Advertisement

Psychische Neuroimplantate – Wie kann Lebensverbesserung im Gehirn tatsächlich wirksam werden?

  • Hans J. Markowitsch
  • Margit M. Schreier
Chapter

Zusammenfassung

Der Bereich des Gedächtnisses wird von der Einspeicherung bis zum Abruf beleuchtet. Die Anwendung von Neuroimplantaten – psychischen Vorstellungen, die die Erinnerung verändern sollen – wird hinsichtlich Anwendungsmöglichkeiten, insbesondere zur Erhöhung des Selbstwertgefühls, erläutert. Eine gebührende Aufmerksamkeit erhält die Stillung der Bedürfnisse nach traumatischem Erleben. Erläuterungen zum Einsatz externer internetbezogener Hilfen werden gegeben. Gefahren und ethische Gesichtspunkte hinsichtlich der Benutzung psychischer Implantate werden diskutiert. Die Besonderheit der Regression bei der Traumaverarbeitung wird beschrieben, das Empfinden und Denken in Szenarien geschildert, und die Möglichkeiten der Anwendung von Implantaten in allen Bereichen, die Grundbedürfnisse darstellen, werden beleuchtet. Möglichkeiten und Grenzen von Persönlichkeitsausbildung und -erweiterung werden diskutiert.

Literatur

  1. Agnoli, S., Zanon, M., Mastria, S., Avenanti, A., & Corazza, G. E. (2018). Enhancing creative cognition with a rapid right-parietal neurofeedback procedure. Neuropsychologia, 118, 99–106.Google Scholar
  2. Akazawa, N., Tanahashi, K., Kosaki, K., Ra, S. G., Matsubara, T., Choi, Y., Zempo-Miyaki, A., & Maeda, S. (2018). Aerobic exercise training enhances cerebrovascular pulsatility response to acute aerobic exercise in older adults. Physiological Reports, 6, e13681.  https://doi.org/10.14814/phy2.13681. Zugegriffen am 27.06.2018.
  3. Alt, D. (2015). College students’ academic motivation, media engagement and fear of missing out. Computers in Human Behavior, 49, 1116–1119.CrossRefGoogle Scholar
  4. Anderson, M. C., & Green, C. (2001). Suppressing unwanted memories by executive control. Nature, 410, 366–369.CrossRefGoogle Scholar
  5. Anderson, M. C., & Hanslmayr, S. (2014). Neural mechanisms of motivated forgetting. Trends in Cognitive Sciences, 18, 279–292.CrossRefGoogle Scholar
  6. Anonymous. (2007). Auf Knopfdruck Glück? Spektrum der Wissenschaft 9. https://www.spektrum.de/alias/neuroimplantate/auf-knopfdruck-glueck/905899. Zugegriffen am 08.08.2018
  7. Axmacher, N., Elger, C. E., & Fell, J. (2008). Ripples in the medial temporal lobe are relevant for human memory consolidation. Brain, 131, 1806–1817.CrossRefGoogle Scholar
  8. Bachrach, N., Croon, M. A., & Bekker, M. H. (2015). The role of sex, attachment and autonomy-connectedness in personality functioning. Personality and Mental Health, 9, 330–344.CrossRefGoogle Scholar
  9. Baym, C. L., & Gonsalves, S. D. (2010). Comparison of neural activity that leads to true memories, false memories, and forgetting: An fMRI study of the misinformation effect. Cognitive, Affective, & Behavioral Neuroscience, 10, 339–348.CrossRefGoogle Scholar
  10. Bayraktar, F., & Amca, H. (2012). Interrelations between virtual-world and real-world activities: Comparison of genders, age groups, and pathological and nonpathological internet users. Cyberpsychology, Behavior and Social Networking, 15, 263–269.CrossRefGoogle Scholar
  11. Beaty, R. E., Benedek, M., Wilkins, R. W., Jauk, E., Fink, A., Silvia, P. J., Hodges, D. A., Koschutnig, K., & Neubauer, A. C. (2014). Creativity and the default network: A functional connectivity analysis of the creative brain at rest. Neuropsychologia, 64, 92–98.CrossRefGoogle Scholar
  12. Benoit, R. G., & Anderson, M. C. (2012). Opposing mechanisms support the voluntary forgetting of unwanted memories. Neuron, 76, 450–460.CrossRefGoogle Scholar
  13. Berkers, R. M., & van Kesteren, M. T. (2013). Autobiographical memory transformation across consolidation. Journal of Neuroscience, 33, 5435–5436.CrossRefGoogle Scholar
  14. Bland, C. E., Howe, M. L., & Knott, L. (2016). Discrete emotion-congruent false memories in the DRM paradigm. Emotion, 16, 611–619.CrossRefGoogle Scholar
  15. Bonnici, H. M., Chadwick, M. J., Lutti, A., Hassabis, D., Weiskopf, N., & Maguire, E. A. (2012). Detecting representations of recent and remote autobiographical memories in vmPFC and hippocampus. Journal of Neuroscience, 32, 16982–16991.CrossRefGoogle Scholar
  16. Borsutzky, S., Fujiwara, E., Brand, M., & Markowitsch, H. J. (2010). Susceptibility to false memories in patients with ACoA aneurysm. Neuropsychologia, 48, 2811–2823.CrossRefGoogle Scholar
  17. Bradley, M. M., & Lang, P. J. (2007). The International Affective Picture System (IAPS) in the study of emotion and attention. In J. A. Coan & J. J. B. Allen (Hrsg.), Handbook of emotion elicitation and assessment (S. 29–46). New York: Oxford University Press.Google Scholar
  18. Brand, M., & Markowitsch, H. J. (2005). Neuropsychologische Früherkennung und Diagnostik der Demenzen. In M. Martin & H. R. Schelling (Hrsg.), Demenzen in Schlüsselbegriffen (S. 11–73). Bern: Hans Huber.Google Scholar
