Advertisement

Physical Processes in Protoplanetary Disks

  • Philip J. ArmitageEmail author
Chapter
Part of the Saas-Fee Advanced Course book series (SAASFEE, volume 45)

Abstract

This review, based on lectures given at the 45th Saas-Fee Advanced Course “From Protoplanetary Disks to Planet Formation”, introduces physical processes in protoplanetary disks relevant to accretion and the initial stages of planet formation. After a brief overview of the observational context, I introduce the elementary theory of disk structure and evolution, review the gas-phase physics of angular momentum transport through turbulence and disk winds, and discuss possible origins for the episodic accretion observed in Young Stellar Objects. Turning to solids, I review the evolution of single particles under aerodynamic forces, and describe the conditions necessary for the development of collective gas-particle instabilities. Observations show that disks can exhibit pronounced large-scale structure, and I discuss the types of structures that may form from gas and particle interactions at ice lines, vortices and zonal flows, prior to the formation of large planetary bodies. I conclude with disk dispersal.

Notes

Acknowledgements

My work on protoplanetary disk physics and planet formation has been supported by the National Science Foundation, by NASA under the Origins of Solar Systems, Exoplanet Research and Astrophysics Theory programs, and by the Space Telescope Science Institute. I acknowledge the hospitality of the IIB at the University of Liverpool, where much of this chapter was written, and thank Kaitlin Kratter for an informal review of the manuscript.

References

  1. 1.
    Adams, F.C., Hollenbach, D., Laughlin, G., Gorti, U.: Photoevaporation of circumstellar disks due to external far-ultraviolet radiation in stellar aggregates. ApJ 611, 360–379 (2004).  https://doi.org/10.1086/421989ADSCrossRefGoogle Scholar
  2. 2.
    Adams, F.C., Lada, C.J., Shu, F.H.: Spectral evolution of young stellar objects. ApJ 312, 788–806 (1987).  https://doi.org/10.1086/164924ADSCrossRefGoogle Scholar
  3. 3.
    Alencar, S.H.P., Teixeira, P.S., Guimarães, M.M., McGinnis, P.T., Gameiro, J.F., Bouvier, J., Aigrain, S., Flaccomio, E., Favata, F.: Accretion dynamics and disk evolution in NGC 2264: a study based on CoRoT photometric observations. A&A 519, A88 (2010).  https://doi.org/10.1051/0004-6361/201014184ADSCrossRefGoogle Scholar
  4. 4.
    Alexander, R., Pascucci, I., Andrews, S., Armitage, P., Cieza, L.: The Dispersal of Protoplanetary Disks. Protostars and Planets VI, pp. 475–496 (2014).  https://doi.org/10.2458/azu_uapress_9780816531240-ch021
  5. 5.
    Alexander, R.D., Armitage, P.J.: Dust dynamics during protoplanetary disc clearing. MNRAS 375, 500–512 (2007).  https://doi.org/10.1111/j.1365-2966.2006.11341.xADSCrossRefGoogle Scholar
  6. 6.
    Alexander, R.D., Clarke, C.J., Pringle, J.E.: Constraints on the ionizing flux emitted by T Tauri stars. MNRAS 358, 283–290 (2005).  https://doi.org/10.1111/j.1365-2966.2005.08786.xADSCrossRefGoogle Scholar
  7. 7.
    Alexander, R.D., Clarke, C.J., Pringle, J.E.: Photoevaporation of protoplanetary discs—I. Hydrodynamic models. MNRAS 369, 216–228 (2006).  https://doi.org/10.1111/j.1365-2966.2006.10293.xADSCrossRefGoogle Scholar
  8. 8.
    ALMA Partnership, Brogan, C.L., Pérez, L.M., Hunter, T.R., Dent, W.R.F., Hales, A.S., Hills, R.E., Corder, S., Fomalont, E.B., Vlahakis, C., Asaki, Y., Barkats, D., Hirota, A., Hodge, J.A., Impellizzeri, C.M.V., Kneissl, R., Liuzzo, E., Lucas, R., Marcelino, N., Matsushita, S., Nakanishi, K., Phillips, N., Richards, A.M.S., Toledo, I., Aladro, R., Broguiere, D., Cortes, J.R., Cortes, P.C., Espada, D., Galarza, F., Garcia-Appadoo, D., Guzman-Ramirez, L., Humphreys, E.M., Jung, T., Kameno, S., Laing, R.A., Leon, S., Marconi, G., Mignano, A., Nikolic, B., Nyman, L.A., Radiszcz, M., Remijan, A., Rodón, J.A., Sawada, T., Takahashi, S., Tilanus, R.P.J., Vila Vilaro, B., Watson, L.C., Wiklind, T., Akiyama, E., Chapillon, E., de Gregorio-Monsalvo, I., Di Francesco, J., Gueth, F., Kawamura, A., Lee, C.F., Nguyen Luong, Q., Mangum, J., Pietu, V., Sanhueza, P., Saigo, K., Takakuwa, S., Ubach, C., van Kempen, T., Wootten, A., Castro-Carrizo, A., Francke, H., Gallardo, J., Garcia, J., Gonzalez, S., Hill, T., Kaminski, T., Kurono, Y., Liu, H.Y., Lopez, C., Morales, F., Plarre, K., Schieven, G., Testi, L., Videla, L., Villard, E., Andreani, P., Hibbard, J.E., Tatematsu, K.: The 2014 ALMA long baseline campaign: first results from high angular resolution observations toward the HL Tau region. ApJ,  808, L3 (2015).  https://doi.org/10.1088/2041-8205/808/1/L3
  9. 9.
    Andrews, S.M., Williams, J.P.: Circumstellar dust disks in Taurus-Auriga: the submillimeter perspective. ApJ 631, 1134–1160 (2005).  https://doi.org/10.1086/432712ADSCrossRefGoogle Scholar
  10. 10.
    Andrews, S.M., Wilner, D.J., Espaillat, C., Hughes, A.M., Dullemond, C.P., McClure, M.K., Qi, C., Brown, J.M.: Resolved images of large cavities in protoplanetary transition disks. ApJ 732, 42 (2011).  https://doi.org/10.1088/0004-637X/732/1/42ADSCrossRefGoogle Scholar
  11. 11.
    Andrews, S.M., Wilner, D.J., Hughes, A.M., Qi, C., Dullemond, C.P.: Protoplanetary disk structures in Ophiuchus. ApJ 700, 1502–1523 (2009).  https://doi.org/10.1088/0004-637X/700/2/1502ADSCrossRefGoogle Scholar
  12. 12.
    Andrews, S.M., Wilner, D.J., Hughes, A.M., Qi, C., Rosenfeld, K.A., Öberg, K.I., Birnstiel, T., Espaillat, C., Cieza, L.A., Williams, J.P., Lin, S.Y., Ho, P.T.P.: The TW Hya disk at 870 \(\upmu \)m: comparison of CO and dust radial structures. ApJ 744, 162 (2012).  https://doi.org/10.1088/0004-637X/744/2/162ADSCrossRefGoogle Scholar
  13. 13.
    Andrews, S.M., Wilner, D.J., Zhu, Z., Birnstiel, T., Carpenter, J.M., Pérez, L.M., Bai, X.N., Öberg, K.I., Hughes, A.M., Isella, A., Ricci, L.: Ringed substructure and a gap at 1 au in the nearest protoplanetary disk. ApJ 820, L40 (2016).  https://doi.org/10.3847/2041-8205/820/2/L40ADSCrossRefGoogle Scholar
  14. 14.
    Armitage, P.J.: Magnetic cycles and photometric variability of T Tauri stars. MNRAS 274, 1242–1248 (1995)ADSGoogle Scholar
  15. 15.
    Armitage, P.J.: Turbulence and angular momentum transport in a global accretion disk simulation. ApJ 501, L189–L192 (1998).  https://doi.org/10.1086/311463ADSCrossRefGoogle Scholar
  16. 16.
    Armitage, P.J.: Magnetic activity in accretion disc boundary layers. MNRAS 330, 895–900 (2002).  https://doi.org/10.1046/j.1365-8711.2002.05152.xADSCrossRefGoogle Scholar
  17. 17.
    Armitage, P.J.: Lecture notes on the formation and early evolution of planetary systems. ArXiv Astrophysics e-prints (2007)Google Scholar
  18. 18.
    Armitage, P.J.: Astrophysics of Planet Formation, 294 pp. Cambridge University Press, Cambridge, UK (2010).   https://doi.org/10.1017/CBO9780511802225. ISBN 978-0-521-88745-8 (hardback)
  19. 19.
    Armitage, P.J.: Dynamics of protoplanetary disks. ARA&A 49, 195–236 (2011).  https://doi.org/10.1146/annurev-astro-081710-102521
  20. 20.
    Armitage, P.J.: A trap for planet formation. Science 340, 1179–1180 (2013).  https://doi.org/10.1126/science.1239404ADSCrossRefGoogle Scholar
  21. 21.
    Armitage, P.J.: EXor outbursts from disk amplification of stellar magnetic cycles. ApJ 833, L15 (2016).  https://doi.org/10.3847/2041-8213/833/2/L15ADSCrossRefGoogle Scholar
  22. 22.
    Armitage, P.J., Eisner, J.A., Simon, J.B.: Prompt planetesimal formation beyond the snow line. ApJ 828, L2 (2016).  https://doi.org/10.3847/2041-8205/828/1/L2ADSCrossRefGoogle Scholar
  23. 23.
    Armitage, P.J., Livio, M., Pringle, J.E.: Episodic accretion in magnetically layered protoplanetary discs. MNRAS 324, 705–711 (2001).  https://doi.org/10.1046/j.1365-8711.2001.04356.xADSCrossRefGoogle Scholar
  24. 24.
    Armitage, P.J., Simon, J.B., Martin, R.G.: Two timescale dispersal of magnetized protoplanetary disks. ApJ 778, L14 (2013).  https://doi.org/10.1088/2041-8205/778/1/L14ADSCrossRefGoogle Scholar
  25. 25.
    Artymowicz, P., Lubow, S.H.: Mass flow through gaps in circumbinary disks. ApJ 467, L77 (1996).  https://doi.org/10.1086/310200ADSCrossRefGoogle Scholar
  26. 26.
    Audard, M., Ábrahám, P., Dunham, M.M., Green, J.D., Grosso, N., Hamaguchi, K., Kastner, J.H., Kóspál, Á., Lodato, G., Romanova, M.M., Skinner, S.L., Vorobyov, E.I., Zhu, Z.: Episodic Accretion in Young Stars. Protostars and Planets VI, pp. 387–410 (2014)Google Scholar
  27. 27.
    Bae, J., Hartmann, L., Zhu, Z., Gammie, C.: The long-term evolution of photoevaporating protoplanetary disks. ApJ 774, 57 (2013).  https://doi.org/10.1088/0004-637X/774/1/57ADSCrossRefGoogle Scholar
  28. 28.
    Bae, J., Hartmann, L., Zhu, Z., Gammie, C.: Variable accretion outbursts in protostellar evolution. ApJ 764, 141 (2013).  https://doi.org/10.1088/0004-637X/764/2/141ADSCrossRefGoogle Scholar
  29. 29.
    Bae, J., Hartmann, L., Zhu, Z., Nelson, R.P.: Accretion outbursts in self-gravitating protoplanetary disks. ApJ 795, 61 (2014).  https://doi.org/10.1088/0004-637X/795/1/61ADSCrossRefGoogle Scholar
  30. 30.
    Baehr, H., Klahr, H., Kratter, K.M.: The fragmentation criteria in local vertically stratified self-gravitating disk simulations. ApJ 848, 40 (2017).  https://doi.org/10.3847/1538-4357/aa8a66ADSCrossRefGoogle Scholar
  31. 31.
    Bai, X.N.: Magnetorotational-instability-driven accretion in protoplanetary disks. ApJ 739, 50 (2011).  https://doi.org/10.1088/0004-637X/739/1/50ADSCrossRefGoogle Scholar
  32. 32.
    Bai, X.N.: Hall-effect-controlled gas dynamics in protoplanetary disks. I. Wind solutions at the inner disk. ApJ 791, 137 (2014).  https://doi.org/10.1088/0004-637X/791/2/137
  33. 33.
    Bai, X.N.: Hall effect controlled gas dynamics in protoplanetary disks. II. Full 3D simulations toward the outer disk. ApJ 798, 84 (2015).  https://doi.org/10.1088/0004-637X/798/2/84
  34. 34.
    Bai, X.N.: Global simulations of the inner regions of protoplanetary disks with comprehensive disk microphysics. ApJ 845, 75 (2017).  https://doi.org/10.3847/1538-4357/aa7ddaADSCrossRefGoogle Scholar
  35. 35.
    Bai, X.N., Goodman, J.: Heat and dust in active layers of protostellar disks. ApJ 701, 737–755 (2009).  https://doi.org/10.1088/0004-637X/701/1/737ADSCrossRefGoogle Scholar
  36. 36.
    Bai, X.N., Stone, J.M.: Dynamics of solids in the midplane of protoplanetary disks: implications for planetesimal formation. ApJ 722, 1437–1459 (2010).  https://doi.org/10.1088/0004-637X/722/2/1437ADSCrossRefGoogle Scholar
  37. 37.
    Bai, X.N., Stone, J.M.: The effect of the radial pressure gradient in protoplanetary disks on planetesimal formation. ApJ 722, L220–L223 (2010).  https://doi.org/10.1088/2041-8205/722/2/L220ADSCrossRefGoogle Scholar
  38. 38.
    Bai, X.N., Stone, J.M.: Effect of ambipolar diffusion on the nonlinear evolution of magnetorotational instability in weakly ionized disks. ApJ 736, 144 (2011).  https://doi.org/10.1088/0004-637X/736/2/144ADSCrossRefGoogle Scholar
  39. 39.
    Bai, X.N., Stone, J.M.: Wind-driven accretion in protoplanetary disks. I. Suppression of the magnetorotational instability and launching of the magnetocentrifugal wind. ApJ  769, 76 (2013).  https://doi.org/10.1088/0004-637X/769/1/76
  40. 40.
    Bai, X.N., Stone, J.M.: Magnetic flux concentration and zonal flows in magnetorotational instability turbulence. ApJ 796, 31 (2014).  https://doi.org/10.1088/0004-637X/796/1/31ADSCrossRefGoogle Scholar
  41. 41.
    Bai, X.N., Ye, J., Goodman, J., Yuan, F.: Magneto-thermal disk winds from protoplanetary disks. ApJ 818, 152 (2016).  https://doi.org/10.3847/0004-637X/818/2/152ADSCrossRefGoogle Scholar
  42. 42.
    Bakes, E.L.O., Tielens, A.G.G.M.: The photoelectric heating mechanism for very small graphitic grains and polycyclic aromatic hydrocarbons. ApJ 427, 822–838 (1994).  https://doi.org/10.1086/174188ADSCrossRefGoogle Scholar
  43. 43.
    Balbus, S.A.: Magnetohydrodynamics of Protostellar Disks, pp. 237–282 (2011)Google Scholar
  44. 44.
    Balbus, S.A., Hawley, J.F.: A powerful local shear instability in weakly magnetized disks. I—Linear analysis. II—Nonlinear evolution. ApJ 376, 214–233 (1991).  https://doi.org/10.1086/170270
  45. 45.
    Balbus, S.A., Hawley, J.F.: Instability, turbulence, and enhanced transport in accretion disks. Rev. Mod. Phys. 70, 1–53 (1998).  https://doi.org/10.1103/RevModPhys.70.1
  46. 46.
    Balbus, S.A., Hawley, J.F., Stone, J.M.: Nonlinear stability, hydrodynamical turbulence, and transport in disks. ApJ 467, 76 (1996).  https://doi.org/10.1086/177585
  47. 47.
    Balbus, S.A., Papaloizou, J.C.B.: On the dynamical foundations of \(\alpha \) disks. ApJ 521, 650–658 (1999).  https://doi.org/10.1086/307594ADSCrossRefGoogle Scholar
  48. 48.
    Balbus, S.A., Terquem, C.: Linear analysis of the Hall effect in protostellar disks. ApJ 552, 235–247 (2001).  https://doi.org/10.1086/320452ADSCrossRefGoogle Scholar
  49. 49.
    Bally, J., O’Dell, C.R., McCaughrean, M.J.: Disks, microjets, windblown bubbles, and outflows in the Orion Nebula. AJ 119, 2919–2959 (2000).  https://doi.org/10.1086/301385ADSCrossRefGoogle Scholar
  50. 50.
    Bally, J., Scoville, N.Z.: Structure and evolution of molecular clouds near H II regions. II—The disk constrained H II region, S106. ApJ 255, 497–509 (1982).  https://doi.org/10.1086/159850
  51. 51.
    Barge, P., Sommeria, J.: Did planet formation begin inside persistent gaseous vortices? A&A 295, L1–L4 (1995)ADSGoogle Scholar
  52. 52.
    Barker, A.J., Ogilvie, G.I.: Hydrodynamic instability in eccentric astrophysical discs. MNRAS 445, 2637–2654 (2014).  https://doi.org/10.1093/mnras/stu1939ADSCrossRefGoogle Scholar
  53. 53.
