi.org/10.1086/170271ADSCrossRefGoogle Scholar
- 110.Hayashi, C.: Structure of the solar nebula, growth and decay of magnetic fields and effects of magnetic and turbulent viscosities on the nebula. Prog. Theor. Phys. Suppl. 70, 35–53 (1981). https://doi.org/10.1143/PTPS.70.35ADSCrossRefGoogle Scholar
- 111.Hayes, W., Tremaine, S.: Fitting selected random planetary systems to Titius-Bode laws. Icarus 135, 549–557 (1998). https://doi.org/10.1006/icar.1998.5999ADSCrossRefGoogle Scholar
- 112.Heißelmann, D., Blum, J., Fraser, H.J., Wolling, K.: Microgravity experiments on the collisional behavior of saturnian ring particles. Icarus 206, 424–430 (2010). https://doi.org/10.1016/j.icarus.2009.08.009ADSCrossRefGoogle Scholar
- 113.Helled, R., Bodenheimer, P., Podolak, M., Boley, A., Meru, F., Nayakshin, S., Fortney, J.J., Mayer, L., Alibert, Y., Boss, A.P.: Giant Planet Formation, Evolution, and Internal Structure. Protostars and Planets VI, pp. 643–665 (2014). https://doi.org/10.2458/azu_uapress_9780816531240-ch028Google Scholar
- 114.Hertz, H.: über die Berührung fester elastischer Körper. J. reine und angewandte Mathematik 94, 156–171 (1882)zbMATHGoogle Scholar
- 115.Holman, M., Touma, J., Tremaine, S.: Chaotic variations in the eccentricity of the planet orbiting 16 Cygni B. Nature 386, 254–256 (1997). https://doi.org/10.1038/386254a0ADSCrossRefGoogle Scholar
- 116.Holman, M.J., Wiegert, P.A.: Long-term stability of planets in binary systems. AJ 117, 621–628 (1999). https://doi.org/10.1086/300695ADSCrossRefGoogle Scholar
- 117.Ivanov, P.B., Papaloizou, J.C.B., Polnarev, A.G.: The evolution of a supermassive binary caused by an accretion disc. MNRAS 307, 79–90 (1999). https://doi.org/10.1046/j.1365-8711.1999.02623.xADSCrossRefGoogle Scholar
- 118.Jankowski, T., Wurm, G., Kelling, T., Teiser, J., Sabolo, W., Gutiérrez, P.J., Bertini, I.: Crossing barriers in planetesimal formation: the growth of mm-dust aggregates with large constituent grains. A&A 542, A80 (2012). https://doi.org/10.1051/0004-6361/201218984ADSCrossRefGoogle Scholar
- 119.Johansen, A., Blum, J., Tanaka, H., Ormel, C., Bizzarro, M., Rickman, H.: The Multifaceted Planetesimal Formation Process. Protostars and Planets VI, pp. 547–570 (2014). https://doi.org/10.2458/azu_uapress_9780816531240-ch024Google Scholar
- 120.Johansen, A., Oishi, J.S., Mac Low, M.M., Klahr, H., Henning, T., Youdin, A.: Rapid planetesimal formation in turbulent circumstellar disks. Nature 448, 1022–1025 (2007). https://doi.org/10.1038/nature06086ADSCrossRefGoogle Scholar
- 121.Johnson, K.L., Kendall, K., Roberts, A.D.: Surface energy and the contact of elastic solids. R. Soc. Lond. Proc. Ser. A 324, 301–313 (1971). https://doi.org/10.1098/rspa.1971.0141ADSCrossRefGoogle Scholar
- 122.Jurić, M., Tremaine, S.: Dynamical origin of extrasolar planet eccentricity distribution. ApJ 686, 603–620 (2008). https://doi.org/10.1086/590047ADSCrossRefGoogle Scholar
- 123.Kanagawa, K.D., Muto, T., Tanaka, H., Tanigawa, T., Takeuchi, T., Tsukagoshi, T., Momose, M.: Mass estimates of a giant planet in a protoplanetary disk from the gap structures. ApJ 806, L15 (2015). https://doi.org/10.1088/2041-8205/806/1/L15ADSCrossRefGoogle Scholar
- 124.Kant, I.: Allgemeine Naturgeschichte und Theorie des Himmels (1755)Google Scholar
- 125.Kippenhahn, R., Weigert, A.: Stellar Structure and Evolution (1990)Google Scholar
- 126.Kley, W.: Mass flow and accretion through gaps in accretion discs. MNRAS 303, 696–710 (1999). https://doi.org/10.1046/j.1365-8711.1999.02198.xADSCrossRefGoogle Scholar
- 127.Kley, W., Bitsch, B., Klahr, H.: Planet migration in three-dimensional radiative discs. A&A 506, 971–987 (2009). https://doi.org/10.1051/0004-6361/200912072ADSCrossRefzbMATHGoogle Scholar
- 128.Kley, W., Crida, A.: Migration of protoplanets in radiative discs. A&A 487, L9–L12 (2008). https://doi.org/10.1051/0004-6361:200810033ADSCrossRefGoogle Scholar
- 129.Kley, W., Dirksen, G.: Disk eccentricity and embedded planets. A&A 447, 369–377 (2006). https://doi.org/10.1051/0004-6361:20053914ADSCrossRefGoogle Scholar
- 130.Kley, W., Haghighipour, N.: Modeling circumbinary planets: the case of Kepler-38. A&A 564, A72 (2014). https://doi.org/10.1051/0004-6361/201323235ADSCrossRefGoogle Scholar
- 131.Kley, W., Haghighipour, N.: Evolution of circumbinary planets around eccentric binaries: the case of Kepler-34. A&A 581, A20 (2015). https://doi.org/10.1051/0004-6361/201526648ADSCrossRefGoogle Scholar
- 132.Kley, W., Müller, T.W.A., Kolb, S.M., Benítez-Llambay, P., Masset, F.: Low-mass planets in nearly inviscid disks: numerical treatment. A&A 546, A99 (2012). https://doi.org/10.1051/0004-6361/201219719ADSCrossRefGoogle Scholar
- 133.Kley, W., Nelson, R.P.: Planet-disk interaction and orbital evolution. ARA&A 50, 211–249 (2012). https://doi.org/10.1146/annurev-astro-081811-125523ADSCrossRefGoogle Scholar
- 134.Kley, W., Peitz, J., Bryden, G.: Evolution of planetary systems in resonance. A&A 414, 735–747 (2004). https://doi.org/10.1051/0004-6361:20031589ADSCrossRefGoogle Scholar
- 135.Kokubo, E.: Planetary accretion: from planitesimals to protoplanets. In: Schielicke R.E. (ed.) Reviews in Modern Astronomy, vol. 14, p. 117 (2001)Google Scholar
- 136.Kokubo, E., Ida, S.: Oligarchic growth of protoplanets. Icarus 131, 171–178 (1998). https://doi.org/10.1006/icar.1997.5840ADSCrossRefGoogle Scholar