  19. Brand, M., Kalbe, E., Labudda, K., Fujiwara, E., Kessler, J., & Markowitsch, H. J. (2005). Decision-making impairments in patients with pathological gambling. Psychiatry Research, 133, 91–99.CrossRefGoogle Scholar
  20. Brennan, K. A., & Shaver, P. R. (1998). Attachment styles and personality disorders: Their connections to each other and to parental divorce, parental death, and perceptions of parental caregiving. Journal of Personality, 66, 835–878.CrossRefGoogle Scholar
  21. Brewin, C. R., & Andrews, B. (2017). Creating memories for false autobiographical events in childhood: A systematic review. Applied Cognitive Psychology, 31, 2–23.CrossRefGoogle Scholar
  22. Buckner, R. L. (2012). The serendipitous discovery of the brain’s default network. NeuroImage, 62, 1137–1145.CrossRefGoogle Scholar
  23. Buckner, R. L., Andrews-Hanna, J. R., & Schacter, D.L. (2008). The brain’s default network: Anatomy, function, and relevance to disease. Annals of the New York Academy of Sciences, 1124, 1–38Google Scholar
  24. Buglass, S. L., Binder, J. F., Betts, L. R., & Underwood, J. D. M. (2017). Motivators of online vulnerability: The impact of social network site use and FOMO. Computers in Human Behavior, 66, 248–255.CrossRefGoogle Scholar
  25. Buss, D. M. (1994). The strategies of human mating. American Scientist, 82, 238–249.Google Scholar
  26. Carr, C. P., Martins, C. M., Stingel, A. M., Lemgruber, V. B., & Juruena, M. F. (2013). The role of early life stress in adult psychiatric disorders: A systematic review according to childhood trauma subtypes. Journal of Nervous and Mental Disease, 201, 1007–1020.CrossRefGoogle Scholar
  27. Cashmore, A. R. (2010). The Lucretian swerve: The biological basis of human behavior and the criminal justice system. Proceedings of the National Academy of Sciences of the USA, 107, 4499–4504.CrossRefGoogle Scholar
  28. Castro, D. C., Terry, R. A., & Berridge, K. C. (2016). Orexin in rostral hotspot of nucleus accumbens enhances sucrose ‚liking‘ and intake but scopolamine in caudal shell shifts ‚liking‘ toward ‚disgust‘ and ‚fear‘. Neuropsychopharmacology, 41, 2101–2111.CrossRefGoogle Scholar
  29. Chanda, M. L., & Levitin, D. J. (2013). The neurochemistry of music. Trends in Cognitive Science, 17, 179–193.CrossRefGoogle Scholar
  30. Chen, Q., Beaty, R. E., Wei, D., Yang, J., Sun, J., Liu, W., Yang, W., Zhang, Q., & Qiu, J. (2018). Longitudinal alterations of frontoparietal and frontotemporal networks predict future creative cognitive ability. Cerebral Cortex, 28, 103–115.CrossRefGoogle Scholar
  31. Chuang, C. H., Chen, Y. N., Tsai, L. W., Lee, C. C., & Tsai, H. C. (2014). Improving learning performance with happiness by interactive scenarios. Scientific World Journal, 14, 807347.  https://doi.org/10.1155/2014/807347. Zugegriffen am 23.06.2018.
  32. Cirelli, L. K., Dickinson, J., & Poirier, M. (2015). Using implicit instructional cues to influence false memory induction. Journal of Psycholinguistic Research, 44, 485–494.CrossRefGoogle Scholar
  33. Cohen, J., & Greene, J. (2004). For the law, neuroscience changes nothing and everything. Philosophical Transactions of the Royal Society of London B, 359, 1775–1785.CrossRefGoogle Scholar
  34. de Courten-Myers, G. M. (1999). The human cerebral cortex: Gender differences in structure and function. Journal of Neuropathology and Experimental Neurology, 58, 217–226.CrossRefGoogle Scholar
  35. Dagnan, D., Trower, P., & Gilbert, P. (2002). Measuring vulnerability to threats to self-construction: The self and other scale. Psychology and Psychotherapy, 75, 279–293.CrossRefGoogle Scholar
  36. Darsaud, A., Dehon, H., Lahl, O., Sterpenich, V., Boly, M., Dang-Vu, T., Desseilles, M., Gais, S., Matarazzo, L., Peters, F., Schabus, M., Schmidt, C., Tinguely, G., Vandewalle, G., Luxen, A., Maquet, P., & Collette, F. (2011). Does sleep promote false memories. Journal of Cognitive Neuroscience, 23, 26–40.CrossRefGoogle Scholar
  37. Dégeilh, F., Guillery-Girard, B., Dayan, J., Gaubert, M., Chételat, G., Egler, P. J., Baleyte, J. M., Eustache, F., & Viard, A. (2015). Neural correlates of self and its interaction with memory in healthy adolescents. Child Development, 86, 1966–1983.CrossRefGoogle Scholar
  38. Dell, G. S. (1986). A spreading-activation theory of retrieval in sentence production. Psychological Review, 93, 283–321.CrossRefGoogle Scholar
  39. Dennett, D. C. (1999). Spielarten des Geistes. Wie erkennen wir die Welt? München: Bertelsmann.Google Scholar
  40. Denzler, P., Markowitsch, H. J., Frölich, L., Kessler, J., & Ihl, R. (1989). Demenz im Alter. Weinheim: Beltz.Google Scholar
  41. Deshmukh, V. D. (2006). Neuroscience of meditation. Scientific World Journal, 6, 2239–2253.CrossRefGoogle Scholar
  42. Detre, G. J., Natarajan, A., Gershman, S. J., & Norman, K. A. (2013). Moderate levels of activation lead to forgetting in the thing/no-think paradigm. Neuropsychologia, 51, 2371–2388.CrossRefGoogle Scholar
  43. Deutscher Ethikrat. (2018). Infobrief. http://www.ethikrat.org/dateien/pdf/infobrief-01-06.pdf. Zugegriffen am 27.07.2018.