    Barranco, J.A., Marcus, P.S.: Three-dimensional vortices in stratified protoplanetary disks. ApJ 623, 1157–1170 (2005).  https://doi.org/10.1086/428639ADSCrossRefGoogle Scholar
  54. 54.
    Baruteau, C., Meru, F., Paardekooper, S.J.: Rapid inward migration of planets formed by gravitational instability. MNRAS 416, 1971–1982 (2011).  https://doi.org/10.1111/j.1365-2966.2011.19172.xADSCrossRefGoogle Scholar
  55. 55.
    Bastian, N., Covey, K.R., Meyer, M.R.: A universal stellar initial mass function? A critical look at variations. ARA&A 48, 339–389 (2010).  https://doi.org/10.1146/annurev-astro-082708-101642ADSCrossRefGoogle Scholar
  56. 56.
    Beckwith, S.V.W., Sargent, A.I.: Particle emissivity in circumstellar disks. ApJ 381, 250–258 (1991).  https://doi.org/10.1086/170646ADSCrossRefGoogle Scholar
  57. 57.
    Begelman, M.C., McKee, C.F., Shields, G.A.: Compton heated winds and coronae above accretion disks. I Dynamics. ApJ 271, 70–88 (1983).  https://doi.org/10.1086/161178ADSCrossRefGoogle Scholar
  58. 58.
    Bell, K.R., Cassen, P.M., Klahr, H.H., Henning, T.: The structure and appearance of protostellar accretion disks: limits on disk flaring. ApJ 486, 372–387 (1997)ADSCrossRefGoogle Scholar
  59. 59.
    Bell, K.R., Lin, D.N.C.: Using FU Orionis outbursts to constrain self-regulated protostellar disk models. ApJ 427, 987–1004 (1994).  https://doi.org/10.1086/174206ADSCrossRefGoogle Scholar
  60. 60.
    Belyaev, M.A., Rafikov, R.R., Stone, J.M.: Angular momentum transport by acoustic modes generated in the boundary layer. I. Hydrodynamical theory and simulations. ApJ 770, 67 (2013).  https://doi.org/10.1088/0004-637X/770/1/67ADSCrossRefGoogle Scholar
  61. 61.
    Belyaev, M.A., Rafikov, R.R., Stone, J.M.: Angular momentum transport by acoustic modes generated in the boundary layer. II. Magnetohydrodynamic simulations. ApJ 770, 68 (2013).  https://doi.org/10.1088/0004-637X/770/1/68ADSCrossRefGoogle Scholar
  62. 62.
    Bergin, E.A., Cleeves, L.I., Gorti, U., Zhang, K., Blake, G.A., Green, J.D., Andrews, S.M., Evans II, N.J., Henning, T., Öberg, K., Pontoppidan, K., Qi, C., Salyk, C., van Dishoeck, E.F.: An old disk still capable of forming a planetary system. Nature 493, 644–646 (2013).  https://doi.org/10.1038/nature11805ADSCrossRefGoogle Scholar
  63. 63.
    Besla, G., Wu, Y.: Formation of Narrow dust rings in circumstellar debris disks. ApJ 655, 528–540 (2007).  https://doi.org/10.1086/509495ADSCrossRefGoogle Scholar
  64. 64.
    Béthune, W., Lesur, G., Ferreira, J.: Global simulations of protoplanetary disks with net magnetic flux. I. Non-ideal MHD case. A&A 600, A75 (2017).  https://doi.org/10.1051/0004-6361/201630056ADSCrossRefGoogle Scholar
  65. 65.
    Birnstiel, T., Klahr, H., Ercolano, B.: A simple model for the evolution of the dust population in protoplanetary disks. A&A 539, A148 (2012).  https://doi.org/10.1051/0004-6361/201118136ADSCrossRefzbMATHGoogle Scholar
  66. 66.
    Bisschop, S.E., Fraser, H.J., Öberg, K.I., van Dishoeck, E.F., Schlemmer, S.: Desorption rates and sticking coefficients for CO and N\(_{2}\) interstellar ices. A&A 449, 1297–1309 (2006).  https://doi.org/10.1051/0004-6361:20054051ADSCrossRefGoogle Scholar
  67. 67.
    Bjorkman, J.E., Wood, K.: Radiative equilibrium and temperature correction in Monte Carlo radiation transfer. ApJ 554, 615–623 (2001).  https://doi.org/10.1086/321336ADSCrossRefGoogle Scholar
  68. 68.
    Blaes, O.M., Balbus, S.A.: Local shear instabilities in weakly ionized, weakly magnetized disks. ApJ 421, 163–177 (1994).  https://doi.org/10.1086/173634ADSCrossRefGoogle Scholar
  69. 69.
    Blandford, R.D., Payne, D.G.: Hydromagnetic flows from accretion discs and the production of radio jets. MNRAS 199, 883–903 (1982)ADSCrossRefGoogle Scholar
  70. 70.
    Blum, J., Wurm, G.: The growth mechanisms of macroscopic bodies in protoplanetary disks. ARA&A 46, 21–56 (2008).  https://doi.org/10.1146/annurev.astro.46.060407.145152ADSCrossRefGoogle Scholar
  71. 71.
    Bollard, J., Connelly, J.N., Whitehouse, M.J., Pringle, E.A., Bonal, L., Jørgensen, J.K., Nordlund, Å., Moynier, F., Bizzarro, M.: Early formation of planetary building blocks inferred from Pb isotopic ages of chondrules. Sci. Adv. 3, e1700,407 (2017).  https://doi.org/10.1126/sciadv.1700407
  72. 72.
    Bonnell, I., Bastien, P.: A binary origin for FU Orionis stars. ApJ 401, L31–L34 (1992).  https://doi.org/10.1086/186663ADSCrossRefGoogle Scholar
  73. 73.
    Bouvier, J., Alencar, S.H.P., Harries, T.J., Johns-Krull, C.M., Romanova, M.M.: Magnetospheric Accretion in Classical T Tauri Stars. Protostars and Planets V, pp. 479–494 (2007)Google Scholar
  74. 74.
    Bouvier, J., Cabrit, S., Fernandez, M., Martin, E.L., Matthews, J.M.: Coyotes-I—the photometric variability and rotational evolution of T-Tauri stars. A&A 272, 176 (1993)ADSGoogle Scholar
  75. 75.
    Bouvier, J., Matt, S.P., Mohanty, S., Scholz, A., Stassun, K.G., Zanni, C.: Angular Momentum Evolution of Young Low-Mass Stars and Brown Dwarfs: Observations and Theory. Protostars and Planets VI, pp. 433–450 (2014)Google Scholar
  76. 76.
    Brauer, F., Henning, T., Dullemond, C.P.: Planetesimal formation near the snow line in MRI-driven turbulent protoplanetary disks. A&A 487, L1–L4 (2008).  https://doi.org/10.1051/0004-6361:200809780ADSCrossRefGoogle Scholar
  77. 77.
    Burke, J.R., Hollenbach, D.J.: The gas-grain interaction in the interstellar medium—thermal accommodation and trapping. ApJ 265, 223–234 (1983).  https://doi.org/10.1086/160667ADSCrossRefGoogle Scholar
  78. 78.
    Calvet, N., D’Alessio, P., Watson, D.M., Franco-Hernández, R., Furlan, E., Green, J., Sutter, P.M., Forrest, W.J., Hartmann, L., Uchida, K.I., Keller, L.D., Sargent, B., Najita, J., Herter, T.L., Barry, D.J., Hall, P.: Disks in transition in the Taurus population: Spitzer IRS spectra of GM Aurigae and DM Tauri. ApJ 630, L185–L188 (2005).  https://doi.org/10.1086/491652ADSCrossRefGoogle Scholar
  79. 79.
    Cannizzo, J.K.: The accretion disk limit cycle model: toward an understanding of the long-term behavior of SS Cygni. ApJ 419, 318 (1993).  https://doi.org/10.1086/173486ADSCrossRefGoogle Scholar
  80. 80.
    Cao, X., Spruit, H.C.: Instability of an accretion disk with a magnetically driven wind. A&A 385, 289–300 (2002).  https://doi.org/10.1051/0004-6361:20011818ADSCrossRefGoogle Scholar
  81. 81.
    Carrera, D., Johansen, A., Davies, M.B.: How to form planetesimals from mm-sized chondrules and chondrule aggregates. A&A 579, A43 (2015).  https://doi.org/10.1051/0004-6361/201425120ADSCrossRefGoogle Scholar
  82. 82.
    Casassus, S., Marino, S., Pérez, S., Roman, P., Dunhill, A., Armitage, P.J., Cuadra, J., Wootten, A., van der Plas, G., Cieza, L., Moral, V., Christiaens, V., Montesinos, M.: Accretion kinematics through the warped transition disk in HD142527 from resolved CO(6–5) observations. ApJ 811, 92 (2015).  https://doi.org/10.1088/0004-637X/811/2/92ADSCrossRefGoogle Scholar
  83. 83.
    Casassus, S., van der Plas, G., M, S.P., Dent, W.R.F., Fomalont, E., Hagelberg, J., Hales, A., Jordán, A., Mawet, D., Ménard, F., Wootten, A., Wilner, D., Hughes, A.M., Schreiber, M.R., Girard, J.H., Ercolano, B., Canovas, H., Román, P.E., Salinas, V.: Flows of gas through a protoplanetary gap. Nature  493, 191–194 (2013).  https://doi.org/10.1038/nature11769
  84. 84.
    Cha, S.H., Nayakshin, S.: A numerical simulation of a ‘Super-Earth’ core delivery from 100 to 8 AU. MNRAS 415, 3319–3334 (2011).  https://doi.org/10.1111/j.1365-2966.2011.18953.xADSCrossRefGoogle Scholar
  85. 85.
    Chandrasekhar, S.: Hydrodynamic and hydromagnetic stability (1961)Google Scholar
  86. 86.
    Chang, P., Oishi, J.S.: On the stability of dust-laden protoplanetary vortices. ApJ 721, 1593–1602 (2010).  https://doi.org/10.1088/0004-637X/721/2/1593ADSCrossRefGoogle Scholar
  87. 87.
    Chauvin, G., Vigan, A., Bonnefoy, M., Desidera, S., Bonavita, M., Mesa, D., Boccaletti, A., Buenzli, E., Carson, J., Delorme, P., Hagelberg, J., Montagnier, G., Mordasini, C., Quanz, S.P., Segransan, D., Thalmann, C., Beuzit, J.L., Biller, B., Covino, E., Feldt, M., Girard, J., Gratton, R., Henning, T., Kasper, M., Lagrange, A.M., Messina, S., Meyer, M., Mouillet, D., Moutou, C., Reggiani, M., Schlieder, J.E., Zurlo, A.: The VLT/NaCo large program to probe the occurrence of exoplanets and brown dwarfs at wide orbits. II. Survey description, results, and performances. A&A 573, A127 (2015).  https://doi.org/10.1051/0004-6361/201423564
  88. 88.
    Chavanis, P.H.: Trapping of dust by coherent vortices in the solar nebula. A&A 356, 1089–1111 (2000)ADSGoogle Scholar
  89. 89.
    Chiang, E., Youdin, A.N.: Forming planetesimals in solar and extrasolar nebulae. Annu. Rev. Earth Planet. Sci. 38, 493–522 (2010).  https://doi.org/10.1146/annurev-earth-040809-152513ADSCrossRefGoogle Scholar
  90. 90.
    Chiang, E.I., Goldreich, P.: Spectral energy distributions of T Tauri stars with passive circumstellar disks. ApJ 490, 368–376 (1997)ADSCrossRefGoogle Scholar
  91. 91.
    Ciesla, F.J., Cuzzi, J.N.: The evolution of the water distribution in a viscous protoplanetary disk. Icarus 181, 178–204 (2006).  https://doi.org/10.1016/j.icarus.2005.11.009ADSCrossRefGoogle Scholar
  92. 92.
    Clarke, C.J.: The photoevaporation of discs around young stars in massive clusters. MNRAS 376, 1350–1356 (2007).  https://doi.org/10.1111/j.1365-2966.2007.11547.xADSCrossRefGoogle Scholar
  93. 93.
    Clarke, C.J.: Pseudo-viscous modelling of self-gravitating discs and the formation of low mass ratio binaries. MNRAS 396, 1066–1074 (2009).  https://doi.org/10.1111/j.1365-2966.2009.14774.xADSCrossRefGoogle Scholar
  94. 94.
    Clarke, C.J., Armitage, P.J., Smith, K.W., Pringle, J.E.: Magnetically modulated accretion in T Tauri stars. MNRAS 273, 639–642 (1995)ADSCrossRefGoogle Scholar
  95. 95.
    Clarke, C.J., Gendrin, A., Sotomayor, M.: The dispersal of circumstellar discs: the role of the ultraviolet switch. MNRAS 328, 485–491 (2001).  https://doi.org/10.1046/j.1365-8711.2001.04891.xADSCrossRefGoogle Scholar
  96. 96.
    Clarke, C.J., Pringle, J.E.: The diffusion of contaminant through an accretion disc. MNRAS 235, 365–373 (1988)ADSCrossRefGoogle Scholar
  97. 97.
    Clarke, C.J., Syer, D.: Low-mass companions to T Tauri stars: a mechanism for rapid-rise FU Orionis outbursts. MNRAS 278, L23–L27 (1996)ADSCrossRefGoogle Scholar
  98. 98.
    Cleeves, L.I., Bergin, E.A., Qi, C., Adams, F.C., Öberg, K.I.: Constraining the X-ray and cosmic-ray ionization chemistry of the TW Hya protoplanetary disk: evidence for a sub-interstellar cosmic-ray rate. ApJ 799, 204 (2015).  https://doi.org/10.1088/0004-637X/799/2/204ADSCrossRefGoogle Scholar
  99. 99.
    Cody, A.M., Stauffer, J., Baglin, A., Micela, G., Rebull, L.M., Flaccomio, E., Morales-Calderón, M., Aigrain, S., Bouvier, J., Hillenbrand, L.A., Gutermuth, R., Song, I., Turner, N., Alencar, S.H.P., Zwintz, K., Plavchan, P., Carpenter, J., Findeisen, K., Carey, S., Terebey, S., Hartmann, L., Calvet, N., Teixeira, P., Vrba, F.J., Wolk, S., Covey, K., Poppenhaeger, K., Günther, H.M., Forbrich, J., Whitney, B., Affer, L., Herbst, W., Hora, J., Barrado, D., Holtzman, J., Marchis, F., Wood, K., Medeiros Guimarães, M., Lillo Box, J., Gillen, E., McQuillan, A., Espaillat, C., Allen, L., D’Alessio, P., Favata, F.: CSI 2264: simultaneous optical and infrared light curves of young disk-bearing stars in NGC 2264 with CoRoT and Spitzer—evidence for multiple origins of variability. AJ 147, 82 (2014).  https://doi.org/10.1088/0004-6256/147/4/82
  100. 100.
    Coleman, M.S.B., Kotko, I., Blaes, O., Lasota, J.P., Hirose, S.: Dwarf nova outbursts with magnetorotational turbulence. MNRAS 462, 3710–3726 (2016).  https://doi.org/10.1093/mnras/stw1908ADSCrossRefGoogle Scholar
  101. 101.
    Connolly, H.C., Jones, R.H.: Chondrules: the canonical and noncanonical views. J. Geophys. Res. (Planets) 121, 1885–1899 (2016).  https://doi.org/10.1002/2016JE005113ADSCrossRefGoogle Scholar
  102. 102.
    Cossins, P., Lodato, G., Clarke, C.: The effects of opacity on gravitational stability in protoplanetary discs. MNRAS 401, 2587–2598 (2010).  https://doi.org/10.1111/j.1365-2966.2009.15835.xADSCrossRefGoogle Scholar
  103. 103.
    Cossins, P., Lodato, G., Clarke, C.J.: Characterizing the gravitational instability in cooling accretion discs. MNRAS 393, 1157–1173 (2009).  https://doi.org/10.1111/j.1365-2966.2008.14275.xADSCrossRefGoogle Scholar
  104. 104.
    Curry, C., Pudritz, R.E.: On the global stability of magnetized accretion disks. II. Vertical and Azimuthal magnetic fields. ApJ 453, 697 (1995).  https://doi.org/10.1086/176431
  105. 105.
    D’Angelo, C.R., Spruit, H.C.: Episodic accretion on to strongly magnetic stars. MNRAS 406, 1208–1219 (2010).  https://doi.org/10.1111/j.1365-2966.2010.16749.xADSCrossRefGoogle Scholar
  106. 106.
    D’Angelo, C.R., Spruit, H.C.: Accretion discs trapped near corotation. MNRAS 420, 416–429 (2012).  https://doi.org/10.1111/j.1365-2966.2011.20046.xADSCrossRefGoogle Scholar
  107. 107.
    Davis, S.W., Stone, J.M., Pessah, M.E.: Sustained magnetorotational turbulence in local simulations of stratified disks with zero net magnetic flux. ApJ 713, 52–65 (2010).  https://doi.org/10.1088/0004-637X/713/1/52ADSCrossRefGoogle Scholar
  108. 108.
    de Val-Borro, M., Artymowicz, P., D’Angelo, G., Peplinski, A.: Vortex generation in protoplanetary disks with an embedded giant planet. A&A 471, 1043–1055 (2007).  https://doi.org/10.1051/0004-6361:20077169ADSCrossRefGoogle Scholar
  109. 109.