- 137.Kokubo, E., Ida, S.: Formation of protoplanet systems and diversity of planetary systems. ApJ 581, 666–680 (2002). https://doi.org/10.1086/344105ADSCrossRefGoogle Scholar
- 138.Kominami, J., Ida, S.: The effect of tidal interaction with a gas disk on formation of terrestrial planets. Icarus 157, 43–56 (2002). https://doi.org/10.1006/icar.2001.6811ADSCrossRefGoogle Scholar
- 139.Kozai, Y.: Secular perturbations of asteroids with high inclination and eccentricity. AJ 67, 591 (1962). https://doi.org/10.1086/108790ADSMathSciNetCrossRefGoogle Scholar
- 140.Kratter, K.M., Murray-Clay, R.A., Youdin, A.N.: The runts of the litter: why planets formed through gravitational instability can only be failed binary stars. ApJ 710, 1375–1386 (2010). https://doi.org/10.1088/0004-637X/710/2/1375ADSCrossRefGoogle Scholar
- 141.Krause, M., Blum, J.: Growth and form of planetary seedlings: results from a sounding rocket microgravity aggregation experiment. Phys. Rev. Lett. 93(2), 021103 (2004). https://doi.org/10.1103/PhysRevLett.93.021103ADSCrossRefGoogle Scholar
- 142.Kretke, K.A., Lin, D.N.C.: Grain retention and formation of planetesimals near the snow line in MRI-driven turbulent protoplanetary disks. ApJ 664, L55–L58 (2007). https://doi.org/10.1086/520718ADSCrossRefGoogle Scholar
- 143.Kuiper, G.P.: On the origin of the solar system. Proc. Natl. Acad. Sci. 37, 1–14 (1951). https://doi.org/10.1073/pnas.37.1.1ADSCrossRefGoogle Scholar
- 144.Lambrechts, M., Johansen, A.: Rapid growth of gas-giant cores by pebble accretion. A&A 544, A32 (2012). https://doi.org/10.1051/0004-6361/201219127ADSCrossRefGoogle Scholar
- 145.Laplace, P.S.: Exposition du système du monde (1776)Google Scholar
- 146.Laughlin, G., Korchagin, V., Adams, F.C.: The dynamics of heavy gaseous disks. ApJ 504, 945–966 (1998). https://doi.org/10.1086/306117ADSCrossRefGoogle Scholar
- 147.Laughlin, G., Steinacker, A., Adams, F.C.: Type I planetary migration with MHD turbulence. ApJ 608, 489–496 (2004). https://doi.org/10.1086/386316ADSCrossRefGoogle Scholar
- 148.Lee, M.H., Peale, S.J.: Dynamics and origin of the 2:1 orbital resonances of the GJ 876 planets. ApJ 567, 596–609 (2002). https://doi.org/10.1086/338504ADSCrossRefGoogle Scholar
- 149.Lega, E., Crida, A., Bitsch, B., Morbidelli, A.: Migration of earth-sized planets in 3D radiative discs. MNRAS 440, 683–695 (2014). https://doi.org/10.1093/mnras/stu304ADSCrossRefGoogle Scholar
- 150.Leinhardt, Z.M., Richardson, D.C.: N-body simulations of planetesimal evolution: effect of varying impactor mass ratio. Icarus 159, 306–313 (2002). https://doi.org/10.1006/icar.2002.6909ADSCrossRefGoogle Scholar
- 151.Leinhardt, Z.M., Richardson, D.C., Quinn, T.: Direct N-body simulations of rubble pile collisions. Icarus 146, 133–151 (2000). https://doi.org/10.1006/icar.2000.6370ADSCrossRefGoogle Scholar
- 152.Leinhardt, Z.M., Stewart, S.T.: Full numerical simulations of catastrophic small body collisions. Icarus 199, 542–559 (2009). https://doi.org/10.1016/j.icarus.2008.09.013ADSCrossRefGoogle Scholar
- 153.Li, H., Lubow, S.H., Li, S., Lin, D.N.C.: Type I planet migration in nearly laminar disks. ApJ 690, L52–L55 (2009). https://doi.org/10.1088/0004-637X/690/1/L52ADSCrossRefGoogle Scholar
- 154.Lin, C.C., Shu, F.H.: On the spiral structure of disk galaxies. ApJ 140, 646 (1964). https://doi.org/10.1086/147955ADSMathSciNetCrossRefGoogle Scholar
- 155.Lin, D.N.C., Bodenheimer, P., Richardson, D.C.: Orbital migration of the planetary companion of 51 Pegasi to its present location. Nature 380, 606–607 (1996). https://doi.org/10.1038/380606a0ADSCrossRefGoogle Scholar
- 156.Lin, D.N.C., Papaloizou, J.: Tidal torques on accretion discs in binary systems with extreme mass ratios. MNRAS 186, 799–812 (1979)ADSCrossRefGoogle Scholar
- 157.Lin, D.N.C., Papaloizou, J.: On the tidal interaction between protoplanets and the protoplanetary disk. III—Orbital migration of protoplanets. ApJ 309, 846–857 (1986). https://doi.org/10.1086/164653ADSCrossRefGoogle Scholar
- 158.Lissauer, J.J.: Timescales for planetary accretion and the structure of the protoplanetary disk. Icarus 69, 249–265 (1987). https://doi.org/10.1016/0019-1035(87)90104-7ADSCrossRefGoogle Scholar
- 159.Lissauer, J.J.: Planet formation. ARA&A 31, 129–174 (1993). https://doi.org/10.1146/annurev.aa.31.090193.001021ADSCrossRefGoogle Scholar
- 160.Lissauer, J.J., Stewart, G.R.: Growth of planets from planetesimals. In: Levy, E.H., Lunine, J.I. (eds.) Protostars and Planets III, pp. 1061–1088 (1993)Google Scholar
- 161.Lithwick, Y., Wu, Y.: Resonant repulsion of Kepler planet pairs. ApJ 756, L11 (2012). https://doi.org/10.1088/2041-8205/756/1/L11ADSCrossRefGoogle Scholar
- 162.Lubow, S.H., Seibert, M., Artymowicz, P.: Disk accretion onto high-mass planets. ApJ 526, 1001–1012 (1999). https://doi.org/10.1086/308045ADSCrossRefGoogle Scholar
- 163.Lynden-Bell, D., Pringle, J.E.: The evolution of viscous discs and the origin of the nebular variables. MNRAS 168, 603–637 (1974)ADSCrossRefGoogle Scholar
- 164.Mac Low, M.M., Klessen, R.S.: Control of star formation by supersonic turbulence. Rev. Mod. Phys. 76, 125–194 (2004). https://doi.org/10.1103/RevModPhys.76.125ADSCrossRefGoogle Scholar
- 165.Madhusudhan, N., Lee, K.K.M., Mousis, O.: A possible carbon-rich interior in super-Earth 55 Cancri e. ApJ 759, L40 (2012). https://doi.org/10.1088/2041-8205/759/2/L40ADSCrossRefGoogle Scholar