  44. Diekelmann, S., & Born, J. (2010). The memory function of sleep. Nature Reviews Neuroscience, 11, 114–126.CrossRefGoogle Scholar
  45. Diekelmann, S., Born, J., & Wagner, U. (2010). Sleep enhances false memories depending on general memory performance. Behavioural Brain Research, 208, 425–429.CrossRefGoogle Scholar
  46. Diener, E., Ng, W., Harter, J., & Arora, R. (2010). Wealth and happiness across the world: Material prosperity predicts life evaluation, whereas psychosocial prosperity predicts positive feeling. Journal of Personality and Social Psychology, 99, 52–61.CrossRefGoogle Scholar
  47. Dölen, G., Darvishzadeh, A., Huang, K. W., & Malenka, R. C. (2013). Social reward requires coordinated activity of nucleus accumbens oxytocin and serotonin. Nature, 501, 179–184.CrossRefGoogle Scholar
  48. Dubiel, H. (2006). Tief im Hirn. München: Antje Kunstmann.Google Scholar
  49. Dunbar, R. I. M. (1998). The social brain hypothesis. Evolutionary Anthropology, 6, 178–190.CrossRefGoogle Scholar
  50. Dunbar, R. I. M. (2018). The anatomy of friendship. Trends in Cognitive Sciences, 22, 32–51.CrossRefGoogle Scholar
  51. Durkee, T., Kaess, M., Carli, V., Parzer, P., Wasserman, C., Floderus, B., Apter, A., Balazs, J., Barzilay, S., Bobes, J., Brunner, R., Corcoran, P., Cosman, D., Cotter, P., Despalins, R., Graber, N., Guillemin, F., Haring, C., Kahn, J. P., Mandelli, L., Marusic, D., Mészáros, G., Musa, G. J., Postuvan, V., Resch, F., Saiz, P. A., Sisask, M., Varnik, A., Sarchiapone, M., Hoven, C. W., & Wasserman, D. (2012). Prevalence of pathological internet use among adolescents in Europe: Demographic and social factors. Addiction, 107, 2210–2222.CrossRefGoogle Scholar
  52. Emery, L., Hess, T. M., & Elliot, T. (2012). The illusion of the positive: The impact of natural and induced mood on older adults’ false recall. Neuropsychology, Development and Cognition. Section B: Aging, 19, 677–698.CrossRefGoogle Scholar
  53. Eustache, F., Viard, A., & Desgranges, B. (2016). The MNESIS model: Memory systems and processes, identity and future thinking. Neuropsychologia, 87, 96–109.CrossRefGoogle Scholar
  54. Fischer, B. (ohne Jahr). Freier Wille in der Geschichte der Philosophie. http://www.wissiomed.de/mediapool/99/991570/data/Freier_Wille_in_der_Geschichte_der_Philosophie_und_Religion.pdf. Zugegriffen am 19.10.2015.
  55. Freud, S. (1901a). Zur Psychopathologie des Alltagslebens (Vergessen, Versprechen, Vergreifen) nebst Bemerkungen über eine Wurzel des Aberglaubens. Monatsschrift für Psychiatrie und Neurologie, 10, 1–32 und 95–143.CrossRefGoogle Scholar
  56. Freud, S. (1901b). Zum psychischen Mechanismus der Vergesslichkeit. Monatsschrift für Psychiatrie und Neurologie, 4(5), 436–443.Google Scholar
  57. Freud, S. (1919). Das Unheimliche. Imago, 5, 297–324.Google Scholar
  58. Fries, A. B., Ziegler, T. E., Kurian, J. R., Jacoris, S., & Pollak, S. D. (2005). Early experience in humans is associated with changes in neuropeptides critical for regulating social behavior. Proceedings of the National Academy of the U. S. A., 102, 17237–17240.CrossRefGoogle Scholar
  59. Frost, P., Nussbaum, G., Loconto, T., Syke, R., Warren, C., & Muise, C. (2013). An individual differences approach to the suggestibility of memory over time. Memory, 21, 408–416.CrossRefGoogle Scholar
  60. Fujiwara, E., & Markowitsch, H. J. (2005). Autobiographical memory disorders. In T. E. Feinberg & J. P. Keenan (Hrsg.), The lost self: Pathologies of the brain and identity (S. 65–80). New York: Oxford University Press.CrossRefGoogle Scholar
  61. Gall, C. M., & Lynch, G. (2005). Consolidation: A view from the synapse. In P. K. Stanton, C. Bramham & H. E. Scharfman (Hrsg.), Synaptic plasticity and transsynaptic signaling (S. 469–494). New York: Springer.CrossRefGoogle Scholar
  62. Garry, M., & Wade, K. A. (2005). Actually, a picture is worth less than 45 words: Narratives produce more false memories than photographs do. Psychonomic Bulletin and Reviews, 12, 359–366. Send to.CrossRefGoogle Scholar
  63. Giggins, O. M., Persson, U. M., & Caulfield, B. (2013). Biofeedback in rehabilitation. Journal of Neuroengineering and Rehabilitation, 10, Art. 60. http://www.jneuroengrehab.com/content/10/1/60. Zugegriffen am 17.12.2014.