    Deng, H., Mayer, L., Meru, F.: Convergence of the critical cooling rate for protoplanetary disk fragmentation achieved: the key role of numerical dissipation of angular momentum. ApJ 847, 43 (2017).  https://doi.org/10.3847/1538-4357/aa872bADSCrossRefGoogle Scholar
  110. 110.
    Desch, S.J.: Linear analysis of the magnetorotational instability, including ambipolar diffusion, with application to protoplanetary disks. ApJ 608, 509–525 (2004).  https://doi.org/10.1086/392527ADSCrossRefGoogle Scholar
  111. 111.
    Dittrich, K., Klahr, H., Johansen, A.: Gravoturbulent planetesimal formation: the positive effect of long-lived zonal flows. ApJ 763, 117 (2013).  https://doi.org/10.1088/0004-637X/763/2/117ADSCrossRefGoogle Scholar
  112. 112.
    D’Orazio, D.J., Haiman, Z., MacFadyen, A.: Accretion into the central cavity of a circumbinary disc. MNRAS 436, 2997–3020 (2013).  https://doi.org/10.1093/mnras/stt1787ADSCrossRefGoogle Scholar
  113. 113.
    Draine, B.T.: Photoelectric heating of interstellar gas. ApJs 36, 595–619 (1978).  https://doi.org/10.1086/190513ADSCrossRefGoogle Scholar
  114. 114.
    Draine, B.T.: On the submillimeter opacity of protoplanetary disks. ApJ 636, 1114–1120 (2006).  https://doi.org/10.1086/498130ADSCrossRefGoogle Scholar
  115. 115.
    Draine, B.T., Roberge, W.G., Dalgarno, A.: Magnetohydrodynamic shock waves in molecular clouds. ApJ 264, 485–507 (1983).  https://doi.org/10.1086/160617ADSCrossRefGoogle Scholar
  116. 116.
    Draine, B.T., Sutin, B.: Collisional charging of interstellar grains. ApJ 320, 803–817 (1987).  https://doi.org/10.1086/165596ADSCrossRefGoogle Scholar
  117. 117.
    Dubrulle, B., Morfill, G., Sterzik, M.: The dust subdisk in the protoplanetary nebula. Icarus 114, 237–246 (1995).  https://doi.org/10.1006/icar.1995.1058ADSCrossRefGoogle Scholar
  118. 118.
    Dutrey, A., Semenov, D., Chapillon, E., Gorti, U., Guilloteau, S., Hersant, F., Hogerheijde, M., Hughes, M., Meeus, G., Nomura, H., Piétu, V., Qi, C., Wakelam, V.: Physical and Chemical Structure of Planet-Forming Disks Probed by Millimeter Observations and Modeling. Protostars and Planets VI, pp. 317–338 (2014)Google Scholar
  119. 119.
    Eckhardt, B., Schneider, T.M., Hof, B., Westerweel, J.: Turbulence transition in pipe flow. Annu. Rev. Fluid Mech. 39, 447–468 (2007).  https://doi.org/10.1146/annurev.fluid.39.050905.110308ADSMathSciNetCrossRefzbMATHGoogle Scholar
  120. 120.
    Edlund, E.M., Ji, H.: Nonlinear stability of laboratory quasi-Keplerian flows. Phys. Rev. E 89(2), 021004 (2014).  https://doi.org/10.1103/PhysRevE.89.021004ADSCrossRefGoogle Scholar
  121. 121.
    Eisner, J.A., Hillenbrand, L.A., Carpenter, J.M., Wolf, S.: Constraining the evolutionary stage of Class I protostars: multiwavelength observations and modeling. ApJ 635, 396–421 (2005).  https://doi.org/10.1086/497161ADSCrossRefGoogle Scholar
  122. 122.
    Ercolano, B., Barlow, M.J., Storey, P.J.: The dusty MOCASSIN: fully self-consistent 3D photoionization and dust radiative transfer models. MNRAS 362, 1038–1046 (2005).  https://doi.org/10.1111/j.1365-2966.2005.09381.xADSCrossRefGoogle Scholar
  123. 123.
    Ercolano, B., Glassgold, A.E.: X-ray ionization rates in protoplanetary discs. MNRAS 436, 3446–3450 (2013).  https://doi.org/10.1093/mnras/stt1826ADSCrossRefGoogle Scholar
  124. 124.
    Espaillat, C., Muzerolle, J., Najita, J., Andrews, S., Zhu, Z., Calvet, N., Kraus, S., Hashimoto, J., Kraus, A., D’Alessio, P.: An Observational Perspective of Transitional Disks. Protostars and Planets VI, pp. 497–520 (2014)Google Scholar
  125. 125.
    Evans II, N.J., Dunham, M.M., Jørgensen, J.K., Enoch, M.L., Merín, B., van Dishoeck, E.F., Alcalá, J.M., Myers, P.C., Stapelfeldt, K.R., Huard, T.L., Allen, L.E., Harvey, P.M., van Kempen, T., Blake, G.A., Koerner, D.W., Mundy, L.G., Padgett, D.L., Sargent, A.I.: The Spitzer c2d legacy results: star-formation rates and efficiencies; evolution and lifetimes. ApJs 181, 321–350 (2009).  https://doi.org/10.1088/0067-0049/181/2/321ADSCrossRefGoogle Scholar
  126. 126.
    Faure, J., Fromang, S., Latter, H., Meheut, H.: Vortex cycles at the inner edges of dead zones in protoplanetary disks. A&A 573, A132 (2015).  https://doi.org/10.1051/0004-6361/201424162ADSCrossRefGoogle Scholar
  127. 127.
    Fedele, D., Carney, M., Hogerheijde, M.R., Walsh, C., Miotello, A., Klaassen, P., Bruderer, S., Henning, T., van Dishoeck, E.F.: ALMA unveils rings and gaps in the protoplanetary system \(<\)ASTROBJ\(>\)HD 169142\(</\)ASTROBJ\(>\): signatures of two giant protoplanets. A&A 600, A72 (2017).  https://doi.org/10.1051/0004-6361/201629860
  128. 128.
    Federrath, C., Banerjee, S.: The density structure and star formation rate of non-isothermal polytropic turbulence. MNRAS 448, 3297–3313 (2015).  https://doi.org/10.1093/mnras/stv180ADSCrossRefGoogle Scholar
  129. 129.
    Flaherty, K.M., Hughes, A.M., Rose, S.C., Simon, J.B., Qi, C., Andrews, S.M., Kóspál, Á., Wilner, D.J., Chiang, E., Armitage, P.J., Bai, X.N.: A three-dimensional view of turbulence: constraints on turbulent motions in the HD 163296 protoplanetary disk using DCO\(^{+}\). ApJ  843, 150 (2017).  https://doi.org/10.3847/1538-4357/aa79f9
  130. 130.
    Flaherty, K.M., Hughes, A.M., Rosenfeld, K.A., Andrews, S.M., Chiang, E., Simon, J.B., Kerzner, S., Wilner, D.J.: Weak turbulence in the HD 163296 protoplanetary disk revealed by ALMA CO observations. ApJ 813, 99 (2015).  https://doi.org/10.1088/0004-637X/813/2/99ADSCrossRefGoogle Scholar
  131. 131.
    Fleming, T., Stone, J.M.: Local magnetohydrodynamic models of layered accretion disks. ApJ 585, 908–920 (2003).  https://doi.org/10.1086/345848ADSCrossRefGoogle Scholar
  132. 132.
    Flock, M., Ruge, J.P., Dzyurkevich, N., Henning, T., Klahr, H., Wolf, S.: Gaps, rings, and non-axisymmetric structures in protoplanetary disks. From simulations to ALMA observations. A&A 574, A68 (2015).  https://doi.org/10.1051/0004-6361/201424693ADSCrossRefGoogle Scholar
  133. 133.
    Follette, K.B., Rameau, J., Dong, R., Pueyo, L., Close, L.M., Duchêne, G., Fung, J., Leonard, C., Macintosh, B., Males, J.R., Marois, C., Millar-Blanchaer, M.A., Morzinski, K.M., Mullen, W., Perrin, M., Spiro, E., Wang, J., Ammons, S.M., Bailey, V.P., Barman, T., Bulger, J., Chilcote, J., Cotten, T., De Rosa, R.J., Doyon, R., Fitzgerald, M.P., Goodsell, S.J., Graham, J.R., Greenbaum, A.Z., Hibon, P., Hung, L.W., Ingraham, P., Kalas, P., Konopacky, Q., Larkin, J.E., Maire, J., Marchis, F., Metchev, S., Nielsen, E.L., Oppenheimer, R., Palmer, D., Patience, J., Poyneer, L., Rajan, A., Rantakyrö, F.T., Savransky, D., Schneider, A.C., Sivaramakrishnan, A., Song, I., Soummer, R., Thomas, S., Vega, D., Wallace, J.K., Ward-Duong, K., Wiktorowicz, S., Wolff, S.: Complex spiral structure in the HD 100546 transitional disk as revealed by GPI and MagAO. AJ 153, 264 (2017).  https://doi.org/10.3847/1538-3881/aa6d85ADSCrossRefGoogle Scholar
  134. 134.
    Font, A.S., McCarthy, I.G., Johnstone, D., Ballantyne, D.R.: Photoevaporation of circumstellar disks around young stars. ApJ 607, 890–903 (2004).  https://doi.org/10.1086/383518ADSCrossRefGoogle Scholar
  135. 135.
    Forgan, D., Rice, K.: Stellar encounters in the context of outburst phenomena. MNRAS 402, 1349–1356 (2010).  https://doi.org/10.1111/j.1365-2966.2009.15974.xADSCrossRefGoogle Scholar
  136. 136.
    Forgan, D., Rice, K., Cossins, P., Lodato, G.: The nature of angular momentum transport in radiative self-gravitating protostellar discs. MNRAS 410, 994–1006 (2011).  https://doi.org/10.1111/j.1365-2966.2010.17500.xADSCrossRefGoogle Scholar
  137. 137.
    France, K., Schindhelm, E., Bergin, E.A., Roueff, E., Abgrall, H.: High-resolution ultraviolet radiation fields of classical T Tauri stars. ApJ 784, 127 (2014).  https://doi.org/10.1088/0004-637X/784/2/127ADSCrossRefGoogle Scholar
  138. 138.
    France, K., Schindhelm, E., Herczeg, G.J., Brown, A., Abgrall, H., Alexander, R.D., Bergin, E.A., Brown, J.M., Linsky, J.L., Roueff, E., Yang, H.: A Hubble Space telescope survey of H\(_{2}\) emission in the circumstellar environments of young stars. ApJ 756, 171 (2012).  https://doi.org/10.1088/0004-637X/756/2/171ADSCrossRefGoogle Scholar
  139. 139.
    Frank, J., King, A., Raine, D.J.: Accretion Power in Astrophysics, 3rd ed. (2002)Google Scholar
  140. 140.
    Fricke, K.: Instabilität stationärer Rotation in Sternen. Zeitschrift für Astrophysik 68, 317 (1968)ADSGoogle Scholar
  141. 141.
    Fromang, S.: MRI-driven angular momentum transport in protoplanetary disks. In: Hennebelle, P., Charbonnel, P. (eds.) EAS Publications Series, vol. 62, pp. 95–142 (2013).  https://doi.org/10.1051/eas/1362004
  142. 142.
    Fromang, S., Latter, H., Lesur, G., Ogilvie, G.I.: Local outflows from turbulent accretion disks. A&A 552, A71 (2013).  https://doi.org/10.1051/0004-6361/201220016ADSCrossRefGoogle Scholar
  143. 143.
    Fromang, S., Papaloizou, J.: Dust settling in local simulations of turbulent protoplanetary disks. A&A 452, 751–762 (2006).  https://doi.org/10.1051/0004-6361:20054612ADSCrossRefGoogle Scholar
  144. 144.
    Fu, R.R., Weiss, B.P., Lima, E.A., Harrison, R.J., Bai, X.N., Desch, S.J., Ebel, D.S., Suavet, C., Wang, H., Glenn, D., Le Sage, D., Kasama, T., Walsworth, R.L., Kuan, A.T.: Solar nebula magnetic fields recorded in the semarkona meteorite. Science (2014).  https://doi.org/10.1126/science.1258022. http://www.sciencemag.org/content/early/2014/11/12/science.1258022.abstract
  145. 145.
    Fu, W., Li, H., Lubow, S., Li, S., Liang, E.: Effects of dust feedback on vortices in protoplanetary disks. ApJ 795, L39 (2014).  https://doi.org/10.1088/2041-8205/795/2/L39ADSCrossRefGoogle Scholar
  146. 146.
    Galicher, R., Marois, C., Macintosh, B., Zuckerman, B., Barman, T., Konopacky, Q., Song, I., Patience, J., Lafrenière, D., Doyon, R., Nielsen, E.L.: The international deep planet survey. II. The frequency of directly imaged giant exoplanets with stellar mass. A&A  594, A63 (2016).  https://doi.org/10.1051/0004-6361/201527828
  147. 147.
    Galvagni, M., Hayfield, T., Boley, A., Mayer, L., Roškar, R., Saha, P.: The collapse of protoplanetary clumps formed through disc instability: 3D simulations of the pre-dissociation phase. MNRAS 427, 1725–1740 (2012).  https://doi.org/10.1111/j.1365-2966.2012.22096.xADSCrossRefGoogle Scholar
  148. 148.
    Gammie, C.F.: Layered accretion in T Tauri disks. ApJ 457, 355 (1996).  https://doi.org/10.1086/176735ADSCrossRefGoogle Scholar
  149. 149.
    Gammie, C.F.: Instabilities in circumstellar discs. In: Sellwood, J.A., Goodman, J. (eds.) Astrophysical Discs—An EC Summer School. Astronomical Society of the Pacific Conference Series, vol. 160, p. 122 (1999)Google Scholar
  150. 150.
    Gammie, C.F.: Nonlinear outcome of gravitational instability in cooling, gaseous disks. ApJ 553, 174–183 (2001).  https://doi.org/10.1086/320631ADSCrossRefGoogle Scholar
  151. 151.
    Garaud, P., Lin, D.N.C.: The effect of internal dissipation and surface irradiation on the structure of disks and the location of the snow line around Sun-like stars. ApJ 654, 606–624 (2007).  https://doi.org/10.1086/509041ADSCrossRefGoogle Scholar
  152. 152.
    Garufi, A., Quanz, S.P., Schmid, H.M., Mulders, G.D., Avenhaus, H., Boccaletti, A., Ginski, C., Langlois, M., Stolker, T., Augereau, J.C., Benisty, M., Lopez, B., Dominik, C., Gratton, R., Henning, T., Janson, M., Ménard, F., Meyer, M.R., Pinte, C., Sissa, E., Vigan, A., Zurlo, A., Bazzon, A., Buenzli, E., Bonnefoy, M., Brandner, W., Chauvin, G., Cheetham, A., Cudel, M., Desidera, S., Feldt, M., Galicher, R., Kasper, M., Lagrange, A.M., Lannier, J., Maire, A.L., Mesa, D., Mouillet, D., Peretti, S., Perrot, C., Salter, G., Wildi, F.: The SPHERE view of the planet-forming disk around HD 100546. A&A 588, A8 (2016).  https://doi.org/10.1051/0004-6361/201527940ADSCrossRefGoogle Scholar
  153. 153.
    Gibbons, P.G., Mamatsashvili, G.R., Rice, W.K.M.: Planetesimal formation in self-gravitating discs—the effects of particle self-gravity and back-reaction. MNRAS 442, 361–371 (2014).  https://doi.org/10.1093/mnras/stu809ADSCrossRefGoogle Scholar
  154. 154.
    Godon, P., Livio, M.: The formation and role of vortices in protoplanetary disks. ApJ 537, 396–404 (2000).  https://doi.org/10.1086/309019ADSCrossRefGoogle Scholar
  155. 155.
    Goldreich, P., Goodman, J., Narayan, R.: The stability of accretion tori. I—Long-wavelength modes of slender tori. MNRAS 221, 339–364 (1986)Google Scholar
  156. 156.
    Goldreich, P., Schubert, G.: Differential rotation in stars. ApJ 150, 571 (1967).  https://doi.org/10.1086/149360ADSCrossRefGoogle Scholar
  157. 157.
    Goodman, A.A., Benson, P.J., Fuller, G.A., Myers, P.C.: Dense cores in dark clouds. VIII—Velocity gradients. ApJ 406, 528–547 (1993).  https://doi.org/10.1086/172465ADSCrossRefGoogle Scholar
  158. 158.
    Gorti, U., Dullemond, C.P., Hollenbach, D.: Time evolution of viscous circumstellar disks due to photoevaporation by far-ultraviolet, extreme-ultraviolet, and X-ray radiation from the central star. ApJ 705, 1237–1251 (2009).  https://doi.org/10.1088/0004-637X/705/2/1237ADSCrossRefGoogle Scholar
  159. 159.