- 166.Marboeuf, U., Thiabaud, A., Alibert, Y., Cabral, N., Benz, W.: From planetesimals to planets: volatile molecules. A&A 570, A36 (2014). https://doi.org/10.1051/0004-6361/201423431ADSCrossRefGoogle Scholar
- 167.Marcy, G.W., Butler, R.P., Fischer, D., Vogt, S.S., Lissauer, J.J., Rivera, E.J.: A pair of resonant planets orbiting GJ 876. ApJ 556, 296–301 (2001). https://doi.org/10.1086/321552ADSCrossRefGoogle Scholar
- 168.Marcy, G.W., Isaacson, H., Howard, A.W., Rowe, J.F., Jenkins, J.M., Bryson, S.T., Latham, D.W., Howell, S.B., Gautier III, T.N., Batalha, N.M., Rogers, L., Ciardi, D., Fischer, D.A., Gilliland, R.L., Kjeldsen, H., Christensen-Dalsgaard, J., Huber, D., Chaplin, W.J., Basu, S., Buchhave, L.A., Quinn, S.N., Borucki, W.J., Koch, D.G., Hunter, R., Caldwell, D.A., Van Cleve, J., Kolbl, R., Weiss, L.M., Petigura, E., Seager, S., Morton, T., Johnson, J.A., Ballard, S., Burke, C., Cochran, W.D., Endl, M., MacQueen, P., Everett, M.E., Lissauer, J.J., Ford, E.B., Torres, G., Fressin, F., Brown, T.M., Steffen, J.H., Charbonneau, D., Basri, G.S., Sasselov, D.D., Winn, J., Sanchis-Ojeda, R., Christiansen, J., Adams, E., Henze, C., Dupree, A., Fabrycky, D.C., Fortney, J.J., Tarter, J., Holman, M.J., Tenenbaum, P., Shporer, A., Lucas, P.W., Welsh, W.F., Orosz, J.A., Bedding, T.R., Campante, T.L., Davies, G.R., Elsworth, Y., Handberg, R., Hekker, S., Karoff, C., Kawaler, S.D., Lund, M.N., Lundkvist, M., Metcalfe, T.S., Miglio, A., Silva Aguirre, V., Stello, D., White, T.R., Boss, A., Devore, E., Gould, A., Prsa, A., Agol, E., Barclay, T., Coughlin, J., Brugamyer, E., Mullally, F., Quintana, E.V., Still, M., Thompson, S.E., Morrison, D., Twicken, J.D., Désert, J.M., Carter, J., Crepp, J.R., Hébrard, G., Santerne, A., Moutou, C., Sobeck, C., Hudgins, D., Haas, M.R., Robertson, P., Lillo-Box, J., Barrado, D.: Masses, radii, and orbits of small Kepler planets: the transition from gaseous to rocky planets. ApJS 210, 20 (2014). https://doi.org/10.1088/0067-0049/210/2/20ADSCrossRefGoogle Scholar
- 169.Marois, C., Macintosh, B., Barman, T., Zuckerman, B., Song, I., Patience, J., Lafrenière, D., Doyon, R.: Direct imaging of multiple planets orbiting the star HR 8799. Science 322, 1348 (2008). https://doi.org/10.1126/science.1166585ADSCrossRefGoogle Scholar
- 170.Marois, C., Zuckerman, B., Konopacky, Q.M., Macintosh, B., Barman, T.: Images of a fourth planet orbiting HR 8799. Nature 468, 1080–1083 (2010). https://doi.org/10.1038/nature09684ADSCrossRefGoogle Scholar
- 171.Martí, J.G., Giuppone, C.A., Beaugé, C.: Dynamical analysis of the Gliese-876 Laplace resonance. MNRAS 433, 928–934 (2013). https://doi.org/10.1093/mnras/stt765ADSCrossRefGoogle Scholar
- 172.Marzari, F., Nelson, A.F.: Interaction of a giant planet in an inclined orbit with a circumstellar disk. ApJ 705, 1575–1583 (2009). https://doi.org/10.1088/0004-637X/705/2/1575ADSCrossRefGoogle Scholar
- 173.Marzari, F., Thebault, P., Scholl, H., Picogna, G., Baruteau, C.: Influence of the circumbinary disk gravity on planetesimal accumulation in the Kepler-16 system. A&A 553, A71 (2013). https://doi.org/10.1051/0004-6361/201220893ADSCrossRefGoogle Scholar
- 174.Masset, F.: FARGO: a fast eulerian transport algorithm for differentially rotating disks. A&AS 141, 165–173 (2000). https://doi.org/10.1051/aas:2000116ADSCrossRefGoogle Scholar
- 175.Masset, F.S.: The co-orbital corotation torque in a viscous disk: numerical simulations. A&A 387, 605–623 (2002). https://doi.org/10.1051/0004-6361:20020240ADSCrossRefGoogle Scholar
- 176.Masset, F.S., Casoli, J.: Saturated torque formula for planetary migration in viscous disks with thermal diffusion: recipe for protoplanet population synthesis. ApJ 723, 1393–1417 (2010). https://doi.org/10.1088/0004-637X/723/2/1393ADSCrossRefGoogle Scholar
- 177.Masset, F.S., Morbidelli, A., Crida, A., Ferreira, J.: Disk surface density transitions as protoplanet traps. ApJ 642, 478–487 (2006). https://doi.org/10.1086/500967ADSCrossRefGoogle Scholar
- 178.Masset, F.S., Papaloizou, J.C.B.: Runaway migration and the formation of Hot Jupiters. ApJ 588, 494–508 (2003). https://doi.org/10.1086/373892ADSCrossRefGoogle Scholar
- 179.Mathis, J.S., Rumpl, W., Nordsieck, K.H.: The size distribution of interstellar grains. ApJ 217, 425–433 (1977). https://doi.org/10.1086/155591ADSCrossRefGoogle Scholar
- 180.Mayer, L., Quinn, T., Wadsley, J., Stadel, J.: Formation of giant planets by fragmentation of protoplanetary disks. Science 298, 1756–1759 (2002). https://doi.org/10.1126/science.1077635ADSCrossRefGoogle Scholar
- 181.Mayer, L., Quinn, T., Wadsley, J., Stadel, J.: The evolution of gravitationally unstable protoplanetary disks: fragmentation and possible giant planet formation. ApJ 609, 1045–1064 (2004). https://doi.org/10.1086/421288ADSCrossRefGoogle Scholar
- 182.Mayor, M., Queloz, D.: A Jupiter-mass companion to a solar-type star. Nature 378, 355–359 (1995). https://doi.org/10.1038/378355a0ADSCrossRefGoogle Scholar
- 183.McCaughrean, M.J., O’dell, C.R.: Direct imaging of circumstellar disks in the orion nebula. AJ 111, 1977 (1996). https://doi.org/10.1086/117934ADSCrossRefGoogle Scholar
- 184.Mejía, A.C., Durisen, R.H., Pickett, M.K., Cai, K.: The thermal regulation of gravitational instabilities in protoplanetary disks. II. Extended simulations with varied cooling rates. ApJ 619, 1098–1113 (2005). https://doi.org/10.1086/426707ADSCrossRefGoogle Scholar