  64. Girardeau, G., & Zugaro, M. (2011). Hippocampal ripples and memory consolidation. Current Opinion in Neurobiology, 21, 452–459.CrossRefGoogle Scholar
  65. Gonsalves, B., Reber, P. J., Gitelman, D. R., Parrish, T. B., Mesulam, M. M., & Paller, K. A. (2004). Neural evidence that vivid imagining can lead to false remembering. Psychological Science, 20, 429–442.Google Scholar
  66. Hebb, D. O. (1949). The organization of behavior. New York: Wiley.Google Scholar
  67. Herz, R. (2016). The role of odor-evoked memory in psychological and physiological health. Brain Sciences, 6, Art. 22.CrossRefGoogle Scholar
  68. van Heugten-van der Kloet, D., Merckelbach, H., Giesbrecht, T., & Broers, N. (2014). Night-time experiences and daytime dissociation: A path analysis modeling study. Psychiatry Research, 216, 236–241.CrossRefGoogle Scholar
  69. Hovens, J. G., Wiersma, J. E., Giltay, E. J., van Oppen, P., Spinhoven, P., Penninx, B. W., & Zitman, F. G. (2010). Childhood life events and childhood trauma in adult patients with depressive, anxiety and comorbid disorders vs. controls. Acta Psychiatrica Scandinavica, 122, 66–74.CrossRefGoogle Scholar
  70. Hu, X., Bergström, Z. M., Gagnepain, P., & Anderson, M. C. (2017). Suppressing unwanted memories reduces their unintended influences. Current Directions in Psychological Science, 26, 197–206.CrossRefGoogle Scholar
  71. Hulbert, J. C., Henson, R. N., & Anderson, M. C. (2016). Inducing amnesia through systemic suppression. Nature Communications, 7, 11003.  https://doi.org/10.1038/ncomms11003. Zugegriffen am 27.07.2017.
  72. Ito, Y. (2001). Hemispheric asymmetry in the induction of false memories. Laterality, 6, 337–346.CrossRefGoogle Scholar
  73. Jellinger, K. A. (2013). Pathology and pathogenesis of vascular cognitive impairment – A critical update. Frontiers in Aging Neuroscience, 5, Art. 17.  https://doi.org/10.3389/fnagi.2013.00017. Zugegriffen am 08.09.2014.
  74. Ji, D., & Wilson, M. A. (2007). Coordinated memory replay in the visual cortex and hippocampus during sleep. Nature Neuroscience, 10, 100–107.CrossRefGoogle Scholar
  75. Kaess, M., Parzer, P., Brunner, R., Koenig, J., Durkee, T., Carli, V., Wasserman, C., Hoven, C. W., Sarchiapone, M., Bobes, J., Cosman, D., Värnik, A., Resch, F., & Wasserman, D. (2016). Pathological internet use is on the rise among European adolescents. Journal of Adolescent Health, 59, 236–239.CrossRefGoogle Scholar
  76. Kang, J., Scholp, A., & Jiang, J. J. (2017). A review of the physiological effects and mechanisms of singing. Journal of Voice, pii: S0892–1997(17)30223–0.  https://doi.org/10.1016/j.jvoice.2017.07.008. Zugegriffen am 02.06.2018.
  77. Kawai, N., & Matsuzawa, T. (2000). Numerical memory span in a chimpanzee. Nature, 403, 39–40.CrossRefGoogle Scholar
  78. Kikuchi, H., Fujii, T., Abe, N., Suzuki, M., Takagi, M., Mugikura, S., Takahashi, S., & Mori, E. (2010). Memory repression: Brain mechanisms underlying dissociative amnesia. Journal of Cognitive Neuroscience, 22, 602–613.CrossRefGoogle Scholar
  79. Kim, H., & Cabeza, R. (2007). Differential contributions of prefrontal, medial temporal, and sensory-perceptual regions to true and false memory formation. Cerebral Cortex, 17, 2143–2150.CrossRefGoogle Scholar
  80. van der Kloet, D., Giesbrecht, T., Franck, E., van Gastel, A., de Volder, I., van den Eede, F., Verschuere, B., & Merckelbach, H. (2013). Dissociative symptoms and sleep parameters – An all-night polysomnography study in patients with insomnia. Comprehensive Psychiatry, 54, 658–664.CrossRefGoogle Scholar
  81. Kluemper, N. S., & Dalenberg, C. (2014). Is the dissociative adult suggestible? A test of the trauma and fantasy models of dissociation. Journal of Trauma & Dissociation, 15, 457–476.CrossRefGoogle Scholar
  82. Koffel, E., & Watson, D. (2009). Unusual sleep experiences, dissociation and schizotypy: Evidence for a common domain. Clinical Psychology Reviews, 29, 548–559.CrossRefGoogle Scholar
  83. Kong, F., Ding, K., Yang, Z., Dang, X., Hu, S., Song, Y., & Liu, J. (2015a). Examining gray matter structures associated with individual differences in global life satisfaction in a large sample of young adults. Social Cognitive and Affective Neuroscience, 10, 952–960.CrossRefGoogle Scholar