    Gorti, U., Hollenbach, D.: Photoevaporation of circumstellar disks by far-ultraviolet, extreme-ultraviolet and X-ray radiation from the central star. ApJ 690, 1539–1552 (2009).  https://doi.org/10.1088/0004-637X/690/2/1539ADSCrossRefGoogle Scholar
  160. 160.
    Gorti, U., Hollenbach, D., Dullemond, C.P.: The impact of dust evolution and photoevaporation on disk dispersal. ApJ 804, 29 (2015).  https://doi.org/10.1088/0004-637X/804/1/29ADSCrossRefGoogle Scholar
  161. 161.
    Grady, C.A., Muto, T., Hashimoto, J., Fukagawa, M., Currie, T., Biller, B., Thalmann, C., Sitko, M.L., Russell, R., Wisniewski, J., Dong, R., Kwon, J., Sai, S., Hornbeck, J., Schneider, G., Hines, D., Moro Martín, A., Feldt, M., Henning, T., Pott, J.U., Bonnefoy, M., Bouwman, J., Lacour, S., Mueller, A., Juhász, A., Crida, A., Chauvin, G., Andrews, S., Wilner, D., Kraus, A., Dahm, S., Robitaille, T., Jang-Condell, H., Abe, L., Akiyama, E., Brandner, W., Brandt, T., Carson, J., Egner, S., Follette, K.B., Goto, M., Guyon, O., Hayano, Y., Hayashi, M., Hayashi, S., Hodapp, K., Ishii, M., Iye, M., Janson, M., Kandori, R., Knapp, G., Kudo, T., Kusakabe, N., Kuzuhara, M., Mayama, S., McElwain, M., Matsuo, T., Miyama, S., Morino, J.I., Nishimura, T., Pyo, T.S., Serabyn, G., Suto, H., Suzuki, R., Takami, M., Takato, N., Terada, H., Tomono, D., Turner, E., Watanabe, M., Yamada, T., Takami, H., Usuda, T., Tamura, M.: Spiral arms in the asymmetrically illuminated disk of MWC 758 and constraints on giant planets. ApJ 762, 48 (2013).  https://doi.org/10.1088/0004-637X/762/1/48ADSCrossRefGoogle Scholar
  162. 162.
    Gressel, O., Turner, N.J., Nelson, R.P., McNally, C.P.: Global simulations of protoplanetary disks with ohmic resistivity and ambipolar diffusion. ApJ 801, 84 (2015).  https://doi.org/10.1088/0004-637X/801/2/84ADSCrossRefGoogle Scholar
  163. 163.
    Güdel, M., Briggs, K.R., Arzner, K., Audard, M., Bouvier, J., Feigelson, E.D., Franciosini, E., Glauser, A., Grosso, N., Micela, G., Monin, J.L., Montmerle, T., Padgett, D.L., Palla, F., Pillitteri, I., Rebull, L., Scelsi, L., Silva, B., Skinner, S.L., Stelzer, B., Telleschi, A.: The XMM-Newton extended survey of the Taurus molecular cloud (XEST). A&A 468, 353–377 (2007).  https://doi.org/10.1051/0004-6361:20065724ADSCrossRefGoogle Scholar
  164. 164.
    Guilet, J., Ogilvie, G.I.: Transport of magnetic flux and the vertical structure of accretion discs—I. Uniform diffusion coefficients. MNRAS 424, 2097–2117 (2012).  https://doi.org/10.1111/j.1365-2966.2012.21361.xADSCrossRefGoogle Scholar
  165. 165.
    Guilet, J., Ogilvie, G.I.: Global evolution of the magnetic field in a thin disc and its consequences for protoplanetary systems. MNRAS 441, 852–868 (2014).  https://doi.org/10.1093/mnras/stu532ADSCrossRefGoogle Scholar
  166. 166.
    Gullbring, E., Calvet, N., Muzerolle, J., Hartmann, L.: The structure and emission of the accretion shock in T Tauri stars. II. The ultraviolet-continuum emission. ApJ 544, 927–932 (2000).  https://doi.org/10.1086/317253ADSCrossRefGoogle Scholar
  167. 167.
    Gullbring, E., Hartmann, L., Briceño, C., Calvet, N.: Disk accretion rates for T Tauri stars. ApJ 492, 323–341 (1998).  https://doi.org/10.1086/305032ADSCrossRefGoogle Scholar
  168. 168.
    Hōshi, R.: Accretion model for outbursts of dwarf nova. Prog. Theor. Phys. 61, 1307–1319 (1979).  https://doi.org/10.1143/PTP.61.1307ADSCrossRefGoogle Scholar
  169. 169.
    Haghighipour, N., Boss, A.P.: On pressure gradients and rapid migration of solids in a nonuniform solar nebula. ApJ 583, 996–1003 (2003).  https://doi.org/10.1086/345472ADSCrossRefGoogle Scholar
  170. 170.
    Haisch Jr., K.E., Lada, E.A., Lada, C.J.: Disk frequencies and lifetimes in young clusters. ApJ 553, L153–L156 (2001).  https://doi.org/10.1086/320685ADSCrossRefGoogle Scholar
  171. 171.
    Hartmann, L., Calvet, N., Gullbring, E., D’Alessio, P.: Accretion and the evolution of T Tauri disks. ApJ 495, 385–400 (1998).  https://doi.org/10.1086/305277ADSCrossRefGoogle Scholar
  172. 172.
    Hartmann, L., Kenyon, S.J.: The FU Orionis phenomenon. ARA&A 34, 207–240 (1996).  https://doi.org/10.1146/annurev.astro.34.1.207
  173. 173.
    Hawley, J.F., Gammie, C.F., Balbus, S.A.: Local three-dimensional magnetohydrodynamic simulations of accretion disks. ApJ 440, 742 (1995).  https://doi.org/10.1086/175311ADSCrossRefGoogle Scholar
  174. 174.
    Hawley, J.F., Stone, J.M.: Nonlinear evolution of the magnetorotational instability in ion-neutral disks. ApJ 501, 758–771 (1998).  https://doi.org/10.1086/305849ADSCrossRefGoogle Scholar
  175. 175.
    Hayashi, C.: Structure of the solar nebula, growth and decay of magnetic fields and effects of magnetic and turbulent viscosities on the nebula. Prog. Theor. Phys. Suppl. 70, 35–53 (1981).  https://doi.org/10.1143/PTPS.70.35ADSCrossRefGoogle Scholar
  176. 176.
    Haynes, D.R., Tro, N.J., George, S.M.: Condensation and evaporation of H\({}_2\)O on ice surfaces. J. Phys. Chem. 96, 8502–8509 (1992)ADSCrossRefGoogle Scholar
  177. 177.
    Henning, T., Semenov, D.: Chemistry in protoplanetary disks. Chem. Rev. 113, 9016–9042 (2013).  https://doi.org/10.1021/cr400128pCrossRefGoogle Scholar
  178. 178.
    Herbig, G.H.: Eruptive phenomena in early stellar evolution. ApJ 217, 693–715 (1977).  https://doi.org/10.1086/155615ADSCrossRefGoogle Scholar
  179. 179.
    Herbig, G.H.: History and spectroscopy of EXor candidates. AJ 135, 637–648 (2008).  https://doi.org/10.1088/0004-6256/135/2/637ADSCrossRefGoogle Scholar
  180. 180.
    Herczeg, G.J., Hillenbrand, L.A.: UV excess measures of accretion onto young very low mass stars and brown dwarfs. ApJ 681, 594–625 (2008).  https://doi.org/10.1086/586728ADSCrossRefGoogle Scholar
  181. 181.
    Hernández, J., Hartmann, L., Megeath, T., Gutermuth, R., Muzerolle, J., Calvet, N., Vivas, A.K., Briceño, C., Allen, L., Stauffer, J., Young, E., Fazio, G.: A Spitzer space telescope study of disks in the young \(\sigma \) Orionis cluster. ApJ 662, 1067–1081 (2007).  https://doi.org/10.1086/513735ADSCrossRefGoogle Scholar
  182. 182.
    Hillenbrand, L.A., Findeisen, K.P.: A simple calculation in service of constraining the rate of FU Orionis outburst events from photometric monitoring surveys. ApJ 808, 68 (2015).  https://doi.org/10.1088/0004-637X/808/1/68ADSCrossRefGoogle Scholar
  183. 183.
    Hirose, S., Blaes, O., Krolik, J.H., Coleman, M.S.B., Sano, T.: Convection causes enhanced magnetic turbulence in accretion disks in outburst. ApJ 787, 1 (2014).  https://doi.org/10.1088/0004-637X/787/1/1ADSCrossRefGoogle Scholar
  184. 184.
    Hirose, S., Turner, N.J.: Heating and cooling protostellar disks. ApJ 732, L30 (2011).  https://doi.org/10.1088/2041-8205/732/2/L30ADSCrossRefGoogle Scholar
  185. 185.
    Hogerheijde, M.R., Bergin, E.A., Brinch, C., Cleeves, L.I., Fogel, J.K.J., Blake, G.A., Dominik, C., Lis, D.C., Melnick, G., Neufeld, D., Panić, O., Pearson, J.C., Kristensen, L., Yıldız, U.A., van Dishoeck, E.F.: Detection of the water reservoir in a forming planetary system. Science 334, 338 (2011).  https://doi.org/10.1126/science.1208931ADSCrossRefGoogle Scholar
  186. 186.
    Hollenbach, D., Johnstone, D., Lizano, S., Shu, F.: Photoevaporation of disks around massive stars and application to ultracompact H II regions. ApJ 428, 654–669 (1994).  https://doi.org/10.1086/174276ADSCrossRefGoogle Scholar
  187. 187.
    Hopkins, P.F.: A new class of accurate, mesh-free hydrodynamic simulation methods. MNRAS 450, 53–110 (2015).  https://doi.org/10.1093/mnras/stv195ADSCrossRefGoogle Scholar
  188. 188.
    Ilgner, M., Nelson, R.P.: On the ionisation fraction in protoplanetary disks. I. Comparing different reaction networks. A&A 445, 205–222 (2006).  https://doi.org/10.1051/0004-6361:20053678ADSCrossRefGoogle Scholar
  189. 189.
    Illarionov, A.F., Sunyaev, R.A.: Why the number of galactic X-ray stars is so small? A&A 39, 185 (1975)ADSGoogle Scholar
  190. 190.
    Inaba, S., Barge, P.: Dusty vortices in protoplanetary disks. ApJ 649, 415–427 (2006).  https://doi.org/10.1086/506427ADSCrossRefGoogle Scholar
  191. 191.
    Ingleby, L., Calvet, N., Hernández, J., Briceño, C., Espaillat, C., Miller, J., Bergin, E., Hartmann, L.: Evolution of X-ray and far-ultraviolet disk-dispersing radiation fields. AJ 141, 127 (2011).  https://doi.org/10.1088/0004-6256/141/4/127ADSCrossRefGoogle Scholar
  192. 192.
    Inutsuka, S.I., Sano, T.: Self-sustained ionization and vanishing dead zones in protoplanetary disks. ApJ  628, L155–L158 (2005).  https://doi.org/10.1086/432796
  193. 193.
    Isella, A., Guidi, G., Testi, L., Liu, S., Li, H., Li, S., Weaver, E., Boehler, Y., Carperter, J.M., De Gregorio-Monsalvo, I., Manara, C.F., Natta, A., Pérez, L.M., Ricci, L., Sargent, A., Tazzari, M., Turner, N.: Ringed structures of the HD 163296 protoplanetary disk revealed by ALMA. Phys. Rev. Lett. 117(25), 251101 (2016).  https://doi.org/10.1103/PhysRevLett.117.251101
  194. 194.
    Isella, A., Pérez, L.M., Carpenter, J.M., Ricci, L., Andrews, S., Rosenfeld, K.: An Azimuthal asymmetry in the LkH\(\alpha \) 330 disk. ApJ 775, 30 (2013).  https://doi.org/10.1088/0004-637X/775/1/30ADSCrossRefGoogle Scholar
  195. 195.
    Jacquet, E., Balbus, S., Latter, H.: On linear dust-gas streaming instabilities in protoplanetary discs. MNRAS 415, 3591–3598 (2011).  https://doi.org/10.1111/j.1365-2966.2011.18971.xADSCrossRefGoogle Scholar
  196. 196.
    Jin, L.: Damping of the shear instability in magnetized disks by ohmic diffusion. ApJ 457, 798 (1996).  https://doi.org/10.1086/176774ADSCrossRefGoogle Scholar
  197. 197.
    Johansen, A., Blum, J., Tanaka, H., Ormel, C., Bizzarro, M., Rickman, H.: The Multifaceted Planetesimal Formation Process. Protostars and Planets VI, pp. 547–570 (2014)Google Scholar
  198. 198.
    Johansen, A., Klahr, H., Henning, T.: High-resolution simulations of planetesimal formation in turbulent protoplanetary discs. A&A 529, A62 (2011).  https://doi.org/10.1051/0004-6361/201015979ADSCrossRefGoogle Scholar
  199. 199.
    Johansen, A., Mac Low, M.M., Lacerda, P., Bizzarro, M.: Growth of asteroids, planetary embryos, and Kuiper belt objects by chondrule accretion. Sci. Adv. 1, 1500109 (2015).  https://doi.org/10.1126/sciadv.1500109ADSCrossRefGoogle Scholar
  200. 200.
    Johansen, A., Oishi, J.S., Mac Low, M.M., Klahr, H., Henning, T., Youdin, A.: Rapid planetesimal formation in turbulent circumstellar disks. Nature 448, 1022–1025 (2007).  https://doi.org/10.1038/nature06086ADSCrossRefGoogle Scholar
  201. 201.
    Johansen, A., Youdin, A.: Protoplanetary disk turbulence driven by the streaming instability: nonlinear saturation and particle concentration. ApJ 662, 627–641 (2007).  https://doi.org/10.1086/516730ADSCrossRefGoogle Scholar
  202. 202.
    Johansen, A., Youdin, A., Klahr, H.: Zonal flows and long-lived axisymmetric pressure bumps in magnetorotational turbulence. ApJ 697, 1269–1289 (2009).  https://doi.org/10.1088/0004-637X/697/2/1269ADSCrossRefGoogle Scholar
  203. 203.
    Johansen, A., Youdin, A., Mac Low, M.M.: Particle clumping and planetesimal formation depend strongly on metallicity. ApJ 704, L75–L79 (2009).  https://doi.org/10.1088/0004-637X/704/2/L75ADSCrossRefGoogle Scholar
  204. 204.
    Johnson, B.M., Gammie, C.F.: Nonlinear outcome of gravitational instability in disks with realistic cooling. ApJ 597, 131–141 (2003).  https://doi.org/10.1086/378392ADSCrossRefGoogle Scholar
  205. 205.
    Johnson, B.M., Gammie, C.F.: Vortices in thin, compressible, unmagnetized disks. ApJ 635, 149–156 (2005).  https://doi.org/10.1086/497358ADSCrossRefGoogle Scholar
  206. 206.
    Johnstone, C.P., Jardine, M., Gregory, S.G., Donati, J.F., Hussain, G.: Classical T Tauri stars: magnetic fields, coronae and star-disc interactions. MNRAS 437, 3202–3220 (2014).  https://doi.org/10.1093/mnras/stt2107ADSCrossRefGoogle Scholar
  207. 207.
    Joy, A.H.: T Tauri variable stars. ApJ 102, 168 (1945).  https://doi.org/10.1086/144749ADSCrossRefGoogle Scholar
  208. 208.
    Kama, M., Bruderer, S., van Dishoeck, E.F., Hogerheijde, M., Folsom, C.P., Miotello, A., Fedele, D., Belloche, A., Güsten, R., Wyrowski, F.: Volatile-carbon locking and release in protoplanetary disks. A study of TW Hya and HD 100546. A&A  592, A83 (2016).  https://doi.org/10.1051/0004-6361/201526991
  209. 209.
    Kamp, I., Dullemond, C.P.: The gas temperature in the surface layers of protoplanetary disks. ApJ 615, 991–999 (2004).  https://doi.org/10.1086/424703ADSCrossRefGoogle Scholar
  210. 210.
    Kamp, I., van Zadelhoff, G.J.: On the gas temperature in circumstellar disks around A stars. A&A 373, 641–656 (2001).  https://doi.org/10.1051/0004-6361:20010629ADSCrossRefGoogle Scholar
  211. 211.
    Kenyon, S.J., Hartmann, L.: Spectral energy distributions of T Tauri stars—disk flaring and limits on accretion. ApJ 323, 714–733 (1987).  https://doi.org/10.1086/165866ADSCrossRefGoogle Scholar
  212. 212.
    Kerswell, R.R.: Elliptical instability. Annu. Rev. Fluid Mech. 34, 83–113 (2002).  https://doi.org/10.1146/annurev.fluid.34.081701.171829ADSMathSciNetCrossRefzbMATHGoogle Scholar
  213. 213.
    Kida, S.: Motion of an elliptic vortex in a uniform shear flow. J. Phys. Soc. Jpn. 50, 3517–3520 (1981).  https://doi.org/10.1143/JPSJ.50.3517ADSCrossRefGoogle Scholar
  214. 214.