- 185.Meru, F., Bate, M.R.: Non-convergence of the critical cooling time-scale for fragmentation of self-gravitating discs. MNRAS 411, L1–L5 (2011). https://doi.org/10.1111/j.1745-3933.2010.00978.xADSCrossRefGoogle Scholar
- 186.Meru, F., Bate, M.R.: On the convergence of the critical cooling time-scale for the fragmentation of self-gravitating discs. MNRAS 427, 2022–2046 (2012). https://doi.org/10.1111/j.1365-2966.2012.22035.xADSCrossRefGoogle Scholar
- 187.Meschiari, S.: Circumbinary planet formation in the Kepler-16 system. I. N-body simulations. ApJ 752, 71 (2012). https://doi.org/10.1088/0004-637X/752/1/71ADSCrossRefGoogle Scholar
- 188.Michael, S., Durisen, R.H., Boley, A.C.: Migration of gas giant planets in gravitationally unstable disks. ApJ 737, L42 (2011). https://doi.org/10.1088/2041-8205/737/2/L42ADSCrossRefGoogle Scholar
- 189.Mills, S.M., Fabrycky, D.C., Migaszewski, C., Ford, E.B., Petigura, E., Isaacson, H.: A resonant chain of four transiting, sub-Neptune planets. Nature 533, 509–512 (2016). https://doi.org/10.1038/nature17445ADSCrossRefGoogle Scholar
- 190.Mizuno, H.: Formation of the Giant Planets. Prog. Theor. Phys. 64, 544–557 (1980). https://doi.org/10.1143/PTP.64.544ADSCrossRefGoogle Scholar
- 191.Mizuno, H., Nakazawa, K., Hayashi, C.: Instability of a gaseous envelope surrounding a planetary core and formation of giant planets. Progr. Theor. Phys. 60, 699–710 (1978). https://doi.org/10.1143/PTP.60.699ADSCrossRefGoogle Scholar
- 192.Monaghan, J.J.: Smoothed particle hydrodynamics. Rep. Prog. Phys. 68, 1703–1759 (2005). https://doi.org/10.1088/0034-4885/68/8/R01ADSMathSciNetCrossRefzbMATHGoogle Scholar
- 193.Montmerle, T., Augereau, J.C., Chaussidon, M., Gounelle, M., Marty, B., Morbidelli, A.: From Suns to life: a chronological approach to the history of life on Earth 3. Solar system formation and early evolution: the first 100 million years. Earth Moon Planets 98, 39–95 (2006). https://doi.org/10.1007/s11038-006-9087-5ADSCrossRefGoogle Scholar
- 194.Morbidelli, A., Lunine, J.I., O’Brien, D.P., Raymond, S.N., Walsh, K.J.: Building terrestrial planets. Annu. Rev. Earth Planet. Sci. 40, 251–275 (2012). https://doi.org/10.1146/annurev-earth-042711-105319ADSCrossRefGoogle Scholar
- 195.Mordasini, C., Alibert, Y., Klahr, H., Henning, T.: Characterization of exoplanets from their formation. I. Models of combined planet formation and evolution. A&A 547, A111 (2012). https://doi.org/10.1051/0004-6361/201118457ADSCrossRefGoogle Scholar
- 196.Mordasini, C., Mollière, P., Dittkrist, K.M., Jin, S., Alibert, Y.: Global models of planet formation and evolution. Int. J. Astrobiol. 14, 201–232 (2015). https://doi.org/10.1017/S1473550414000263CrossRefGoogle Scholar
- 197.Müller, T.W.A., Kley, W., Meru, F.: Treating gravity in thin-disk simulations. A&A 541, A123 (2012). https://doi.org/10.1051/0004-6361/201118737ADSCrossRefGoogle Scholar
- 198.Murray, C.D., Dermott, S.F.: Solar system dynamics (1999)Google Scholar
- 199.Nayakshin, S.: Formation of planets by tidal downsizing of giant planet embryos. MNRAS 408, L36–L40 (2010). https://doi.org/10.1111/j.1745-3933.2010.00923.xADSCrossRefGoogle Scholar
- 200.Nelson, R.P.: On the orbital evolution of low mass protoplanets in turbulent, magnetised disks. A&A 443, 1067–1085 (2005). https://doi.org/10.1051/0004-6361:20042605ADSCrossRefGoogle Scholar
- 201.Nelson, R.P., Papaloizou, J.C.B.: The interaction of giant planets with a disc with MHD turbulence—IV. Migration rates of embedded protoplanets. MNRAS 350, 849–864 (2004). https://doi.org/10.1111/j.1365-2966.2004.07406.xADSCrossRefGoogle Scholar
- 202.Nelson, R.P., Papaloizou, J.C.B., Masset, F., Kley, W.: The migration and growth of protoplanets in protostellar discs. MNRAS 318, 18–36 (2000). https://doi.org/10.1046/j.1365-8711.2000.03605.xADSCrossRefGoogle Scholar
- 203.O’Brien, D.P., Morbidelli, A., Levison, H.F.: Terrestrial planet formation with strong dynamical friction. Icarus 184, 39–58 (2006). https://doi.org/10.1016/j.icarus.2006.04.005ADSCrossRefGoogle Scholar
- 204.Paardekooper, S.J.: Numerical convergence in self-gravitating shearing sheet simulations and the stochastic nature of disc fragmentation. MNRAS 421, 3286–3299 (2012). https://doi.org/10.1111/j.1365-2966.2012.20553.xADSCrossRefGoogle Scholar
- 205.Paardekooper, S.J., Baruteau, C., Crida, A., Kley, W.: A torque formula for non-isothermal type I planetary migration—I. Unsaturated horseshoe drag. MNRAS 401, 1950–1964 (2010). https://doi.org/10.1111/j.1365-2966.2009.15782.xADSCrossRefGoogle Scholar
- 206.Paardekooper, S.J., Baruteau, C., Kley, W.: A torque formula for non-isothermal Type I planetary migration—II. Effects of diffusion. MNRAS 410, 293–303 (2011). https://doi.org/10.1111/j.1365-2966.2010.17442.xADSCrossRefGoogle Scholar
- 207.Paardekooper, S.J., Leinhardt, Z.M., Thébault, P., Baruteau, C.: How not to build tatooine: the difficulty of in situ formation of circumbinary planets Kepler 16b, Kepler 34b, and Kepler 35b. ApJ 754, L16 (2012). https://doi.org/10.1088/2041-8205/754/1/L16ADSCrossRefGoogle Scholar
- 208.Paardekooper, S.J., Mellema, G.: Halting Type I planet migration in non-isothermal disks. A&A 459, L17–L20 (2006). https://doi.org/10.1051/0004-6361:20066304ADSCrossRefGoogle Scholar