  84. Kong, F., Hu, S., Wang, X., Song, Y., & Liu, J. (2015b). Neural correlates of the happy life: The amplitude of spontaneous low frequency fluctuations predicts subjective well-being. NeuroImage, 107, 136–145.CrossRefGoogle Scholar
  85. Kong, F., Wang, X., Hu, S., & Liu, J. (2015c). Neural correlates of psychological resilience and their relation to life satisfaction in a sample of healthy young adults. NeuroImage, 123, 165–172.CrossRefGoogle Scholar
  86. Kou, M., Toshiya, M., Buchli, D., & Storm, B. C. (2014). Forgetting as a consequence of retrieval: A meta-analytic review of retrieval-induced forgetting. Psychological Bulletin, 140, 1383–1409.CrossRefGoogle Scholar
  87. Krämer, T. (2007). Kommt die gesteuerte Persönlichkeit? Spektrum der Wissenschaft, Sept., 41–49Google Scholar
  88. Kühnel, S., & Markowitsch, H. J. (2009). Falsche Erinnerungen. Heidelberg: Spektrum.CrossRefGoogle Scholar
  89. Kühnel, S., Woermann, F. G., Mertens, M., & Markowitsch, H. J. (2008). Involvement of the orbitofrontal cortex during correct and false recognitions of visual stimuli. Implications for eyewitness decisions on an fMRI study using a film paradigm. Brain Imaging and Behavior, 2, 163–176.CrossRefGoogle Scholar
  90. Lacey, R. E., Kumari, M., & McMunn, A. (2013). Parental separation in childhood and adult inflammation: The importance of material and psychosocial pathways. Psychoneuroendocrinology, 38, 2476–2484.CrossRefGoogle Scholar
  91. Lai, C., Altavilla, D., Ronconi, A., & Aceto, P. (2016). Fear of missing out (FOMO) is associated with activation of the right middle temporal gyrus during inclusion social cue. Computers in Human Behavior, 61, 516–521.CrossRefGoogle Scholar
  92. Lam, L. T., & Peng, Z. W. (2010). Effect of pathological use of the internet on adolescent mental health: A prospective study. Archives of Pediatrics & Adolescent Medicine, 164, 901–906.CrossRefGoogle Scholar
  93. Lang, P. J., Greenwald, M. K., Bradley, M. M., & Hamm, A. O. (1993). Looking at pictures: Affective, facial, visceral, and behavioral reactions. Psychophysiology, 30, 261–273.CrossRefGoogle Scholar
  94. Lang, M., Bahna, V., Shaver, J. H., Reddish, P., & Xygalatas, D. (2017). Sync to link: Endorphin-mediated synchrony effects on cooperation. Biological Psychology, 127, 191–197.CrossRefGoogle Scholar
  95. Langnickel, R., & Markowitsch, H. J. (2006). Repression and the unconsciousness. Behavioral and Brain Sciences, 29, 524–525.CrossRefGoogle Scholar
  96. Langnickel, R., & Markowitsch, H. J. (2010). Das Unbewusste Freuds und die Neurowissenschaften. In A. Leitner & H. G. Petzold (Hrsg.), Sigmund Freud heute. Der Vater der Psychoanalyse im Blick der Wissenschaft und der psychotherapeutischen Schulen (S. 149–173). Wien: Krammer.Google Scholar
  97. Levy, S. T., & Nemeroff, C. B. (1993). From psychoanalysis to neurobiology. National Forum, 73, 18.Google Scholar
  98. Lindner, I., Drouin, H., Tanguay, A. F., Stamenova, V., & Davidson, P. S. (2014). Source and destination memory: Two sides of the same coin? Memory, 23, 563–576.CrossRefGoogle Scholar
  99. Liu, Z., Zhang, J., Xie, X., Rolls, E. T., Sun, J., Zhang, K., Jiao, Z., Chen, Q., Zhang, J., Qiu, J., & Feng, J. (2018). Neural and genetic determinants of creativity. NeuroImage, 174, 164–176.CrossRefGoogle Scholar
  100. Livesley, W. J., Jackson, D. N., & Schroeder, M. L. (1991). Dimensions of personality pathology. Canadian Journal of Psychiatry, 36, 557–562.CrossRefGoogle Scholar
  101. Loftus, E., & Palmer, J. (1974). Reconstruction of automobile destruction: An example of the interaction between 16 Language and memory. Journal of Verbal Learning and Verbal Behavior, 4, 19–31.Google Scholar
  102. Lorenz, J., & Bromm, B. (1997). Event-related potential correlates of interference between cognitive performance and tonic experimental pain. Psychophysiology, 34, 436–445.CrossRefGoogle Scholar
  103. Manninen, S., Tuominen, L., Dunbar, R. I., Karjalainen, T., Hirvonen, J., Arponen, E., Hari, R., Jääskeläinen, I. P., Sams, M., & Nummenmaa, L. (2017). Social laughter triggers endogenous opioid release in humans. Journal of Neuroscience, 37, 6125–6131.CrossRefGoogle Scholar
  104. Månsdotter, A., Nordenmark, M., & Hammarström, A. (2012). The importance of childhood and adulthood aspects of gendered life for adult mental ill-health symptoms – A 27-year follow-up of the Northern Swedish Cohort. BMC Public Health, 12, 493.  https://doi.org/10.1186/1471–2458–12–493. Zugegriffen am 16.05.2018.