    Kim, K.H., Watson, D.M., Manoj, P., Forrest, W.J., Furlan, E., Najita, J., Sargent, B., Hernández, J., Calvet, N., Adame, L., Espaillat, C., Megeath, S.T., Muzerolle, J., McClure, M.K.: The Spitzer infrared spectrograph survey of protoplanetary disks in Orion A. I. Disk properties. ApJs 226, 8 (2016).  https://doi.org/10.3847/0067-0049/226/1/8ADSCrossRefGoogle Scholar
  215. 215.
    King, A.R., Pringle, J.E., Livio, M.: Accretion disc viscosity: how big is alpha? MNRAS 376, 1740–1746 (2007).  https://doi.org/10.1111/j.1365-2966.2007.11556.xADSCrossRefGoogle Scholar
  216. 216.
    Klahr, H.H., Bodenheimer, P.: Turbulence in accretion disks: vorticity generation and angular momentum transport via the global baroclinic instability. ApJ 582, 869–892 (2003).  https://doi.org/10.1086/344743ADSCrossRefGoogle Scholar
  217. 217.
    Kley, W., Lin, D.N.C.: The structure of the boundary layer in protostellar disks. ApJ 461, 933 (1996).  https://doi.org/10.1086/177115ADSCrossRefGoogle Scholar
  218. 218.
    Kley, W., Nelson, R.P.: Planet-disk interaction and orbital evolution. ARA&A 50, 211–249 (2012).  https://doi.org/10.1146/annurev-astro-081811-125523
  219. 219.
    Koenigl, A.: Disk accretion onto magnetic T Tauri stars. ApJ 370, L39–L43 (1991).  https://doi.org/10.1086/185972ADSCrossRefGoogle Scholar
  220. 220.
    Koller, J., Li, H., Lin, D.N.C.: Vortices in the co-orbital region of an embedded protoplanet. ApJ 596, L91–L94 (2003).  https://doi.org/10.1086/379032ADSCrossRefGoogle Scholar
  221. 221.
    Königl, A., Salmeron, R.: The Effects of Large-Scale Magnetic Fields on Disk Formation and Evolution, pp. 283–352 (2011)Google Scholar
  222. 222.
    Kounkel, M., Hartmann, L., Loinard, L., Ortiz-León, G.N., Mioduszewski, A.J., Rodríguez, L.F., Dzib, S.A., Torres, R.M., Pech, G., Galli, P.A.B., Rivera, J.L., Boden, A.F., Evans II, N.J., Briceño, C., Tobin, J.J.: The Goulds Belt Distances Survey (GOBELINS) II. Distances and structure toward the Orion molecular clouds. ApJ  834, 142 (2017).  https://doi.org/10.3847/1538-4357/834/2/142
  223. 223.
    Kraichnan, R.H.: Inertial ranges in two-dimensional turbulence. Phys. Fluids 10, 1417–1423 (1967).  https://doi.org/10.1063/1.1762301ADSMathSciNetCrossRefGoogle Scholar
  224. 224.
    Krasnopolsky, R., Li, Z.Y., Shang, H.: Disk formation in magnetized clouds enabled by the Hall effect. ApJ 733, 54 (2011).  https://doi.org/10.1088/0004-637X/733/1/54ADSCrossRefGoogle Scholar
  225. 225.
    Kratter, K., Lodato, G.: Gravitational instabilities in circumstellar disks. ARA&A 54, 271–311 (2016).  https://doi.org/10.1146/annurev-astro-081915-023307
  226. 226.
    Kratter, K.M., Matzner, C.D., Krumholz, M.R., Klein, R.I.: On the role of disks in the formation of stellar systems: a numerical parameter study of rapid accretion. ApJ 708, 1585–1597 (2010).  https://doi.org/10.1088/0004-637X/708/2/1585ADSCrossRefGoogle Scholar
  227. 227.
    Kratter, K.M., Murray-Clay, R.A., Youdin, A.N.: The runts of the litter: why planets formed through gravitational instability can only be failed binary stars. ApJ 710, 1375–1386 (2010).  https://doi.org/10.1088/0004-637X/710/2/1375ADSCrossRefGoogle Scholar
  228. 228.
    Kretke, K.A., Lin, D.N.C.: Grain retention and formation of planetesimals near the snow line in MRI-driven turbulent protoplanetary disks. ApJ 664, L55–L58 (2007).  https://doi.org/10.1086/520718ADSCrossRefGoogle Scholar
  229. 229.
    Kuiper, G.P.: On the origin of the solar system. Proc. Natl. Acad. Sci. 37, 1–14 (1951).  https://doi.org/10.1073/pnas.37.1.1ADSCrossRefGoogle Scholar
  230. 230.
    Kunz, M.W.: On the linear stability of weakly ionized, magnetized planar shear flows. MNRAS 385, 1494–1510 (2008).  https://doi.org/10.1111/j.1365-2966.2008.12928.xADSCrossRefGoogle Scholar
  231. 231.
    Kunz, M.W., Balbus, S.A.: Ambipolar diffusion in the magnetorotational instability. MNRAS 348, 355–360 (2004).  https://doi.org/10.1111/j.1365-2966.2004.07383.xADSCrossRefGoogle Scholar
  232. 232.
    Kunz, M.W., Lesur, G.: Magnetic self-organization in Hall-dominated magnetorotational turbulence. MNRAS 434, 2295–2312 (2013).  https://doi.org/10.1093/mnras/stt1171ADSCrossRefGoogle Scholar
  233. 233.
    Kurosawa, R., Romanova, M.M.: Spectral variability of classical T Tauri stars accreting in an unstable regime. MNRAS 431, 2673–2689 (2013).  https://doi.org/10.1093/mnras/stt365ADSCrossRefGoogle Scholar
  234. 234.
    Lada, C.J., Wilking, B.A.: The nature of the embedded population in the Rho Ophiuchi dark cloud—mid-infrared observations. ApJ 287, 610–621 (1984).  https://doi.org/10.1086/162719ADSCrossRefGoogle Scholar
  235. 235.
    Lai, D.: Magnetically driven warping, precession, and resonances in accretion disks. ApJ 524, 1030–1047 (1999).  https://doi.org/10.1086/307850ADSCrossRefGoogle Scholar
  236. 236.
    Larwood, J.D., Nelson, R.P., Papaloizou, J.C.B., Terquem, C.: The tidally induced warping, precession and truncation of accretion discs in binary systems: three-dimensional simulations. MNRAS 282, 597–613 (1996)ADSCrossRefGoogle Scholar
  237. 237.
    Lasota, J.P.: The disc instability model of dwarf novae and low-mass X-ray binary transients. New Ast. Rev. 45, 449–508 (2001).  https://doi.org/10.1016/S1387-6473(01)00112-9ADSCrossRefGoogle Scholar
  238. 238.
    Latter, H.N., Papaloizou, J.: Local models of astrophysical discs. MNRAS 472, 1432–1446 (2017).  https://doi.org/10.1093/mnras/stx2038ADSCrossRefGoogle Scholar
  239. 239.
    Lecar, M., Podolak, M., Sasselov, D., Chiang, E.: On the location of the snow line in a protoplanetary disk. ApJ 640, 1115–1118 (2006).  https://doi.org/10.1086/500287ADSCrossRefGoogle Scholar
  240. 240.
    Lesur, G., Kunz, M.W., Fromang, S.: Thanatology in protoplanetary discs. The combined influence of ohmic, Hall, and ambipolar diffusion on dead zones. A&A  566, A56 (2014).  https://doi.org/10.1051/0004-6361/201423660
  241. 241.
    Lesur, G., Longaretti, P.Y.: On the relevance of subcritical hydrodynamic turbulence to accretion disk transport. A&A 444, 25–44 (2005).  https://doi.org/10.1051/0004-6361:20053683ADSCrossRefzbMATHGoogle Scholar
  242. 242.
    Lesur, G., Ogilvie, G.I.: On the angular momentum transport due to vertical convection in accretion discs. MNRAS 404, L64–L68 (2010).  https://doi.org/10.1111/j.1745-3933.2010.00836.xADSCrossRefGoogle Scholar
  243. 243.
    Lesur, G., Papaloizou, J.C.B.: On the stability of elliptical vortices in accretion discs. A&A 498, 1–12 (2009).  https://doi.org/10.1051/0004-6361/200811577ADSCrossRefzbMATHGoogle Scholar
  244. 244.
    Lesur, G., Papaloizou, J.C.B.: The subcritical baroclinic instability in local accretion disc models. A&A 513, A60 (2010).  https://doi.org/10.1051/0004-6361/200913594ADSCrossRefzbMATHGoogle Scholar
  245. 245.
    Lesur, G.R.J., Latter, H.: On the survival of zombie vortices in protoplanetary discs. MNRAS 462, 4549–4554 (2016).  https://doi.org/10.1093/mnras/stw2172ADSCrossRefGoogle Scholar
  246. 246.
    Levin, Y.: Starbursts near supermassive black holes: young stars in the Galactic Centre, and gravitational waves in LISA band. MNRAS 374, 515–524 (2007).  https://doi.org/10.1111/j.1365-2966.2006.11155.xADSCrossRefGoogle Scholar
  247. 247.
    Li, H., Colgate, S.A., Wendroff, B., Liska, R.: Rossby wave instability of thin accretion disks. III. Nonlinear simulations. ApJ 551, 874–896 (2001).  https://doi.org/10.1086/320241ADSCrossRefGoogle Scholar
  248. 248.
    Li, H., Finn, J.M., Lovelace, R.V.E., Colgate, S.A.: Rossby wave instability of thin accretion disks. II. Detailed linear theory. ApJ 533, 1023–1034 (2000).  https://doi.org/10.1086/308693ADSCrossRefGoogle Scholar
  249. 249.
    Li, Z.Y., Banerjee, R., Pudritz, R.E., Jørgensen, J.K., Shang, H., Krasnopolsky, R., Maury, A.: The Earliest Stages of Star and Planet Formation: Core Collapse, and the Formation of Disks and Outflows. Protostars and Planets VI, pp. 173–194 (2014)Google Scholar
  250. 250.
    Liffman, K.: The gravitational radius of an irradiated disk. Publ. Aston. Soc. Aust. 20, 337–339 (2003).  https://doi.org/10.1071/AS03019ADSCrossRefGoogle Scholar
  251. 251.
    Lin, M.K.: Non-barotropic linear Rossby wave instability in three-dimensional disks. ApJ 765, 84 (2013).  https://doi.org/10.1088/0004-637X/765/2/84ADSCrossRefGoogle Scholar
  252. 252.
    Lin, M.K., Youdin, A.N.: Cooling requirements for the vertical shear instability in protoplanetary disks. ApJ 811, 17 (2015).  https://doi.org/10.1088/0004-637X/811/1/17ADSCrossRefGoogle Scholar
  253. 253.
    Lodato, G., Clarke, C.J.: Massive planets in FU Orionis discs: implications for thermal instability models. MNRAS 353, 841–852 (2004).  https://doi.org/10.1111/j.1365-2966.2004.08112.xADSCrossRefGoogle Scholar
  254. 254.
    Lodato, G., Pringle, J.E.: Warp diffusion in accretion discs: a numerical investigation. MNRAS 381, 1287–1300 (2007).  https://doi.org/10.1111/j.1365-2966.2007.12332.xADSCrossRefGoogle Scholar
  255. 255.
    Lodato, G., Rice, W.K.M.: Testing the locality of transport in self-gravitating accretion discs. MNRAS 351, 630–642 (2004).  https://doi.org/10.1111/j.1365-2966.2004.07811.xADSCrossRefGoogle Scholar
  256. 256.
    Lodato, G., Rice, W.K.M.: Testing the locality of transport in self-gravitating accretion discs—II. The massive disc case. MNRAS 358, 1489–1500 (2005).  https://doi.org/10.1111/j.1365-2966.2005.08875.xADSCrossRefGoogle Scholar
  257. 257.
    Lodders, K.: Solar system abundances and condensation temperatures of the elements. ApJ 591, 1220–1247 (2003).  https://doi.org/10.1086/375492ADSCrossRefGoogle Scholar
  258. 258.
    Loomis, R.A., Öberg, K.I., Andrews, S.M., MacGregor, M.A.: A multi-ringed, modestly inclined protoplanetary disk around AA Tau. ApJ 840, 23 (2017).  https://doi.org/10.3847/1538-4357/aa6c63ADSCrossRefGoogle Scholar
  259. 259.
    Lovelace, R.V.E., Li, H., Colgate, S.A., Nelson, A.F.: Rossby wave instability of Keplerian accretion disks. ApJ 513, 805–810 (1999).  https://doi.org/10.1086/306900ADSCrossRefGoogle Scholar
  260. 260.
    Lovelace, R.V.E., Rothstein, D.M., Bisnovatyi-Kogan, G.S.: Advection/diffusion of large-scale B field in accretion disks. ApJ 701, 885–890 (2009).  https://doi.org/10.1088/0004-637X/701/2/885ADSCrossRefGoogle Scholar
  261. 261.
    Lubow, S.H., Martin, R.G., Nixon, C.: Tidal torques on misaligned disks in binary systems. ApJ 800, 96 (2015).  https://doi.org/10.1088/0004-637X/800/2/96ADSCrossRefGoogle Scholar
  262. 262.
    Lubow, S.H., Ogilvie, G.I.: On the tilting of protostellar disks by resonant tidal effects. ApJ 538, 326–340 (2000).  https://doi.org/10.1086/309101ADSCrossRefGoogle Scholar
  263. 263.
    Lubow, S.H., Papaloizou, J.C.B., Pringle, J.E.: Magnetic field dragging in accretion discs. MNRAS 267, 235–240 (1994)ADSCrossRefGoogle Scholar
  264. 264.
    Lubow, S.H., Papaloizou, J.C.B., Pringle, J.E.: On the stability of magnetic wind-driven accretion discs. MNRAS 268, 1010 (1994)ADSCrossRefGoogle Scholar
  265. 265.
    Luhman, K.L., Allen, P.R., Espaillat, C., Hartmann, L., Calvet, N.: The disk population of the Taurus star-forming region. ApJs 186, 111–174 (2010).  https://doi.org/10.1088/0067-0049/186/1/111ADSCrossRefGoogle Scholar
  266. 266.
    Lynden-Bell, D.: On why discs generate magnetic towers and collimate jets. MNRAS 341, 1360–1372 (2003).  https://doi.org/10.1046/j.1365-8711.2003.06506.xADSCrossRefGoogle Scholar
  267. 267.
    Lynden-Bell, D., Pringle, J.E.: The evolution of viscous discs and the origin of the nebular variables. MNRAS 168, 603–637 (1974)ADSCrossRefGoogle Scholar
  268. 268.
    Lyra, W., Johansen, A., Klahr, H., Piskunov, N.: Embryos grown in the dead zone. Assembling the first protoplanetary cores in low mass self-gravitating circumstellar disks of gas and solids. A&A  491, L41–L44 (2008).  https://doi.org/10.1051/0004-6361:200810626
  269. 269.
    Lyra, W., Johansen, A., Zsom, A., Klahr, H., Piskunov, N.: Planet formation bursts at the borders of the dead zone in 2D numerical simulations of circumstellar disks. A&A 497, 869–888 (2009).  https://doi.org/10.1051/0004-6361/200811265ADSCrossRefGoogle Scholar
  270. 270.
    Lyra, W., Kuchner, M.: Formation of sharp eccentric rings in debris disks with gas but without planets. Nature 499, 184–187 (2013).  https://doi.org/10.1038/nature12281ADSCrossRefGoogle Scholar
  271. 271.
    Lyra, W., Mac Low, M.M.: Rossby wave instability at dead zone boundaries in three-dimensional resistive magnetohydrodynamical global models of protoplanetary disks. ApJ 756, 62 (2012).  https://doi.org/10.1088/0004-637X/756/1/62ADSCrossRefGoogle Scholar
  272. 272.
    Lyra, W., Turner, N.J., McNally, C.P.: Rossby wave instability does not require sharp resistivity gradients. A&A 574, A10 (2015).  https://doi.org/10.1051/0004-6361/201424919ADSCrossRefGoogle Scholar
  273. 273.
    Malygin, M.G., Klahr, H., Semenov, D., Henning, T., Dullemond, C.P.: Efficiency of thermal relaxation by radiative processes in protoplanetary discs: constraints on hydrodynamic turbulence. A&A 605, A30 (2017).  https://doi.org/10.1051/0004-6361/201629933ADSCrossRefGoogle Scholar
  274. 274.
    Manara, C.F., Fedele, D., Herczeg, G.J., Teixeira, P.S.: X-Shooter study of accretion in Chamaeleon I. A&A 585, A136 (2016).  https://doi.org/10.1051/0004-6361/201527224ADSCrossRefGoogle Scholar
  275. 275.
    Manara, C.F., Testi, L., Natta, A., Rosotti, G., Benisty, M., Ercolano, B., Ricci, L.: Gas content of transitional disks: a VLT/X-Shooter study of accretion and winds. A&A 568, A18 (2014).  https://doi.org/10.1051/0004-6361/201323318ADSCrossRefGoogle Scholar
  276. 276.