- 209.Paardekooper, S.J., Papaloizou, J.C.B.: On disc protoplanet interactions in a non-barotropic disc with thermal diffusion. A&A 485, 877–895 (2008). https://doi.org/10.1051/0004-6361:20078702ADSCrossRefzbMATHGoogle Scholar
- 210.Paardekooper, S.J., Rein, H., Kley, W.: The formation of systems with closely spaced low-mass planets and the application to Kepler-36. MNRAS 434, 3018–3029 (2013). https://doi.org/10.1093/mnras/stt1224ADSCrossRefGoogle Scholar
- 211.Papaloizou, J.C.B., Larwood, J.D.: On the orbital evolution and growth of protoplanets embedded in a gaseous disc. MNRAS 315, 823–833 (2000). https://doi.org/10.1046/j.1365-8711.2000.03466.xADSCrossRefGoogle Scholar
- 212.Papaloizou, J.C.B., Nelson, R.P.: Models of accreting gas giant protoplanets in protostellar disks. A&A 433, 247–265 (2005). https://doi.org/10.1051/0004-6361:20042029ADSCrossRefGoogle Scholar
- 213.Papaloizou, J.C.B., Nelson, R.P., Kley, W., Masset, F.S., Artymowicz, P.: Disk-Planet Interactions During Planet Formation. Protostars and Planets V, pp. 655–668 (2007)Google Scholar
- 214.Papaloizou, J.C.B., Nelson, R.P., Masset, F.: Orbital eccentricity growth through disc-companion tidal interaction. A&A 366, 263–275 (2001). https://doi.org/10.1051/0004-6361:20000011ADSCrossRefGoogle Scholar
- 215.Paszun, D., Dominik, C.: Numerical determination of the material properties of porous dust cakes. A&A 484, 859–868 (2008). https://doi.org/10.1051/0004-6361:20079262ADSCrossRefGoogle Scholar
- 216.Pepliński, A., Artymowicz, P., Mellema, G.: Numerical simulations of type III planetary migration—II. Inward migration of massive planets. MNRAS 386, 179–198 (2008). https://doi.org/10.1111/j.1365-2966.2008.13046.xADSCrossRefGoogle Scholar
- 217.Pepliński, A., Artymowicz, P., Mellema, G.: Numerical simulations of Type III planetary migration—III. Outward migration of massive planets. MNRAS 387, 1063–1079 (2008). https://doi.org/10.1111/j.1365-2966.2008.13339.xADSCrossRefGoogle Scholar
- 218.Perri, F., Cameron, A.G.W.: Hydrodynamic instability of the solar nebula in the presence of a planetary core. Icarus 22, 416–425 (1974). https://doi.org/10.1016/0019-1035(74)90074-8ADSCrossRefGoogle Scholar
- 219.Perryman, M.: The Exoplanet Handbook (2011)Google Scholar
- 220.Petigura, E.A., Howard, A.W., Marcy, G.W.: Prevalence of Earth-size planets orbiting Sun-like stars. Proc. Natl. Acad. Sci. 110, 19273–19278 (2013)ADSCrossRefGoogle Scholar
- 221.Pierens, A., Huré, J.M.: How does disk gravity really influence Type-I migration? A&A 433, L37–L40 (2005). https://doi.org/10.1051/0004-6361:200500099ADSCrossRefGoogle Scholar
- 222.Pierens, A., Nelson, R.P.: On the migration of protoplanets embedded in circumbinary disks. A&A 472, 993–1001 (2007). https://doi.org/10.1051/0004-6361:20077659ADSCrossRefzbMATHGoogle Scholar
- 223.Pierens, A., Nelson, R.P.: Constraints on resonant-trapping for two planets embedded in a protoplanetary disc. A&A 482, 333–340 (2008). https://doi.org/10.1051/0004-6361:20079062ADSCrossRefzbMATHGoogle Scholar
- 224.Pierens, A., Nelson, R.P.: Migration and gas accretion scenarios for the Kepler 16, 34, and 35 circumbinary planets. A&A 556, A134 (2013). https://doi.org/10.1051/0004-6361/201321777ADSCrossRefGoogle Scholar
- 225.Pollack, J.B., Hubickyj, O., Bodenheimer, P., Lissauer, J.J., Podolak, M., Greenzweig, Y.: Formation of the giant planets by concurrent accretion of solids and gas. Icarus 124, 62–85 (1996). https://doi.org/10.1006/icar.1996.0190ADSCrossRefGoogle Scholar
- 226.Poppe, T., Blum, J., Henning, T.: Analogous experiments on the stickiness of micron-sized preplanetary dust. ApJ 533, 454–471 (2000). https://doi.org/10.1086/308626ADSCrossRefGoogle Scholar
- 227.Pringle, J.E.: Accretion discs in astrophysics. ARA&A 19, 137–162 (1981). https://doi.org/10.1146/annurev.aa.19.090181.001033ADSCrossRefGoogle Scholar
- 228.Quirrenbach, A.: Detection and characterization of extrasolar planets. In: Queloz, D., Udry, S., Mayor, M., Benz, W., Cassen, P., Guillot, T., Quirrenbach, A. (eds.) Saas-Fee Advanced Course 31: Extrasolar Planets, pp. 1–242 (2006). https://doi.org/10.1007/978-3-540-31470-7_1
- 229.Rafikov, R.R.: Planet migration and gap formation by tidally induced shocks. ApJ 572, 566–579 (2002). https://doi.org/10.1086/340228ADSCrossRefGoogle Scholar
- 230.Rafikov, R.R.: Can giant planets form by direct gravitational instability? ApJ 621, L69–L72 (2005). https://doi.org/10.1086/428899ADSCrossRefGoogle Scholar
- 231.Rauer, H., Catala, C., Aerts, C., Appourchaux, T., Benz, W., Brandeker, A., Christensen-Dalsgaard, J., Deleuil, M., Gizon, L., Goupil, M.J., Güdel, M., Janot-Pacheco, E., Mas-Hesse, M., Pagano, I., Piotto, G., Pollacco, D., Santos, C., Smith, A., Suárez, J.C., Szabó, R., Udry, S., Adibekyan, V., Alibert, Y., Almenara, J.M., Amaro-Seoane, P., Eiff, M.A.v., Asplund, M., Antonello, E., Barnes, S., Baudin, F., Belkacem, K., Bergemann, M., Bihain, G., Birch, A.C., Bonfils, X., Boisse, I., Bonomo, A.S., Borsa, F., Brandão, I.M., Brocato, E., Brun, S., Burleigh, M., Burston, R., Cabrera, J., Cassisi, S., Chaplin, W., Charpinet, S., Chiappini, C., Church, R.P., Csizmadia, S., Cunha, M., Damasso, M., Davies, M.B., Deeg, H.J., Díaz, R.F., Dreizler, S., Dreyer, C., Eggenberger, P., Ehrenreich, D., Eigmüller, P., Erikson, A., Farmer, R., Feltzing, S., de Oliveira Fialho, F., Figueira, P., Forveille, T., Fridlund, M., García, R.A., Giommi, P., Giuffrida, G., Godolt, M., Gomes