  105. Marchewka, A., Brechmann, A., Nowicka, A., Jednoróg, K., Scheich, H., & Grabowska, A. (2008). False recognition of emotional stimuli is lateralised in the brain: An fMRI study. Neurobiology of Learning and Memory, 90, 280–284.CrossRefGoogle Scholar
  106. Markowitsch, H. J. (1987). Demenz im Alter. Psychologische Rundschau, 38, 145–154.Google Scholar
  107. Markowitsch, H. J. (2000a). Repressed memories. In E. Tulving (Hrsg.), Memory, consciousness, and the brain: The Tallinn conference (S. 319–330). Philadelphia: Psychology Press.Google Scholar
  108. Markowitsch, H. J. (2000b). Die Anfälligkeit autobiographischer Erinnerung gegenüber Stress: eine neuropsychologische Perspektive. In M. Neumann (Hrsg.), Erzählte Identitäten (S. 215–229). München: Wilhelm Fink.Google Scholar
  109. Markowitsch, H. J. (2002/2005/2009). Dem Gedächtnis auf der Spur: Vom Erinnern und Vergessen (1./2./3. Aufl.). Darmstadt: Wissenschaftliche Buchgesellschaft und PRIMUS.Google Scholar
  110. Markowitsch, H. J. (2004a). Warum wir keinen freien Willen haben. Der sog. freie Wille aus Sicht der Hirnforschung. Psychologische Rundschau, 55, 163–168.CrossRefGoogle Scholar
  111. Markowitsch, H. J. (2004b). Gehirn und Bewusstsein: Der Mensch als Maschine? In G. Kaiser (Hrsg.), Wissenschaftszentrum Nordrhein-Westfalen, Jahrbuch 2003/2004 (S. 44–50). Düsseldorf: Wissenschaftszentrum NRW.Google Scholar
  112. Markowitsch, H. J. (2005). Time, memory, and consciousness. A view from the brain. In R. Buccheri, A. C. Elitzur & M. Saniga (Hrsg.), Endophysics, time, quantum, and the subjective (S. 131–147). Singapur: World Scientific Publishing.CrossRefGoogle Scholar
  113. Markowitsch, H. J. (2009a). Das Gedächtnis: Entwicklung – Funktionen – Störungen. München: C.H. Beck.Google Scholar
  114. Markowitsch, H. J. (2009b). Tatort Gehirn“: Zusammenhänge zwischen Gehirnänderungen und deviantem Verhalten. Zeitschrift für Neuropsychologie, 20, 169–177.CrossRefGoogle Scholar
  115. Markowitsch, H. J. (2013). Memory and self – Neuroscientific landscapes. ISRN Neuroscience, Art ID 176027.  https://doi.org/10.1155/2013/176027.
  116. Markowitsch, H. J. (2014). Wer sich an bestimmte Lebensphasen nicht erinnert, dem fehlt ein Stück Identität. Psychologie Heute, 36, 36–41.Google Scholar
  117. Markowitsch, H. J. (2016). Psychological science can no longer neglect neuroscience. Comment on Klein (2016). Psychology of Consciousness: Theory, Research and Practice, 3, 382–386Google Scholar
  118. Markowitsch, H. J., & Staniloiu, A. (2011). Amygdala in action: Relaying biological and social significance to autobiographic memory. Neuropsychologia, 49, 718–733.CrossRefGoogle Scholar
  119. Markowitsch, H. J., & Staniloiu, A. (2013). The spaces left over between REM sleep, dreaming, hippocampal formation and episodic-autobiographical memory. Behavioral and Brain Sciences, 36(6), 622–623.CrossRefGoogle Scholar
  120. Markowitsch, H. J., Emmans, D., Irle, E., Streicher, M., & Preilowski, B. (1985). Cortical and subcortical afferent connections of the primate’s temporal pole: A study of rhesus monkeys, squirrel monkeys, and marmosets. Journal of Comparative Neurology, 242, 425–458.CrossRefGoogle Scholar
  121. Markowitsch, H. J., Reinkemeier, M., & Brand, M. (2005). Neuropsychologische Aspekte des Alterns. In S.-H. Filipp & U. M. Staudinger (Hrsg.), Enzyklopädie der Psychologie (Serie V: Entwicklungspsychologie, Bd.: Entwicklungspsychologie des mittleren und höheren Erwachsenenalters, S. 79–122). Göttingen: Hogrefe.Google Scholar
  122. Massano, J. (2012). Cognitive impairment and dementia – An update. Frontiers in Neurology, 3, Art. 153.  https://doi.org/10.3389/fneur.2012.00153. Zugegriffen am 29.05.2018.
  123. Mavridis, I. N. (2015). Music and the nucleus accumbens. Surgical and Radiologic Anatomy, 37, 121–125.CrossRefGoogle Scholar
  124. Mayer, J. D., & Salovey, P. (1997). What is emotional intelligence? In P. Salovey & D. J. Sluyter (Hrsg.), Emotional development and emotional intelligence: Educational implications (S. 3–31). New York: Basic Books.Google Scholar
  125. Mazzoni, G. A. L., Loftus, E. F., & Kirsch, I. (2001). Changing beliefs about implausible autobiographical events: A little plausibility goes a long way. Journal of Experimental Psychology: Applied, 7, 51–59.Google Scholar
  126. McGaugh, J. L. (2015). Consolidating memories. Annual Reviews of Psychology, 66, 1–24.CrossRefGoogle Scholar
  127. McKoon, G., & Ratcliff, R. (1992). Spreading activation versus compound cue accounts of priming: Mediated priming revisited. Journal of Experimental Psychology. Learning, Memory, and Cognition, 18, 1155–1172.CrossRefGoogle Scholar
  128. Meeks, T. W., & Jeste, D. V. (2009). Neurobiology of wisdom: A literature overview. Archives of General Psychiatry, 66, 355–365.CrossRefGoogle Scholar
  129. Merckelbach, H., Boskovic, I., Pesy, D., Dalsklev, M., & Lynn, S. J. (2017). Symptom overreporting and dissociative experiences: A qualitative review. Consciousness and Cognition, 49, 132–144.CrossRefGoogle Scholar
  130. Merlot, J., & Berres, I. (2016). Die USA sind Entwicklungsland. Weltweite Gesundheitsstudie. http://www.spiegel.de/gesundheit/diagnose/weltweite-gesundheitsstudie-sorgenkind-usa-a-1115243.html. Zugegriffen am 08.08.2018.