    Marcus, P.S., Pei, S., Jiang, C.H., Barranco, J.A., Hassanzadeh, P., Lecoanet, D.: Zombie vortex instability. I. A purely hydrodynamic instability to resurrect the dead zones of protoplanetary disks. ApJ  808, 87 (2015).  https://doi.org/10.1088/0004-637X/808/1/87
  277. 277.
    Marcus, P.S., Pei, S., Jiang, C.H., Hassanzadeh, P.: Three-dimensional vortices generated by self-replication in stably stratified rotating shear flows. Phys. Rev. Lett. 111(8), 084501 (2013).  https://doi.org/10.1103/PhysRevLett.111.084501
  278. 278.
    Marley, M.S., Fortney, J.J., Hubickyj, O., Bodenheimer, P., Lissauer, J.J.: On the luminosity of young Jupiters. ApJ 655, 541–549 (2007).  https://doi.org/10.1086/509759ADSCrossRefGoogle Scholar
  279. 279.
    Marois, C., Macintosh, B., Barman, T., Zuckerman, B., Song, I., Patience, J., Lafrenière, D., Doyon, R.: Direct imaging of multiple planets orbiting the star HR 8799. Science 322, 1348 (2008).  https://doi.org/10.1126/science.1166585ADSCrossRefGoogle Scholar
  280. 280.
    Marois, C., Zuckerman, B., Konopacky, Q.M., Macintosh, B., Barman, T.: Images of a fourth planet orbiting HR 8799. Nature 468, 1080–1083 (2010).  https://doi.org/10.1038/nature09684ADSCrossRefGoogle Scholar
  281. 281.
    Martin, R.G., Livio, M.: On the evolution of the snow line in protoplanetary discs. MNRAS 425, L6–L9 (2012).  https://doi.org/10.1111/j.1745-3933.2012.01290.xADSCrossRefGoogle Scholar
  282. 282.
    Martin, R.G., Lubow, S.H.: The gravo-magneto limit cycle in accretion disks. ApJ 740, L6 (2011).  https://doi.org/10.1088/2041-8205/740/1/L6ADSCrossRefGoogle Scholar
  283. 283.
    Martin, R.G., Lubow, S.H.: Tidal truncation of circumplanetary discs. MNRAS 413, 1447–1461 (2011).  https://doi.org/10.1111/j.1365-2966.2011.18228.xADSCrossRefGoogle Scholar
  284. 284.
    Martin, R.G., Lubow, S.H.: The gravo-magneto disc instability with a viscous dead zone. MNRAS 437, 682–689 (2014).  https://doi.org/10.1093/mnras/stt1917ADSCrossRefGoogle Scholar
  285. 285.
    Maslowe, S.A.: Critical layers in shear flows. Ann. Rev. Fluid Mech. 18, 405–432 (1986).  https://doi.org/10.1146/annurev.fl.18.010186.002201ADSMathSciNetCrossRefzbMATHGoogle Scholar
  286. 286.
    Matzner, C.D., Levin, Y.: Protostellar disks: formation, fragmentation, and the brown dwarf desert. ApJ 628, 817–831 (2005).  https://doi.org/10.1086/430813ADSCrossRefGoogle Scholar
  287. 287.
    McClure, M.K., Bergin, E.A., Cleeves, L.I., van Dishoeck, E.F., Blake, G.A., Evans II, N.J., Green, J.D., Henning, T., Öberg, K.I., Pontoppidan, K.M., Salyk, C.: Mass measurements in protoplanetary disks from hydrogen deuteride. ApJ 831, 167 (2016).  https://doi.org/10.3847/0004-637X/831/2/167ADSCrossRefGoogle Scholar
  288. 288.
    Meheut, H., Casse, F., Varniere, P., Tagger, M.: Rossby wave instability and three-dimensional vortices in accretion disks. A&A 516, A31 (2010).  https://doi.org/10.1051/0004-6361/201014000ADSCrossRefzbMATHGoogle Scholar
  289. 289.
    Meru, F., Bate, M.R.: Non-convergence of the critical cooling time-scale for fragmentation of self-gravitating discs. MNRAS 411, L1–L5 (2011).  https://doi.org/10.1111/j.1745-3933.2010.00978.xADSCrossRefGoogle Scholar
  290. 290.
    Meyer, F., Meyer-Hofmeister, E.: On the elusive cause of cataclysmic variable outbursts. A&A 104, L10 (1981)ADSGoogle Scholar
  291. 291.
    Michael, S., Durisen, R.H., Boley, A.C.: Migration of gas giant planets in gravitationally unstable disks. ApJ 737, L42 (2011).  https://doi.org/10.1088/2041-8205/737/2/L42ADSCrossRefGoogle Scholar
  292. 292.
    Min, M., Dullemond, C.P., Kama, M., Dominik, C.: The thermal structure and the location of the snow line in the protosolar nebula: axisymmetric models with full 3-D radiative transfer. Icarus 212, 416–426 (2011).  https://doi.org/10.1016/j.icarus.2010.12.002ADSCrossRefGoogle Scholar
  293. 293.
    Miranda, R., Lai, D.: Tidal truncation of inclined circumstellar and circumbinary discs in young stellar binaries. MNRAS 452, 2396–2409 (2015).  https://doi.org/10.1093/mnras/stv1450ADSCrossRefGoogle Scholar
  294. 294.
    Molyarova, T., Akimkin, V., Semenov, D., Henning, T., Vasyunin, A., Wiebe, D.: Gas mass tracers in protoplanetary disks: CO is still the best. ArXiv e-prints (2017)Google Scholar
  295. 295.
    Momose, M., Morita, A., Fukagawa, M., Muto, T., Takeuchi, T., Hashimoto, J., Honda, M., Kudo, T., Okamoto, Y.K., Kanagawa, K.D., Tanaka, H., Grady, C.A., Sitko, M.L., Akiyama, E., Currie, T., Follette, K.B., Mayama, S., Kusakabe, N., Abe, L., Brandner, W., Brandt, T.D., Carson, J.C., Egner, S., Feldt, M., Goto, M., Guyon, O., Hayano, Y., Hayashi, M., Hayashi, S.S., Henning, T., Hodapp, K.W., Ishii, M., Iye, M., Janson, M., Kandori, R., Knapp, G.R., Kuzuhara, M., Kwon, J., Matsuo, T., McElwain, M.W., Miyama, S., Morino, J.I., Moro-Martin, A., Nishimura, T., Pyo, T.S., Serabyn, E., Suenaga, T., Suto, H., Suzuki, R., Takahashi, Y.H., Takami, M., Takato, N., Terada, H., Thalmann, C., Tomono, D., Turner, E.L., Watanabe, M., Wisniewski, J., Yamada, T., Takami, H., Usuda, T., Tamura, M.: Detailed structure of the outer disk around HD 169142 with polarized light in H-band. PASJ 67, 83 (2015).  https://doi.org/10.1093/pasj/psv051ADSCrossRefGoogle Scholar
  296. 296.
    Morbidelli, A., Chambers, J., Lunine, J.I., Petit, J.M., Robert, F., Valsecchi, G.B., Cyr, K.E.: Source regions and time scales for the delivery of water to Earth. Meteor. Planet. Sci. 35, 1309–1320 (2000).  https://doi.org/10.1111/j.1945-5100.2000.tb01518.xADSCrossRefGoogle Scholar
  297. 297.
    Morfill, G.E.: Some cosmochemical consequences of a turbulent protoplanetary cloud. Icarus 53, 41–54 (1983).  https://doi.org/10.1016/0019-1035(83)90019-2ADSCrossRefGoogle Scholar
  298. 298.
    Muranushi, T., Okuzumi, S., Inutsuka, S.I.: Interdependence of electric discharge and magnetorotational instability in protoplanetary disks. ApJ  760, 56 (2012).  https://doi.org/10.1088/0004-637X/760/1/56
  299. 299.
    Muzerolle, J., Hillenbrand, L., Calvet, N., Briceño, C., Hartmann, L.: Accretion in young stellar/substellar objects. ApJ 592, 266–281 (2003).  https://doi.org/10.1086/375704ADSCrossRefGoogle Scholar
  300. 300.
    Nakagawa, Y., Sekiya, M., Hayashi, C.: Settling and growth of dust particles in a laminar phase of a low-mass solar nebula. Icarus 67, 375–390 (1986).  https://doi.org/10.1016/0019-1035(86)90121-1ADSCrossRefGoogle Scholar
  301. 301.
    Nayakshin, S., Lodato, G.: Fu Ori outbursts and the planet-disc mass exchange. MNRAS 426, 70–90 (2012).  https://doi.org/10.1111/j.1365-2966.2012.21612.xADSCrossRefGoogle Scholar
  302. 302.
    Nelson, R.P., Gressel, O., Umurhan, O.M.: Linear and non-linear evolution of the vertical shear instability in accretion discs. MNRAS 435, 2610–2632 (2013).  https://doi.org/10.1093/mnras/stt1475ADSCrossRefGoogle Scholar
  303. 303.
    Nesvorný, D., Youdin, A.N., Richardson, D.C.: Formation of Kuiper belt binaries by gravitational collapse. AJ 140, 785–793 (2010).  https://doi.org/10.1088/0004-6256/140/3/785ADSCrossRefGoogle Scholar
  304. 304.
    Nixon, C., King, A.: Warp propagation in astrophysical discs. In: Haardt, F., Gorini, V., Moschella, U., Treves, Colpi, A.M. (eds.) Lecture Notes in Physics, vol. 905, p. 45. Springer, Berlin. (2016).  https://doi.org/10.1007/978-3-319-19416-52
  305. 305.
    Nixon, C.J., Pringle, J.E.: The observable effects of tidally induced warps in protostellar discs. MNRAS 403, 1887–1893 (2010).  https://doi.org/10.1111/j.1365-2966.2010.16331.xADSCrossRefGoogle Scholar
  306. 306.
    O’dell, C.R., Wen, Z., Hu, X.: Discovery of new objects in the Orion nebula on HST images—shocks, compact sources, and protoplanetary disks. ApJ  410, 696–700 (1993).  https://doi.org/10.1086/172786
  307. 307.
    Ogilvie, G.I.: The non-linear fluid dynamics of a warped accretion disc. MNRAS 304, 557–578 (1999).  https://doi.org/10.1046/j.1365-8711.1999.02340.xADSCrossRefGoogle Scholar
  308. 308.
    Ogilvie, G.I.: Non-linear fluid dynamics of eccentric discs. MNRAS 325, 231–248 (2001).  https://doi.org/10.1046/j.1365-8711.2001.04416.xADSCrossRefGoogle Scholar
  309. 309.
    Ogilvie, G.I., Latter, H.N.: Local and global dynamics of warped astrophysical discs. MNRAS 433, 2403–2419 (2013).  https://doi.org/10.1093/mnras/stt916ADSCrossRefGoogle Scholar
  310. 310.
    Ogilvie, G.I., Livio, M.: Launching of jets and the vertical structure of accretion disks. ApJ 553, 158–173 (2001).  https://doi.org/10.1086/320637ADSCrossRefGoogle Scholar
  311. 311.
    Ogilvie, G.I., Pringle, J.E.: The non-axisymmetric instability of a cylindrical shear flow containing an azimuthal magnetic field. MNRAS 279, 152–164 (1996)ADSCrossRefGoogle Scholar
  312. 312.
    Olofsson, J., Augereau, J.C., van Dishoeck, E.F., Merín, B., Grosso, N., Ménard, F., Blake, G.A., Monin, J.L.: C2D Spitzer-IRS spectra of disks around T Tauri stars. V. Spectral decomposition. A&A  520, A39 (2010).  https://doi.org/10.1051/0004-6361/200913909
  313. 313.
    Oppenheimer, M., Dalgarno, A.: The fractional ionization in dense interstellar clouds. ApJ 192, 29–32 (1974).  https://doi.org/10.1086/153030ADSCrossRefGoogle Scholar
  314. 314.
    Ormel, C.W., Cuzzi, J.N.: Closed-form expressions for particle relative velocities induced by turbulence. A&A 466, 413–420 (2007).  https://doi.org/10.1051/0004-6361:20066899ADSCrossRefzbMATHGoogle Scholar
  315. 315.
    Owen, J.E., Armitage, P.J.: Importance of thermal diffusion in the gravomagnetic limit cycle. MNRAS 445, 2800–2809 (2014).  https://doi.org/10.1093/mnras/stu1928ADSCrossRefGoogle Scholar
  316. 316.
    Owen, J.E., Clarke, C.J., Ercolano, B.: On the theory of disc photoevaporation. MNRAS 422, 1880–1901 (2012).  https://doi.org/10.1111/j.1365-2966.2011.20337.xADSCrossRefGoogle Scholar
  317. 317.
    Owen, J.E., Ercolano, B., Clarke, C.J., Alexander, R.D.: Radiation-hydrodynamic models of X-ray and EUV photoevaporating protoplanetary discs. MNRAS 401, 1415–1428 (2010).  https://doi.org/10.1111/j.1365-2966.2009.15771.xADSCrossRefGoogle Scholar
  318. 318.
    Owen, J.E., Hudoba de Badyn, M., Clarke, C.J., Robins, L.: Characterizing thermal sweeping: a rapid disc dispersal mechanism. MNRAS  436, 1430–1438 (2013).  https://doi.org/10.1093/mnras/stt1663
  319. 319.
    Paardekooper, S.J.: Numerical convergence in self-gravitating shearing sheet simulations and the stochastic nature of disc fragmentation. MNRAS 421, 3286–3299 (2012).  https://doi.org/10.1111/j.1365-2966.2012.20553.xADSCrossRefGoogle Scholar
  320. 320.
    Paardekooper, S.J., Mellema, G.: Planets opening dust gaps in gas disks. A&A 425, L9–L12 (2004).  https://doi.org/10.1051/0004-6361:200400053ADSCrossRefGoogle Scholar
  321. 321.
    Paczynski, B.: A model of accretion disks in close binaries. ApJ 216, 822–826 (1977).  https://doi.org/10.1086/155526ADSCrossRefGoogle Scholar
  322. 322.
    Paczynski, B.: A model of selfgravitating accretion disk. Acta Astron. 28, 91–109 (1978)ADSGoogle Scholar
  323. 323.
    Papaloizou, J., Pringle, J.E.: Tidal torques on accretion discs in close binary systems. MNRAS 181, 441–454 (1977)ADSCrossRefGoogle Scholar
  324. 324.
    Papaloizou, J.C.B., Pringle, J.E.: The time-dependence of non-planar accretion discs. MNRAS 202, 1181–1194 (1983)ADSCrossRefGoogle Scholar
  325. 325.
    Papaloizou, J.C.B., Pringle, J.E.: The dynamical stability of differentially rotating discs with constant specific angular momentum. MNRAS 208, 721–750 (1984)ADSCrossRefGoogle Scholar
  326. 326.
    Pascucci, I., Ricci, L., Gorti, U., Hollenbach, D., Hendler, N.P., Brooks, K.J., Contreras, Y.: Low extreme-ultraviolet luminosities impinging on protoplanetary disks. ApJ 795, 1 (2014).  https://doi.org/10.1088/0004-637X/795/1/1ADSCrossRefGoogle Scholar
  327. 327.
    Pérez, L.M., Carpenter, J.M., Andrews, S.M., Ricci, L., Isella, A., Linz, H., Sargent, A.I., Wilner, D.J., Henning, T., Deller, A.T., Chandler, C.J., Dullemond, C.P., Lazio, J., Menten, K.M., Corder, S.A., Storm, S., Testi, L., Tazzari, M., Kwon, W., Calvet, N., Greaves, J.S., Harris, R.J., Mundy, L.G.: Spiral density waves in a young protoplanetary disk. Science 353, 1519–1521 (2016).  https://doi.org/10.1126/science.aaf8296ADSMathSciNetCrossRefzbMATHGoogle Scholar
  328. 328.
    Perez-Becker, D., Chiang, E.: Surface layer accretion in conventional and transitional disks driven by far-ultraviolet ionization. ApJ 735, 8 (2011).  https://doi.org/10.1088/0004-637X/735/1/8ADSCrossRefGoogle Scholar
  329. 329.
    Pessah, M.E., Psaltis, D.: The stability of magnetized rotating plasmas with superthermal fields. ApJ 628, 879–901 (2005).  https://doi.org/10.1086/430940ADSCrossRefGoogle Scholar
  330. 330.
    Petersen, M.R., Julien, K., Stewart, G.R.: Baroclinic vorticity production in protoplanetary disks. I. Vortex formation. ApJ 658, 1236–1251 (2007).  https://doi.org/10.1086/511513ADSCrossRefGoogle Scholar
  331. 331.
    Petersen, M.R., Stewart, G.R., Julien, K.: Baroclinic vorticity production in protoplanetary disks. II. Vortex growth and longevity. ApJ 658, 1252–1263 (2007).  https://doi.org/10.1086/511523ADSCrossRefGoogle Scholar
  332. 332.
    Pfalzner, S.: Encounter-driven accretion in young stellar cluster—a connection to FUors? A&A 492, 735–741 (2008).  https://doi.org/10.1051/0004-6361:200810879ADSCrossRefGoogle Scholar
  333. 333.