da Silva, J., Granzer, T., Grenfell, J.L., Grotsch-Noels, A., Günther, E., Haswell, C.A., Hatzes, A.P., Hébrard, G., Hekker, S., Helled, R., Heng, K., Jenkins, J.M., Johansen, A., Khodachenko, M.L., Kislyakova, K.G., Kley, W., Kolb, U., Krivova, N., Kupka, F., Lammer, H., Lanza, A.F., Lebreton, Y., Magrin, D., Marcos-Arenal, P., Marrese, P.M., Marques, J.P., Martins, J., Mathis, S., Mathur, S., Messina, S., Miglio, A., Montalban, J., Montalto, M., Monteiro, M.J.P.F.G., Moradi, H., Moravveji, E., Mordasini, C., Morel, T., Mortier, A., Nascimbeni, V., Nelson, R.P., Nielsen, M.B., Noack, L., Norton, A.J., Ofir, A., Oshagh, M., Ouazzani, R.M., Pápics, P., Parro, V.C., Petit, P., Plez, B., Poretti, E., Quirrenbach, A., Ragazzoni, R., Raimondo, G., Rainer, M., Reese, D.R., Redmer, R., Reffert, S., Rojas-Ayala, B., Roxburgh, I.W., Salmon, S., Santerne, A., Schneider, J., Schou, J., Schuh, S., Schunker, H., Silva-Valio, A., Silvotti, R., Skillen, I., Snellen, I., Sohl, F., Sousa, S.G., Sozzetti, A., Stello, D., Strassmeier, K.G., Švanda, M., Szabó, G.M., Tkachenko, A., Valencia, D., Van Grootel, V., Vauclair, S.D., Ventura, P., Wagner, F.W., Walton, N.A., Weingrill, J., Werner, S.C., Wheatley, P.J., Zwintz, K.: The PLATO 2.0 mission. Exp. Astron. 38, 249–330 (2014). https://doi.org/10.1007/s10686-014-9383-4ADSCrossRefGoogle Scholar
- 232.Raymond, S.N., Cossou, C.: No universal minimum-mass extrasolar nebula: evidence against in situ accretion of systems of hot super-Earths. MNRAS 440, L11–L15 (2014). https://doi.org/10.1093/mnrasl/slu011ADSCrossRefGoogle Scholar
- 233.Raymond, S.N., Kokubo, E., Morbidelli, A., Morishima, R., Walsh, K.J.: Terrestrial Planet Formation at Home and Abroad. Protostars and Planets VI, pp. 595–618 (2014). https://doi.org/10.2458/azu_uapress_9780816531240-ch026Google Scholar
- 234.Raymond, S.N., O’Brien, D.P., Morbidelli, A., Kaib, N.A.: Building the terrestrial planets: constrained accretion in the inner Solar System. Icarus 203, 644–662 (2009). https://doi.org/10.1016/j.icarus.2009.05.016ADSCrossRefGoogle Scholar
- 235.Raymond, S.N., Quinn, T., Lunine, J.I.: Making other earths: dynamical simulations of terrestrial planet formation and water delivery. Icarus 168, 1–17 (2004). https://doi.org/10.1016/j.icarus.2003.11.019ADSCrossRefGoogle Scholar
- 236.Raymond, S.N., Quinn, T., Lunine, J.I.: High-resolution simulations of the final assembly of Earth-like planets I. Terrestrial accretion and dynamics. Icarus 183, 265–282 (2006). https://doi.org/10.1016/j.icarus.2006.03.011ADSCrossRefGoogle Scholar
- 237.Rein, H.: Period ratios in multiplanetary systems discovered by Kepler are consistent with planet migration. MNRAS 427, L21–L24 (2012). https://doi.org/10.1111/j.1745-3933.2012.01337.xADSCrossRefGoogle Scholar
- 238.Rein, H.: Planet-disc interaction in highly inclined systems. MNRAS 422, 3611–3616 (2012). https://doi.org/10.1111/j.1365-2966.2012.20869.xADSCrossRefGoogle Scholar
- 239.Rein, H., Liu, S.F.: REBOUND: an open-source multi-purpose N-body code for collisional dynamics. A&A 537, A128 (2012). https://doi.org/10.1051/0004-6361/201118085ADSCrossRefGoogle Scholar
- 240.Rice, W.K.M., Armitage, P.J., Bate, M.R., Bonnell, I.A.: The effect of cooling on the global stability of self-gravitating protoplanetary discs. MNRAS 339, 1025–1030 (2003). https://doi.org/10.1046/j.1365-8711.2003.06253.xADSCrossRefGoogle Scholar
- 241.Rice, W.K.M., Lodato, G., Pringle, J.E., Armitage, P.J., Bonnell, I.A.: Planetesimal formation via fragmentation in self-gravitating protoplanetary discs. MNRAS 372, L9–L13 (2006). https://doi.org/10.1111/j.1745-3933.2006.00215.xADSCrossRefGoogle Scholar
- 242.Rice, W.K.M., Paardekooper, S.J., Forgan, D.H., Armitage, P.J.: Convergence of simulations of self-gravitating accretion discs—II. Sensitivity to the implementation of radiative cooling and artificial viscosity. MNRAS 438, 1593–1602 (2014). https://doi.org/10.1093/mnras/stt2297ADSCrossRefGoogle Scholar
- 243.Ricker, G.R., Winn, J.N., Vanderspek, R., Latham, D.W., Bakos, G.Á., Bean, J.L., Berta-Thompson, Z.K., Brown, T.M., Buchhave, L., Butler, N.R., Butler, R.P., Chaplin, W.J., Charbonneau, D., Christensen-Dalsgaard, J., Clampin, M., Deming, D., Doty, J., De Lee, N., Dressing, C., Dunham, E.W., Endl, M., Fressin, F., Ge, J., Henning, T., Holman, M.J., Howard, A.W., Ida, S., Jenkins, J.M., Jernigan, G., Johnson, J.A., Kaltenegger, L., Kawai, N., Kjeldsen, H., Laughlin, G., Levine, A.M., Lin, D., Lissauer, J.J., MacQueen, P., Marcy, G., McCullough, P.R., Morton, T.D., Narita, N., Paegert, M., Palle, E., Pepe, F., Pepper, J., Quirrenbach, A., Rinehart, S.A., Sasselov, D., Sato, B., Seager, S., Sozzetti, A., Stassun, K.G., Sullivan, P., Szentgyorgyi, A., Torres, G., Udry, S., Villasenor, J.: Transiting exoplanet survey satellite (TESS). J. Astron. Telesc. Instrum. Syst. 1(1), 014003 (2015). https://doi.org/10.1117/1.JATIS.1.1.014003ADSCrossRefGoogle Scholar
- 244.Rivera, E.J., Laughlin, G., Butler, R.P., Vogt, S.S., Haghighipour, N., Meschiari, S.: The Lick-Carnegie exoplanet survey: a Uranus-Mass fourth planet for GJ 876 in an extrasolar Laplace configuration. ApJ 719, 890–899 (2010). https://doi.org/10.1088/0004-637X/719/1/890ADSCrossRefGoogle Scholar
- 245.Safronov, V.S.: Evolution of the protoplanetary cloud and formation of the earth and planets (1972)Google Scholar