  131. Merz, C. J., Dietsch, F., & Schneider, M. (2016). The impact of psychosocial stress on conceptual knowledge retrieval. Neurobiology of Learning and Memory, 134(Pt. B), 392–399.CrossRefGoogle Scholar
  132. Metzinger, T. (2009). The ego-tunnel. The science of the mind and the myth of the self. New York: Basic Books.Google Scholar
  133. Miller, G. (2004). Forgetting and remembering. Learning to forget. Science, 304(5667), 34–36.CrossRefGoogle Scholar
  134. Mogi, K. (2014). Free will and paranormal beliefs. Frontiers in Psychology, 5, Art. 281.  https://doi.org/10.3389/fpsyg.2014.00281. Zugegriffen am 04.01.2015.
  135. Molouki, S., & Bartels, D. M. (2017). Personal change and the continuity of the self. Cognitive Psychology, 93, 1–17.CrossRefGoogle Scholar
  136. Morton, P. M., Mustillo, S. A., & Ferraro, K. F. (2014). Does childhood misfortune raise the risk of acute myocardial infarction in adulthood? Social Science and Medicine, 104, 133–141.CrossRefGoogle Scholar
  137. Mosterman, R. M. (2013). Normal people in clinical practice: A general factor of personality in biproportional scaling and its practical relevance. Journal of Personality Assessment, 95, 13–25.CrossRefGoogle Scholar
  138. Munson, J. A., McMahon, R. J., & Spieker, S. J. (2001). Structure and variability in the developmental trajectory of children’s externalizing problems: Impact of infant attachment, maternal depressive symptomatology, and child sex. Developmental Psychopathology, 13, 277–296.CrossRefGoogle Scholar
  139. Murray, B. D., Anderson, M. C., & Kensinger, E. A. (2015). Older adults can suppress unwanted memories when given an appropriate strategy. Psychology and Aging, 30, 9–25.CrossRefGoogle Scholar
  140. Navarro, O., Olivos, P., & Fleury-Bahi, G. (2017). „Connectedness to nature scale“: Validity and reliability in the French context. Frontiers in Psychology, 12, Art. 2180.  https://doi.org/10.3389/fpsyg.2017.02180. Zugegriffen am 27.06.2018.
  141. Nili, U., Goldberg, H., Weizman, A., & Dudai, Y. (2010). Fear thou not: Activity of frontal and temporal circuits in moments of real-life courage. Neuron, 66, 949–562.CrossRefGoogle Scholar
  142. Nourkova, V. V., & Vasilenko, D. A. (2017). On the advantage of autobiographical memory pliability: Implantation of positive self-defining memories reduces trait anxiety. Memory, 28, 1–13.Google Scholar
  143. O’Brien, D. J. (2011). Unconscious by any other name. Nature Review Neurosciences, 12, 302.CrossRefGoogle Scholar
  144. Okado, Y., & Stark, C. E. (2005). Neural activity during encoding predicts false memories created by misinformation. Learning and Memory, 12, 3–11.CrossRefGoogle Scholar
  145. Otgaar, H., Scoboria, A., & Smeets, T. (2013). Experimentally evoking nonbelieved memories for childhood events. Journal of Experimental Psychology. Learning, Memory, and Cognition, 39, 717–730.CrossRefGoogle Scholar
  146. Pang, L. (2017). The training and creativity of professional chefs: Stoking the imagination in global gastronomic discourse. Appetite, 119, 48–53.CrossRefGoogle Scholar
  147. Papagno, C. (2018). Memory deficits. Handbook of Clinical Neurology, 151, 377–393.CrossRefGoogle Scholar
  148. Paz-Alonso, P. M., Ghetti, S., Matlen, B. J., Anderson, M. C., & Bunge, S. A. (2009). Memory suppression is an active process that improves over childhood. Frontiers in Human Neuroscience, 3, Art. 24.CrossRefGoogle Scholar
  149. Paz-Alonso, P. M., Bunge, S. A., Anderson, M. C., & Ghetti, S. (2013). Strength of coupling within a mnemonic control network differentiates those who can and cannot suppress memory retrieval. Journal of Neuroscience, 33, 5017–5026.CrossRefGoogle Scholar
  150. Pearce, E., Wlodarski, R., Machin, A., & Dunbar, R. I. M. (2017). Variation in the β-endorphin, oxytocin, and dopamine receptor genes is associated with different dimensions of human sociality. Proceedings of the National Academy of Sciences of the United States of America, 114, 5300–5305.CrossRefGoogle Scholar
  151. Perracini, M. R., Franco, M. R. C., Ricci, N. A., & Blake, C. (2017). Physical activity in older people – Case studies of how to make change happen. Best Practice and Research: Clinical Rheumatology, 31, 260–274.CrossRefGoogle Scholar
  152. Pitman, R. K., Sanders, K. M., Zusman, R. M., Healy, A. R., Cheema, F., Lasko, N. B., Cahill, L., & Orr, S. P. (2002). Pilot study of secondary prevention of posttraumatic stress disorder with propranolol. Biological Psychiatry, 51, 189–192.CrossRefGoogle Scholar
  153. Planck, M. (1990). Vom Wesen der Willensfreiheit. Frankfurt a. M.: Fischer Taschenbuch Verlag.Google Scholar
  154. Reddemann, L., & Dehner-Rau, C. (2012). Trauma heilen (4. Aufl.). Stuttgart: Trias.Google Scholar