    Pinilla, P., Birnstiel, T., Ricci, L., Dullemond, C.P., Uribe, A.L., Testi, L., Natta, A.: Trapping dust particles in the outer regions of protoplanetary disks. A&A 538, A114 (2012).  https://doi.org/10.1051/0004-6361/201118204ADSCrossRefGoogle Scholar
  334. 334.
    Podio, L., Kamp, I., Codella, C., Cabrit, S., Nisini, B., Dougados, C., Sandell, G., Williams, J.P., Testi, L., Thi, W.F., Woitke, P., Meijerink, R., Spaans, M., Aresu, G., Ménard, F., Pinte, C.: Water vapor in the protoplanetary disk of DG Tau. ApJ 766, L5 (2013).  https://doi.org/10.1088/2041-8205/766/1/L5ADSCrossRefGoogle Scholar
  335. 335.
    Popham, R., Narayan, R., Hartmann, L., Kenyon, S.: Boundary layers in pre-main-sequence accretion disks. ApJ 415, L127 (1993).  https://doi.org/10.1086/187049ADSCrossRefGoogle Scholar
  336. 336.
    Preibisch, T., Kim, Y.C., Favata, F., Feigelson, E.D., Flaccomio, E., Getman, K., Micela, G., Sciortino, S., Stassun, K., Stelzer, B., Zinnecker, H.: The origin of T Tauri X-ray emission: new insights from the Chandra Orion Ultradeep Project. ApJs 160, 401–422 (2005).  https://doi.org/10.1086/432891ADSCrossRefGoogle Scholar
  337. 337.
    Pringle, J.E.: Soft X-ray emission from dwarf novae. MNRAS 178, 195–202 (1977)ADSCrossRefGoogle Scholar
  338. 338.
    Pringle, J.E.: Accretion discs in astrophysics. ARA&A 19, 137–162 (1981).  https://doi.org/10.1146/annurev.aa.19.090181.001033
  339. 339.
    Pringle, J.E.: The properties of external accretion discs. MNRAS 248, 754–759 (1991)ADSCrossRefGoogle Scholar
  340. 340.
    Pringle, J.E.: A simple approach to the evolution of twisted accretion discs. MNRAS 258, 811–818 (1992)ADSCrossRefGoogle Scholar
  341. 341.
    Pringle, J.E., King, A.: Astrophysical Flows (2007)Google Scholar
  342. 342.
    Qi, C., Öberg, K.I., Wilner, D.J., D’Alessio, P., Bergin, E., Andrews, S.M., Blake, G.A., Hogerheijde, M.R., van Dishoeck, E.F.: Imaging of the CO snow line in a solar nebula analog. Science 341, 630–632 (2013).  https://doi.org/10.1126/science.1239560ADSCrossRefGoogle Scholar
  343. 343.
    Raettig, N., Klahr, H., Lyra, W.: Particle trapping and streaming instability in vortices in protoplanetary disks. ApJ 804, 35 (2015).  https://doi.org/10.1088/0004-637X/804/1/35ADSCrossRefGoogle Scholar
  344. 344.
    Raettig, N., Lyra, W., Klahr, H.: A parameter study for baroclinic vortex amplification. ApJ 765, 115 (2013).  https://doi.org/10.1088/0004-637X/765/2/115ADSCrossRefGoogle Scholar
  345. 345.
    Rafikov, R.R.: Properties of gravitoturbulent accretion disks. ApJ 704, 281–291 (2009).  https://doi.org/10.1088/0004-637X/704/1/281ADSCrossRefGoogle Scholar
  346. 346.
    Rafikov, R.R.: Viscosity prescription for gravitationally unstable accretion disks. ApJ 804, 62 (2015).  https://doi.org/10.1088/0004-637X/804/1/62ADSCrossRefGoogle Scholar
  347. 347.
    Railton, A.D., Papaloizou, J.C.B.: On the local stability of vortices in differentially rotating discs. MNRAS 445, 4409–4426 (2014).  https://doi.org/10.1093/mnras/stu2060ADSCrossRefGoogle Scholar
  348. 348.
    Rebusco, P., Umurhan, O.M., Kluźniak, W., Regev, O.: Global transient dynamics of three-dimensional hydrodynamical disturbances in a thin viscous accretion disk. Phys. Fluids 21(7), 076,601 (2009).  https://doi.org/10.1063/1.3167411
  349. 349.
    Reipurth, B., Clarke, C.J., Boss, A.P., Goodwin, S.P., Rodríguez, L.F., Stassun, K.G., Tokovinin, A., Zinnecker, H.: Multiplicity in Early Stellar Evolution. Protostars and Planets VI, pp. 267–290 (2014)Google Scholar
  350. 350.
    Ricci, L., Testi, L., Natta, A., Neri, R., Cabrit, S., Herczeg, G.J.: Dust properties of protoplanetary disks in the Taurus-Auriga star forming region from millimeter wavelengths. A&A 512, A15 (2010).  https://doi.org/10.1051/0004-6361/200913403ADSCrossRefGoogle Scholar
  351. 351.
    Rice, W.K.M., Armitage, P.J., Bate, M.R., Bonnell, I.A.: The effect of cooling on the global stability of self-gravitating protoplanetary discs. MNRAS 339, 1025–1030 (2003).  https://doi.org/10.1046/j.1365-8711.2003.06253.xADSCrossRefGoogle Scholar
  352. 352.
    Rice, W.K.M., Armitage, P.J., Mamatsashvili, G.R., Lodato, G., Clarke, C.J.: Stability of self-gravitating discs under irradiation. MNRAS 418, 1356–1362 (2011).  https://doi.org/10.1111/j.1365-2966.2011.19586.xADSCrossRefGoogle Scholar
  353. 353.
    Rice, W.K.M., Armitage, P.J., Wood, K., Lodato, G.: Dust filtration at gap edges: implications for the spectral energy distributions of discs with embedded planets. MNRAS 373, 1619–1626 (2006).  https://doi.org/10.1111/j.1365-2966.2006.11113.xADSCrossRefGoogle Scholar
  354. 354.
    Rice, W.K.M., Lodato, G., Armitage, P.J.: Investigating fragmentation conditions in self-gravitating accretion discs. MNRAS 364, L56–L60 (2005).  https://doi.org/10.1111/j.1745-3933.2005.00105.xADSCrossRefGoogle Scholar
  355. 355.
    Rice, W.K.M., Lodato, G., Pringle, J.E., Armitage, P.J., Bonnell, I.A.: Accelerated planetesimal growth in self-gravitating protoplanetary discs. MNRAS 355, 543–552 (2004).  https://doi.org/10.1111/j.1365-2966.2004.08339.xADSCrossRefGoogle Scholar
  356. 356.
    Richling, S., Yorke, H.W.: Photoevaporation of protostellar disks. II. The importance of UV dust properties and ionizing flux. A&A 327, 317–324 (1997)Google Scholar
  357. 357.
    Rigliaco, E., Natta, A., Testi, L., Randich, S., Alcalà, J.M., Covino, E., Stelzer, B.: X-shooter spectroscopy of young stellar objects. I. Mass accretion rates of low-mass T Tauri stars in \(\sigma \) Orionis. A&A  548, A56 (2012).  https://doi.org/10.1051/0004-6361/201219832
  358. 358.
    Robitaille, T.P.: HYPERION: an open-source parallelized three-dimensional dust continuum radiative transfer code. A&A 536, A79 (2011).  https://doi.org/10.1051/0004-6361/201117150ADSCrossRefGoogle Scholar
  359. 359.
    Rodmann, J., Henning, T., Chandler, C.J., Mundy, L.G., Wilner, D.J.: Large dust particles in disks around T Tauri stars. A&A 446, 211–221 (2006).  https://doi.org/10.1051/0004-6361:20054038ADSCrossRefGoogle Scholar
  360. 360.
    Romanova, M.M., Ustyugova, G.V., Koldoba, A.V., Lovelace, R.V.E.: MRI-driven accretion on to magnetized stars: global 3D MHD simulations of magnetospheric and boundary layer regimes. MNRAS 421, 63–77 (2012).  https://doi.org/10.1111/j.1365-2966.2011.20055.xADSCrossRefGoogle Scholar
  361. 361.
    Ros, K., Johansen, A.: Ice condensation as a planet formation mechanism. A&A 552, A137 (2013).  https://doi.org/10.1051/0004-6361/201220536ADSCrossRefGoogle Scholar
  362. 362.
    Rosenfeld, K.A., Andrews, S.M., Hughes, A.M., Wilner, D.J., Qi, C.: A spatially resolved vertical temperature gradient in the HD 163296 disk. ApJ 774, 16 (2013).  https://doi.org/10.1088/0004-637X/774/1/16ADSCrossRefGoogle Scholar
  363. 363.
    Ruden, S.P.: Evolution of photoevaporating protoplanetary disks. ApJ 605, 880–891 (2004).  https://doi.org/10.1086/382524ADSCrossRefGoogle Scholar
  364. 364.
    Rybicki, G.B., Lightman, A.P.: Radiative processes in astrophysics (1979)Google Scholar
  365. 365.
    Salinas, V.N., Hogerheijde, M.R., Bergin, E.A., Cleeves, L.I., Brinch, C., Blake, G.A., Lis, D.C., Melnick, G.J., Panić, O., Pearson, J.C., Kristensen, L., Yıldız, U.A., van Dishoeck, E.F.: First detection of gas-phase ammonia in a planet-forming disk. NH\(_{3}\), N\(_{2}\)H\(^{+}\), and H\(_{2}\)O in the disk around TW Hydrae. A&A  591, A122 (2016).  https://doi.org/10.1051/0004-6361/201628172
  366. 366.
    Sano, T., Inutsuka, S.I.: Saturation and thermalization of the magnetorotational instability: recurrent channel flows and reconnections. ApJ 561, L179–L182 (2001).  https://doi.org/10.1086/324763
  367. 367.
    Sano, T., Stone, J.M.: The effect of the Hall term on the nonlinear evolution of the magnetorotational instability. I. Local axisymmetric simulations. ApJ 570, 314–328 (2002).  https://doi.org/10.1086/339504ADSCrossRefGoogle Scholar
  368. 368.
    Sano, T., Stone, J.M.: The effect of the Hall term on the nonlinear evolution of the magnetorotational instability. II. Saturation level and critical magnetic Reynolds number. ApJ  577, 534–553 (2002).  https://doi.org/10.1086/342172
  369. 369.
    Schäfer, U., Yang, C.C., Johansen, A.: Initial mass function of planetesimals formed by the streaming instability. A&A 597, A69 (2017).  https://doi.org/10.1051/0004-6361/201629561ADSCrossRefGoogle Scholar
  370. 370.
    Shakura, N.I., Sunyaev, R.A.: Black holes in binary systems. Observational appearance. A&A 24, 337–355 (1973)ADSGoogle Scholar
  371. 371.
    Shen, Y., Stone, J.M., Gardiner, T.A.: Three-dimensional compressible hydrodynamic simulations of vortices in disks. ApJ 653, 513–524 (2006).  https://doi.org/10.1086/508980ADSCrossRefGoogle Scholar
  372. 372.
    Shu, F., Najita, J., Ostriker, E., Wilkin, F., Ruden, S., Lizano, S.: Magnetocentrifugally driven flows from young stars and disks. 1: A generalized model. ApJ  429, 781–796 (1994).  https://doi.org/10.1086/174363
  373. 373.
    Simon, J.B., Armitage, P.J.: Efficiency of particle trapping in the outer regions of protoplanetary disks. ApJ 784, 15 (2014).  https://doi.org/10.1088/0004-637X/784/1/15ADSCrossRefGoogle Scholar
  374. 374.
    Simon, J.B., Armitage, P.J., Li, R., Youdin, A.N.: The mass and size distribution of planetesimals formed by the streaming instability. I. The role of self-gravity. ApJ 822, 55 (2016).  https://doi.org/10.3847/0004-637X/822/1/55ADSCrossRefGoogle Scholar
  375. 375.
    Simon, J.B., Armitage, P.J., Youdin, A.N., Li, R.: Evidence for universality in the initial planetesimal mass function. ApJ 847, L12 (2017).  https://doi.org/10.3847/2041-8213/aa8c79ADSCrossRefGoogle Scholar
  376. 376.
    Simon, J.B., Bai, X.N., Armitage, P.J., Stone, J.M., Beckwith, K.: Turbulence in the outer regions of protoplanetary disks. II. Strong accretion driven by a vertical magnetic field. ApJ 775, 73 (2013).  https://doi.org/10.1088/0004-637X/775/1/73
  377. 377.
    Simon, J.B., Bai, X.N., Stone, J.M., Armitage, P.J., Beckwith, K.: Turbulence in the outer regions of protoplanetary disks. I. Weak accretion with no vertical magnetic flux. ApJ 764, 66 (2013).  https://doi.org/10.1088/0004-637X/764/1/66
  378. 378.
    Simon, J.B., Beckwith, K., Armitage, P.J.: Emergent mesoscale phenomena in magnetized accretion disc turbulence. MNRAS 422, 2685–2700 (2012).  https://doi.org/10.1111/j.1365-2966.2012.20835.xADSCrossRefGoogle Scholar
  379. 379.
    Simon, J.B., Hawley, J.F.: Viscous and resistive effects on the magnetorotational instability with a net toroidal field. ApJ 707, 833–843 (2009).  https://doi.org/10.1088/0004-637X/707/1/833ADSCrossRefGoogle Scholar
  380. 380.
    Simon, J.B., Hughes, A.M., Flaherty, K.M., Bai, X.N., Armitage, P.J.: Signatures of MRI-driven turbulence in protoplanetary disks: predictions for ALMA observations. ApJ 808, 180 (2015).  https://doi.org/10.1088/0004-637X/808/2/180ADSCrossRefGoogle Scholar
  381. 381.
    Simon, J.B., Lesur, G., Kunz, M.W., Armitage, P.J.: Magnetically driven accretion in protoplanetary discs. MNRAS 454, 1117–1131 (2015).  https://doi.org/10.1093/mnras/stv2070ADSCrossRefGoogle Scholar
  382. 382.
    Smak, J.: Eruptive binaries. XI—Disk-radius variations in U GEM. Acta Astron. 34, 93–96 (1984)Google Scholar
  383. 383.
    Soderblom, D.R., Hillenbrand, L.A., Jeffries, R.D., Mamajek, E.E., Naylor, T.: Ages of Young Stars. Protostars and Planets VI, pp. 219–241 (2014)Google Scholar
  384. 384.
    Spruit, H.C.: Magnetohydrodynamic jets and winds from accretion disks. In: Wijers, R.A.M.J., Davies, M.B., Tout, C.A. (eds.) NATO Advanced Science Institutes (ASI) Series C, vol. 477, pp. 249–286 (1996)Google Scholar
  385. 385.
    Steiman-Cameron, T.Y., Durisen, R.H., Boley, A.C., Michael, S., McConnell, C.R.: Convergence studies of mass transport in disks with gravitational instabilities. II. The radiative cooling case. ApJ 768, 192 (2013).  https://doi.org/10.1088/0004-637X/768/2/192ADSCrossRefGoogle Scholar
  386. 386.
    Steinacker, J., Baes, M., Gordon, K.D.: Three-dimensional dust radiative transfer*. ARA&A 51, 63–104 (2013).  https://doi.org/10.1146/annurev-astro-082812-141042ADSCrossRefGoogle Scholar
  387. 387.
    Stepinski, T.F.: Generation of dynamo magnetic fields in the primordial solar nebula. Icarus 97, 130–141 (1992).  https://doi.org/10.1016/0019-1035(92)90062-CADSCrossRefGoogle Scholar
  388. 388.
    Stevenson, D.J., Lunine, J.I.: Rapid formation of Jupiter by diffuse redistribution of water vapor in the solar nebula. Icarus 75, 146–155 (1988).  https://doi.org/10.1016/0019-1035(88)90133-9ADSCrossRefGoogle Scholar
  389. 389.
    Stoll, M.H.R., Kley, W.: Vertical shear instability in accretion disc models with radiation transport. A&A 572, A77 (2014).  https://doi.org/10.1051/0004-6361/201424114ADSCrossRefGoogle Scholar
  390. 390.
    Strom, K.M., Strom, S.E., Edwards, S., Cabrit, S., Skrutskie, M.F.: Circumstellar material associated with solar-type pre-main-sequence stars—a possible constraint on the timescale for planet building. AJ 97, 1451–1470 (1989).  https://doi.org/10.1086/115085ADSCrossRefGoogle Scholar
  391. 391.
    Supulver, K.D., Lin, D.N.C.: Formation of Icy planetesimals in a turbulent solar nebula. Icarus 146, 525–540 (2000).  https://doi.org/10.1006/icar.2000.6418ADSCrossRefGoogle Scholar
  392. 392.
    Suzuki, T.K., Inutsuka, S.I.: disk winds driven by magnetorotational instability and dispersal of protoplanetary disks. ApJ 691, L49–L54 (2009).  https://doi.org/10.1088/0004-637X/691/1/L49
  393. 393.
    Suzuki, T.K., Muto, T., Inutsuka, S.I.: Protoplanetary disk winds via magnetorotational instability: formation of an inner hole and a crucial assist for planet formation. ApJ 718, 1289–1304 (2010).  https://doi.org/10.1088/0004-637X/718/2/1289
  394. 394.