- 246.Sándor, Z., Kley, W., Klagyivik, P.: Stability and formation of the resonant system HD 73526. A&A 472, 981–992 (2007). https://doi.org/10.1051/0004-6361:20077345ADSCrossRefGoogle Scholar
- 247.Saumon, D., Guillot, T.: Shock compression of deuterium and the interiors of Jupiter and Saturn. ApJ 609, 1170–1180 (2004). https://doi.org/10.1086/421257ADSCrossRefGoogle Scholar
- 248.Schlichting, H.E., Fuentes, C.I., Trilling, D.E.: Initial planetesimal sizes and the size distribution of small Kuiper belt objects. AJ 146, 36 (2013). https://doi.org/10.1088/0004-6256/146/2/36ADSCrossRefGoogle Scholar
- 249.Scholl, H., Marzari, F., Thébault, P.: Relative velocities among accreting planetesimals in binary systems: the circumbinary case. MNRAS 380, 1119–1126 (2007). https://doi.org/10.1111/j.1365-2966.2007.12145.xADSCrossRefGoogle Scholar
- 250.Seizinger, A., Kley, W.: Bouncing behavior of microscopic dust aggregates. A&A 551, A65 (2013). https://doi.org/10.1051/0004-6361/201220946ADSCrossRefGoogle Scholar
- 251.Seizinger, A., Speith, R., Kley, W.: Compression behavior of porous dust agglomerates. A&A 541, A59 (2012). https://doi.org/10.1051/0004-6361/201218855ADSCrossRefGoogle Scholar
- 252.Shen, Y., Turner, E.L.: On the eccentricity distribution of exoplanets from radial velocity surveys. ApJ 685, 553–559 (2008). https://doi.org/10.1086/590548ADSCrossRefGoogle Scholar
- 253.Shu, F.H.: The physics of astrophysics. Volume II: Gas dynamics (1992)Google Scholar
- 254.Silburt, A., Rein, H.: Tides alone cannot explain Kepler planets close to 2:1 MMR. MNRAS 453, 4089–4096 (2015). https://doi.org/10.1093/mnras/stv1924ADSCrossRefGoogle Scholar
- 255.Spiegel, D.S., Burrows, A.: Spectral and photometric diagnostics of giant planet formation scenarios. ApJ 745, 174 (2012). https://doi.org/10.1088/0004-637X/745/2/174ADSCrossRefGoogle Scholar
- 256.Stevenson, D.J.: Formation of the giant planets. Planet. Space Sci. 30, 755–764 (1982). https://doi.org/10.1016/0032-0633(82)90108-8ADSCrossRefGoogle Scholar
- 257.Stewart, S.T., Leinhardt, Z.M.: Velocity-dependent catastrophic disruption criteria for planetesimals. ApJ 691, L133–L137 (2009). https://doi.org/10.1088/0004-637X/691/2/L133ADSCrossRefGoogle Scholar
- 258.Syer, D., Clarke, C.J.: Satellites in discs: regulating the accretion luminosity. MNRAS 277, 758–766 (1995). https://doi.org/10.1093/mnras/277.3.758ADSCrossRefGoogle Scholar
- 259.Szulágyi, J., Morbidelli, A., Crida, A., Masset, F.: Accretion of Jupiter-Mass planets in the limit of vanishing viscosity. ApJ 782, 65 (2014). https://doi.org/10.1088/0004-637X/782/2/65ADSCrossRefGoogle Scholar
- 260.Tanaka, H., Takeuchi, T., Ward, W.R.: Three-dimensional interaction between a planet and an isothermal gaseous disk. I. Corotation and lindblad torques and planet migration. ApJ 565, 1257–1274 (2002). https://doi.org/10.1086/324713ADSCrossRefGoogle Scholar
- 261.Tanaka, H., Ward, W.R.: Three-dimensional Interaction between a planet and an isothermal gaseous disk. II. Eccentricity waves and bending waves. ApJ 602, 388–395 (2004). https://doi.org/10.1086/380992ADSCrossRefGoogle Scholar
- 262.Thommes, E.W., Duncan, M.J., Levison, H.F.: Oligarchic growth of giant planets. Icarus 161, 431–455 (2003). https://doi.org/10.1016/S0019-1035(02)00043-XADSCrossRefGoogle Scholar
- 263.Toomre, A.: On the gravitational stability of a disk of stars. ApJ 139, 1217–1238 (1964). https://doi.org/10.1086/147861ADSCrossRefGoogle Scholar
- 264.Tsukamoto, Y., Machida, M.N., Inutsuka, S.i.: Formation, orbital and thermal evolution, and survival of planetary-mass clumps in the early phase of circumstellar disc evolution. MNRAS 436, 1667–1673 (2013). https://doi.org/10.1093/mnras/stt1684ADSCrossRefGoogle Scholar
- 265.Udry, S., Santos, N.C.: Statistical properties of exoplanets. ARA&A 45, 397–439 (2007). https://doi.org/10.1146/annurev.astro.45.051806.110529ADSCrossRefGoogle Scholar
- 266.Uribe, A.L., Klahr, H., Flock, M., Henning, T.: Three-dimensional magnetohydrodynamic simulations of planet migration in turbulent stratified disks. ApJ 736, 85 (2011). https://doi.org/10.1088/0004-637X/736/2/85ADSCrossRefGoogle Scholar
- 267.Vogt, S.S., Butler, R.P., Marcy, G.W., Fischer, D.A., Henry, G.W., Laughlin, G., Wright, J.T., Johnson, J.A.: Five new multicomponent planetary systems. ApJ 632, 638–658 (2005). https://doi.org/10.1086/432901ADSCrossRefGoogle Scholar
- 268.Vorobyov, E.I.: Formation of giant planets and brown dwarfs on wide orbits. A&A 552, A129 (2013). https://doi.org/10.1051/0004-6361/201220601ADSCrossRefGoogle Scholar
- 269.Vorobyov, E.I., Basu, S.: The burst mode of protostellar accretion. ApJ 650, 956–969 (2006). https://doi.org/10.1086/507320ADSCrossRefGoogle Scholar
- 270.Vorobyov, E.I., Basu, S.: Formation and survivability of giant planets on wide orbits. ApJ 714, L133–L137 (2010). https://doi.org/10.1088/2041-8205/714/1/L133ADSCrossRefGoogle Scholar
- 271.Wada, K., Tanaka, H., Suyama, T., Kimura, H., Yamamoto, T.: Numerical simulation of dust aggregate collisions. I. Compression and disruption of two-dimensional aggregates. ApJ 661, 320–333 (2007). https://doi.org/10.1086/514332ADSCrossRefGoogle Scholar
- 272.Wada, K., Tanaka, H., Suyama, T., Kimura, H., Yamamoto, T.: Collisional growth conditions for dust aggregates. ApJ 702, 1490–1501 (2009). https://doi.org/10.1088/0004-637X/702/2/1490ADSCrossRefGoogle Scholar