    Suzuki, T.K., Ogihara, M., Morbidelli, A., Crida, A., Guillot, T.: Evolution of protoplanetary discs with magnetically driven disc winds. A&A 596, A74 (2016).  https://doi.org/10.1051/0004-6361/201628955ADSCrossRefGoogle Scholar
  395. 395.
    Takeuchi, T., Lin, D.N.C.: Radial flow of dust particles in accretion disks. ApJ 581, 1344–1355 (2002).  https://doi.org/10.1086/344437ADSCrossRefGoogle Scholar
  396. 396.
    Takeuchi, T., Okuzumi, S.: Radial transport of large-scale magnetic fields in accretion disks. II. Relaxation to steady states. ApJ 797, 132 (2014).  https://doi.org/10.1088/0004-637X/797/2/132ADSCrossRefGoogle Scholar
  397. 397.
    Tanaka, K.E.I., Nakamoto, T., Omukai, K.: Photoevaporation of circumstellar disks revisited: the dust-free case. ApJ 773, 155 (2013).  https://doi.org/10.1088/0004-637X/773/2/155ADSCrossRefGoogle Scholar
  398. 398.
    Tanga, P., Babiano, A., Dubrulle, B., Provenzale, A.: Forming planetesimals in vortices. Icarus 121, 158–170 (1996).  https://doi.org/10.1006/icar.1996.0076ADSCrossRefGoogle Scholar
  399. 399.
    Tazzari, M., Testi, L., Ercolano, B., Natta, A., Isella, A., Chandler, C.J., Pérez, L.M., Andrews, S., Wilner, D.J., Ricci, L., Henning, T., Linz, H., Kwon, W., Corder, S.A., Dullemond, C.P., Carpenter, J.M., Sargent, A.I., Mundy, L., Storm, S., Calvet, N., Greaves, J.A., Lazio, J., Deller, A.T.: Multiwavelength analysis for interferometric (sub-)mm observations of protoplanetary disks. Radial constraints on the dust properties and the disk structure. A&A 588, A53 (2016).  https://doi.org/10.1051/0004-6361/201527423
  400. 400.
    Teague, R., Guilloteau, S., Semenov, D., Henning, T., Dutrey, A., Piétu, V., Birnstiel, T., Chapillon, E., Hollenbach, D., Gorti, U.: Measuring turbulence in TW Hydrae with ALMA: methods and limitations. A&A 592, A49 (2016).  https://doi.org/10.1051/0004-6361/201628550ADSCrossRefGoogle Scholar
  401. 401.
    Terquem, C., Papaloizou, J.C.B.: On the stability of an accretion disc containing a toroidal magnetic field. MNRAS 279, 767–784 (1996)ADSCrossRefGoogle Scholar
  402. 402.
    Throop, H.B., Bally, J.: Can photoevaporation trigger planetesimal formation? ApJ 623, L149–L152 (2005).  https://doi.org/10.1086/430272ADSCrossRefGoogle Scholar
  403. 403.
    Throop, H.B., Bally, J.: Tail-end Bondi-Hoyle accretion in young star clusters: implications for disks, planets, and stars. AJ 135, 2380–2397 (2008).  https://doi.org/10.1088/0004-6256/135/6/2380ADSCrossRefGoogle Scholar
  404. 404.
    Tobin, J.J., Kratter, K.M., Persson, M.V., Looney, L.W., Dunham, M.M., Segura-Cox, D., Li, Z.Y., Chandler, C.J., Sadavoy, S.I., Harris, R.J., Melis, C., Pérez, L.M.: A triple protostar system formed via fragmentation of a gravitationally unstable disk. Nature 538, 483–486 (2016).  https://doi.org/10.1038/nature20094ADSCrossRefGoogle Scholar
  405. 405.
    Toomre, A.: On the gravitational stability of a disk of stars. ApJ 139, 1217–1238 (1964).  https://doi.org/10.1086/147861ADSCrossRefGoogle Scholar
  406. 406.
    Torres, R.M., Loinard, L., Mioduszewski, A.J., Boden, A.F., Franco-Hernández, R., Vlemmings, W.H.T., Rodríguez, L.F.: VLBA determination of the distance to nearby star-forming regions. V. Dynamical mass, distance, and radio structure of V773 Tau A. ApJ 747, 18 (2012).  https://doi.org/10.1088/0004-637X/747/1/18
  407. 407.
    Tout, C.A., Pringle, J.E.: Accretion disc viscosity—a simple model for a magnetic dynamo. MNRAS 259, 604–612 (1992)ADSCrossRefGoogle Scholar
  408. 408.
    Trapman, L., Miotello, A., Kama, M., van Dishoeck, E.F., Bruderer, S.: Far-infrared HD emission as a measure of protoplanetary disk mass. A&A 605, A69 (2017).  https://doi.org/10.1051/0004-6361/201630308ADSCrossRefGoogle Scholar
  409. 409.
    Tsukamoto, Y., Iwasaki, K., Okuzumi, S., Machida, M.N., Inutsuka, S.: Bimodality of circumstellar disk evolution induced by Hall current. ArXiv e-prints (2015)Google Scholar
  410. 410.
    Tsukamoto, Y., Takahashi, S.Z., Machida, M.N., Inutsuka, S.: Effects of radiative transfer on the structure of self-gravitating discs, their fragmentation and the evolution of the fragments. MNRAS 446, 1175–1190 (2015).  https://doi.org/10.1093/mnras/stu2160ADSCrossRefGoogle Scholar
  411. 411.
    Turner, N.J., Benisty, M., Dullemond, C.P., Hirose, S.: Herbig stars’ near-infrared excess: an origin in the protostellar disk’s magnetically supported atmosphere. ApJ 780, 42 (2014).  https://doi.org/10.1088/0004-637X/780/1/42ADSCrossRefGoogle Scholar
  412. 412.
    Turner, N.J., Drake, J.F.: Energetic protons, radionuclides, and magnetic activity in protostellar disks. ApJ 703, 2152–2159 (2009).  https://doi.org/10.1088/0004-637X/703/2/2152ADSCrossRefGoogle Scholar
  413. 413.
    Turner, N.J., Sano, T.: Dead zone accretion flows in protostellar disks. ApJ 679, L131–L134 (2008).  https://doi.org/10.1086/589540ADSCrossRefGoogle Scholar
  414. 414.
    Turner, N.J., Sano, T., Dziourkevitch, N.: Turbulent mixing and the dead zone in protostellar disks. ApJ 659, 729–737 (2007).  https://doi.org/10.1086/512007ADSCrossRefGoogle Scholar
  415. 415.
    Umebayashi, T., Nakano, T.: Effects of radionuclides on the ionization state of protoplanetary disks and dense cloud cores. ApJ 690, 69–81 (2009).  https://doi.org/10.1088/0004-637X/690/1/69ADSCrossRefGoogle Scholar
  416. 416.
    Umurhan, O.M.: Potential vorticity dynamics in the framework of disk shallow-water theory. I. The Rossby wave instability. A&A 521, A25 (2010).  https://doi.org/10.1051/0004-6361/201015210ADSCrossRefzbMATHGoogle Scholar
  417. 417.
    Urpin, V., Brandenburg, A.: Magnetic and vertical shear instabilities in accretion discs. MNRAS 294, 399 (1998).  https://doi.org/10.1046/j.1365-8711.1998.01118.xADSCrossRefGoogle Scholar
  418. 418.
    Uyama, T., Hashimoto, J., Kuzuhara, M., Mayama, S., Akiyama, E., Currie, T., Livingston, J., Kudo, T., Kusakabe, N., Abe, L., Brandner, W., Brandt, T.D., Carson, J.C., Egner, S., Feldt, M., Goto, M., Grady, C.A., Guyon, O., Hayano, Y., Hayashi, M., Hayashi, S.S., Henning, T., Hodapp, K.W., Ishii, M., Iye, M., Janson, M., Kandori, R., Knapp, G.R., Kwon, J., Matsuo, T., Mcelwain, M.W., Miyama, S., Morino, J.I., Moro-Martin, A., Nishimura, T., Pyo, T.S., Serabyn, E., Suenaga, T., Suto, H., Suzuki, R., Takahashi, Y.H., Takami, M., Takato, N., Terada, H., Thalmann, C., Turner, E.L., Watanabe, M., Wisniewski, J., Yamada, T., Takami, H., Usuda, T., Tamura, M.: The SEEDS high-contrast imaging survey of exoplanets around young stellar objects. AJ 153, 106 (2017).  https://doi.org/10.3847/1538-3881/153/3/106ADSCrossRefGoogle Scholar
  419. 419.
    van Boekel, R., Henning, T., Menu, J., de Boer, J., Langlois, M., Müller, A., Avenhaus, H., Boccaletti, A., Schmid, H.M., Thalmann, C., Benisty, M., Dominik, C., Ginski, C., Girard, J.H., Gisler, D., Lobo Gomes, A., Menard, F., Min, M., Pavlov, A., Pohl, A., Quanz, S.P., Rabou, P., Roelfsema, R., Sauvage, J.F., Teague, R., Wildi, F., Zurlo, A.: Three radial gaps in the disk of TW Hydrae imaged with SPHERE. ApJ 837, 132 (2017).  https://doi.org/10.3847/1538-4357/aa5d68ADSCrossRefGoogle Scholar
  420. 420.
    van der Marel, N., van Dishoeck, E.F., Bruderer, S., Birnstiel, T., Pinilla, P., Dullemond, C.P., van Kempen, T.A., Schmalzl, M., Brown, J.M., Herczeg, G.J., Mathews, G.S., Geers, V.: A major asymmetric dust trap in a transition disk. Science 340, 1199–1202 (2013).  https://doi.org/10.1126/science.1236770ADSCrossRefGoogle Scholar
  421. 421.
    Varnière, P., Tagger, M.: Reviving dead zones in accretion disks by Rossby vortices at their boundaries. A&A 446, L13–L16 (2006).  https://doi.org/10.1051/0004-6361:200500226ADSCrossRefGoogle Scholar
  422. 422.
    Velikhov, E.: Stability of an ideally conducting liquid flowing between rotating cylinders in a magnetic field. Zhur. Eksptl?. i Teoret. Fiz. 36 (1959)Google Scholar
  423. 423.
    Vorobyov, E.I., Basu, S.: The origin of episodic accretion bursts in the early stages of star formation. ApJ 633, L137–L140 (2005).  https://doi.org/10.1086/498303ADSCrossRefGoogle Scholar
  424. 424.
    Wang, L., Goodman, J.: Hydrodynamic photoevaporation of protoplanetary disks with consistent thermochemistry. ApJ 847, 11 (2017).  https://doi.org/10.3847/1538-4357/aa8726ADSCrossRefGoogle Scholar
  425. 425.
    Ward, W.R.: Particle filtering by a planetary gap. In: Lunar and Planetary Science Conference. Lunar and Planetary Inst. Technical Report, vol. 40, p. 1477 (2009)Google Scholar
  426. 426.
    Wardle, M.: The Balbus-Hawley instability in weakly ionized discs. MNRAS 307, 849–856 (1999).  https://doi.org/10.1046/j.1365-8711.1999.02670.xADSCrossRefGoogle Scholar
  427. 427.
    Waters, T.R., Proga, D.: Parker winds revisited: an extension to disc winds. MNRAS 426, 2239–2265 (2012).  https://doi.org/10.1111/j.1365-2966.2012.21823.xADSCrossRefGoogle Scholar
  428. 428.
    Weidenschilling, S.J.: Aerodynamics of solid bodies in the solar nebula. MNRAS 180, 57–70 (1977)ADSCrossRefGoogle Scholar
  429. 429.
    Weidenschilling, S.J.: The distribution of mass in the planetary system and solar nebula. Ap&SS 51, 153–158 (1977).  https://doi.org/10.1007/BF00642464ADSCrossRefGoogle Scholar
  430. 430.
    Weingartner, J.C., Draine, B.T.: Photoelectric emission from interstellar dust: grain charging and gas heating. ApJs 134, 263–281 (2001).  https://doi.org/10.1086/320852ADSCrossRefGoogle Scholar
  431. 431.
    Whipple, F.L.: On certain aerodynamic processes for asteroids and comets. In: Elvius, A. (ed.) From Plasma to Planet, p. 211 (1972)Google Scholar
  432. 432.
    Williams, J.P., Best, W.M.J.: A parametric modeling approach to measuring the gas masses of circumstellar disks. ApJ 788, 59 (2014).  https://doi.org/10.1088/0004-637X/788/1/59ADSCrossRefGoogle Scholar
  433. 433.
    Williams, J.P., Cieza, L.A.: Protoplanetary disks and their evolution. ARA&A 49, 67–117 (2011).  https://doi.org/10.1146/annurev-astro-081710-102548
  434. 434.
    Yang, C.C., Johansen, A.: On the feeding zone of planetesimal formation by the streaming instability. ApJ 792, 86 (2014).  https://doi.org/10.1088/0004-637X/792/2/86ADSCrossRefGoogle Scholar
  435. 435.
    Yang, C.C., Johansen, A., Carrera, D.: Concentrating small particles in protoplanetary disks through the streaming instability. A&A 606, A80 (2017).  https://doi.org/10.1051/0004-6361/201630106ADSCrossRefGoogle Scholar
  436. 436.
    Youdin, A.N., Chiang, E.I.: Particle pileups and planetesimal formation. ApJ 601, 1109–1119 (2004).  https://doi.org/10.1086/379368ADSCrossRefGoogle Scholar
  437. 437.
    Youdin, A.N., Goodman, J.: Streaming instabilities in protoplanetary disks. ApJ 620, 459–469 (2005).  https://doi.org/10.1086/426895ADSCrossRefGoogle Scholar
  438. 438.
    Youdin, A.N., Lithwick, Y.: Particle stirring in turbulent gas disks: including orbital oscillations. Icarus 192, 588–604 (2007).  https://doi.org/10.1016/j.icarus.2007.07.012ADSCrossRefGoogle Scholar
  439. 439.
    Youdin, A.N., Shu, F.H.: Planetesimal formation by gravitational instability. ApJ 580, 494–505 (2002).  https://doi.org/10.1086/343109ADSCrossRefGoogle Scholar
  440. 440.
    Zhang, K., Blake, G.A., Bergin, E.A.: Evidence of fast pebble growth near condensation fronts in the HL Tau protoplanetary disk. ApJ 806, L7 (2015).  https://doi.org/10.1088/2041-8205/806/1/L7ADSCrossRefGoogle Scholar
  441. 441.
    Zhu, Z., Hartmann, L., Calvet, N., Hernandez, J., Muzerolle, J., Tannirkulam, A.K.: The hot inner disk of FU Orionis. ApJ 669, 483–492 (2007).  https://doi.org/10.1086/521345ADSCrossRefGoogle Scholar
  442. 442.
    Zhu, Z., Hartmann, L., Gammie, C.: Long-term evolution of protostellar and protoplanetary disks. II. Layered accretion with infall. ApJ 713, 1143–1158 (2010).  https://doi.org/10.1088/0004-637X/713/2/1143ADSCrossRefGoogle Scholar
  443. 443.
    Zhu, Z., Hartmann, L., Gammie, C., McKinney, J.C.: Two-dimensional simulations of FU Orionis disk outbursts. ApJ 701, 620–634 (2009).  https://doi.org/10.1088/0004-637X/701/1/620ADSCrossRefGoogle Scholar
  444. 444.
    Zhu, Z., Hartmann, L., Gammie, C.F., Book, L.G., Simon, J.B., Engelhard, E.: Long-term evolution of protostellar and protoplanetary disks. I. Outbursts. ApJ 713, 1134–1142 (2010).  https://doi.org/10.1088/0004-637X/713/2/1134ADSCrossRefGoogle Scholar
  445. 445.
    Zhu, Z., Nelson, R.P., Dong, R., Espaillat, C., Hartmann, L.: Dust filtration by planet-induced gap edges: implications for transitional disks. ApJ 755, 6 (2012).  https://doi.org/10.1088/0004-637X/755/1/6ADSCrossRefGoogle Scholar
  446. 446.
    Zhu, Z., Stone, J.M.: Dust trapping by vortices in transitional disks: evidence for non-ideal magnetohydrodynamic effects in protoplanetary disks. ApJ 795, 53 (2014).  https://doi.org/10.1088/0004-637X/795/1/53ADSCrossRefGoogle Scholar
  447. 447.
    Zhu, Z., Stone, J.M., Bai, X.N.: Dust transport in MRI turbulent disks: ideal and non-ideal MHD with ambipolar diffusion. ApJ 801, 81 (2015).  https://doi.org/10.1088/0004-637X/801/2/81ADSCrossRefGoogle Scholar
  448. 448.
    Zhu, Z., Stone, J.M., Rafikov, R.R., Bai, X.N.: Particle concentration at planet-induced gap edges and vortices. I. Inviscid three-dimensional hydro disks. ApJ 785, 122 (2014).  https://doi.org/10.1088/0004-637X/785/2/122ADSCrossRefGoogle Scholar
  449. 449.
    Zweibel, E.G.: Ambipolar diffusion. In: Astrophysics and Space Science Library, vol. 407, 285 (2015)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.JILA, University of Colorado & NISTBoulderUSA

Personalised recommendations