- 273.Wada, K., Tanaka, H., Suyama, T., Kimura, H., Yamamoto, T.: The rebound condition of dust aggregates revealed by numerical simulation of their collisions. ApJ 737, 36 (2011). https://doi.org/10.1088/0004-637X/737/1/36ADSCrossRefGoogle Scholar
- 274.Walsh, K.J., Morbidelli, A., Raymond, S.N., O’Brien, D.P., Mandell, A.M.: A low mass for Mars from Jupiter’s early gas-driven migration. Nature 475, 206–209 (2011). https://doi.org/10.1038/nature10201ADSCrossRefGoogle Scholar
- 275.Ward, W.R.: Horsehoe orbit drag. In: Lunar and Planetary Science Conference, vol. 22, p. 1463 (1991)Google Scholar
- 276.Ward, W.R.: Protoplanet migration by nebula tides. Icarus 126, 261–281 (1997). https://doi.org/10.1006/icar.1996.5647ADSCrossRefGoogle Scholar
- 277.Ward, W.R.: On Type III Protoplanet Migration. AGU Fall Meeting Abstracts (2004)Google Scholar
- 278.Weidenschilling, S.J.: Aerodynamics of solid bodies in the solar nebula. MNRAS 180, 57–70 (1977)ADSCrossRefGoogle Scholar
- 279.Weidenschilling, S.J.: The distribution of mass in the planetary system and solar nebula. Ap&SS 51, 153–158 (1977). https://doi.org/10.1007/BF00642464ADSCrossRefGoogle Scholar
- 280.Weidenschilling, S.J., Cuzzi, J.N.: Formation of planetesimals in the solar nebula. In: Levy, E.H., Lunine J.I., (eds.) Protostars and Planets III, pp. 1031–1060 (1993)Google Scholar
- 281.Weidenschilling, S.J., Spaute, D., Davis, D.R., Marzari, F., Ohtsuki, K.: Accretional evolution of a planetesimal swarm. Icarus 128, 429–455 (1997). https://doi.org/10.1006/icar.1997.5747ADSCrossRefGoogle Scholar
- 282.Weidling, R., Güttler, C., Blum, J.: Free collisions in a microgravity many-particle experiment. I. Dust aggregate sticking at low velocities. Icarus 218, 688–700 (2012). https://doi.org/10.1016/j.icarus.2011.10.002ADSCrossRefGoogle Scholar
- 283.Weidling, R., Güttler, C., Blum, J., Brauer, F.: The physics of protoplanetesimal dust agglomerates. III. Compaction in multiple collisions. ApJ 696, 2036–2043 (2009). https://doi.org/10.1088/0004-637X/696/2/2036ADSCrossRefGoogle Scholar
- 284.Weizsäcker, C.F.von: Über die Entstehung des Planetensystems. Mit 2 Abbildungen. ZAp 22, 319 (1943)Google Scholar
- 285.Wetherill, G.W., Stewart, G.R.: Formation of planetary embryos—effects of fragmentation, low relative velocity, and independent variation of eccentricity and inclination. Icarus 106, 190 (1993). https://doi.org/10.1006/icar.1993.1166ADSCrossRefGoogle Scholar
- 286.Williams, J.P., Cieza, L.A.: Protoplanetary disks and their evolution. ARA&A 49, 67–117 (2011). https://doi.org/10.1146/annurev-astro-081710-102548ADSCrossRefGoogle Scholar
- 287.Windmark, F., Birnstiel, T., Güttler, C., Blum, J., Dullemond, C.P., Henning, T.: Planetesimal formation by sweep-up: how the bouncing barrier can be beneficial to growth. A&A 540, A73 (2012). https://doi.org/10.1051/0004-6361/201118475ADSCrossRefGoogle Scholar
- 288.Windmark, F., Birnstiel, T., Ormel, C.W., Dullemond, C.P.: Breaking through: the effects of a velocity distribution on barriers to dust growth. A&A 544, L16 (2012). https://doi.org/10.1051/0004-6361/201220004ADSCrossRefGoogle Scholar
- 289.Winn, J.N., Fabrycky, D., Albrecht, S., Johnson, J.A.: Hot stars with Hot Jupiters have high obliquities. ApJ 718, L145–L149 (2010). https://doi.org/10.1088/2041-8205/718/2/L145ADSCrossRefGoogle Scholar
- 290.Winn, J.N., Fabrycky, D.C.: The occurrence and architecture of exoplanetary systems. ARA&A 53, 409–447 (2015). https://doi.org/10.1146/annurev-astro-082214-122246ADSCrossRefGoogle Scholar
- 291.Woolfson, M.M.: The Origin and Evolution of the Solar System. The Institute of Physics Publishing (2000)Google Scholar
- 292.Wu, Y., Murray, N.: Planet migration and binary companions: the case of HD 80606b. ApJ 589, 605–614 (2003). https://doi.org/10.1086/374598ADSCrossRefGoogle Scholar
- 293.Wurm, G., Blum, J., Colwell, J.E.: NOTE: a new mechanism relevant to the formation of planetesimals in the solar nebula. Icarus 151, 318–321 (2001). https://doi.org/10.1006/icar.2001.6620ADSCrossRefGoogle Scholar
- 294.Wurm, G., Paraskov, G., Krauss, O.: Growth of planetesimals by impacts at 25 m/s. Icarus 178, 253–263 (2005). https://doi.org/10.1016/j.icarus.2005.04.002ADSCrossRefGoogle Scholar
- 295.Xiang-Gruess, M., Papaloizou, J.C.B.: Interaction between massive planets on inclined orbits and circumstellar discs. MNRAS 431, 1320–1336 (2013). https://doi.org/10.1093/mnras/stt254ADSCrossRefGoogle Scholar
- 296.Youdin, A.N.: From grains to planetesimals. In: Montmerle, T., Ehrenreich, D., Lagrange, A.M. (eds.) EAS Publications Series. EAS Publications Series, vol. 41, pp. 187–207 (2010). https://doi.org/10.1051/eas/1041016CrossRefGoogle Scholar
- 297.Youdin, A.N., Goodman, J.: Streaming instabilities in protoplanetary disks. ApJ 620, 459–469 (2005). https://doi.org/10.1086/426895ADSCrossRefGoogle Scholar
- 298.Zhu, Z., Hartmann, L., Nelson, R.P., Gammie, C.F.: Challenges in forming planets by gravitational instability: disk irradiation and clump migration, accretion, and tidal destruction. ApJ 746, 110 (2012). https://doi.org/10.1088/0004-637X/746/1/110ADSCrossRefGoogle Scholar
- 299.Zsom, A., Ormel, C.W., Güttler, C., Blum, J., Dullemond, C.P.: The outcome of protoplanetary dust growth: pebbles, boulders, or planetesimals? II. Introducing the bouncing barrier. A&A 513, A57 (2010). https://doi.org/10.1051/0004-6361/200912976ADSCrossRefGoogle Scholar