  155. Reddemann, L., Markowitsch, H. J., & Piefke, M. (2002). Neurophysiologische Verfahren bei Behandlungen von Patientinnen und Patienten mit komplexen posttraumatischen Belastungsstörungen und deren klinische Implikationen. In D. Mattke, S. Büsing, G. Hertel & K. Schreiber-Willnow (Hrsg.), Störungsspezifische Konzepte und Behandlung in der Psychosomatik (S. 74–92). Frankfurt: VAS.Google Scholar
  156. Reinders, A. A., Willemsen, A. T., Vos, H. P., den Boer, J. A., & Nijenhuis, E. R. (2012). Fact or factitious? A psychobiological study of authentic and simulated dissociative identity states. PLoS One, 7, e39279.CrossRefGoogle Scholar
  157. Roediger, H. L., III, & McDermott, K. B. (1995). Creating false memories: Remembering words not presented in lists. Journal of Experimental Psychology: Learning, Memory, and Cognition, 21, 803–814.Google Scholar
  158. Romijn, H. (1997). About the origin of consciousness. A new, multidisciplinary perspective on the relationship between brain and mind. Proceedings van de Koninklijke Nederlandse Akademie van de Wetenschappen, 100, 181–267.Google Scholar
  159. Romijn, H. (2002). Are virtual photons the elementary carriers of consciousness. Journal of Consciousness Studies, 9, 61–81.Google Scholar
  160. Roth, G. (2001). Fühlen, Denken, Handeln. Frankfurt. a. M.: Suhrkamp.Google Scholar
  161. Roth, G. (2003). Aus Sicht des Gehirns. Frankfurt. a. M.: Suhrkamp.Google Scholar
  162. Sacchet, M. D., Levy, B. J., Hamilton, J. P., Maksimovskiy, A., Hertel, P. T., Joormann, J., Anderson, M. C., Wagner, A. D., & Gotlib, I. H. (2017). Cognitive and neural consequences of memory suppression in major depressive disorder. Cognitive, Affective, & Behavioral Neuroscience, 17, 77–93.CrossRefGoogle Scholar
  163. Salimpoor, V. N., van den Bosch, I., Kovacevic, N., McIntosh, A. R., Dagher, A., & Zatorre, R. J. (2013). Interactions between the nucleus accumbens and auditory cortices predict music reward value. Science, 340, 216–219.CrossRefGoogle Scholar
  164. Salimpoor, V. N., Zald, D. H., Zatorre, R. J., Dagher, A., & McIntosh, A. R. (2015). Predictions and the brain: How musical sounds become rewarding. Trends in Cognitive Science, 19, 86–91.CrossRefGoogle Scholar
  165. Sánchez-Bernardos, M. L., & Avia, M. D. (2006). The relationship between fantasy proneness and schizotypy in adolescents. Journal of Nervous and Mental Disease, 194, 411–414.CrossRefGoogle Scholar
  166. Schacter, D. L. (1996). Searching for memory – The brain, the mind, and the past. New York: Basic Books.Google Scholar
  167. Schacter, D. L., Norman, K. A., & Koutstaal, W. (1998). The cognitive neuroscience of constructive memory. Annual Reviews of Psychology, 49, 289–318.CrossRefGoogle Scholar
  168. van Schie, K., Geraerts, E., & Anderson, M. C. (2013). Emotional and non-emotional memories are suppressible under direct suppression instructions. Cognition and Emotion, 27, 1122–1131.CrossRefGoogle Scholar
  169. Schilling-Strack, U. (2012). Jeden Tag lügen wir 200 Mal – das hat auch sein Gutes. Der Westen 02.11.2012. https://www.derwesten.de/wochenende/jeden-tag-luegen-wir-200-mal-das-hat-auch-sein-gutes-id7254703.html. Zugegriffen am 17.06.2014.
  170. Schmitt, D. P. (2005). Sociosexuality from Argentina to Zimbabwe: A 48-nation study of sex, culture, and strategies of human mating. Behavioral and Brain Sciences, 28, 247–311.CrossRefGoogle Scholar
  171. Schmitz, T. W., Correia, M. M., Ferreira, C. S., Prescot, A. P., & Anderson, M. C. (2017). Hippocampal GABA enables inhibitory control over unwanted thoughts. Nature Communications, 8, 1311.  https://doi.org/10.1038/s41467–017–00956-z. Zugegriffen am 27.06.2018.
  172. Schoenberg, P. L., & David, A. S. (2014). Biofeedback for psychiatric disorders: A systematic review. Applied Psychophysiology and Biofeedback, 39, 109–135.CrossRefGoogle Scholar
  173. Scholey, A., & Owen, L. (2013). Effects of chocolate on cognitive function and mood: A systematic review. Nutrition Reviews, 71, 665–681.CrossRefGoogle Scholar
  174. Schröder, J., & Pohlmann, M. (Hrsg.). (2012). Gesund altern. Individuelle und gesellschaftliche Herausforderungen. Heidelberg: Universitäts Winter.Google Scholar
  175. Schulte-Rüther, M., Markowitsch, H. J., Fink, G. R., & Piefke, M. (2007). Mirror neuron and theory of mind mechanisms involved in face-to-face interactions: An fMRI approach to empathy. Journal of Cognitive Neuroscience, 19, 1354–1372.CrossRefGoogle Scholar
  176. Schulte-Rüther, M., Greimell, E., Markowitsch, H. J., Kamp-Becker, I., Remschmidt, H., Fink, G. R., & Piefke, M. (2011). Dysfunctional brain networks supporting empathy in adults with autism spectrum disorder: An fMRI study. Social Neuroscience, 6, 1–21.CrossRefGoogle Scholar
  177. Schupak, C., & Rosenthal, J. (2009). Excessive daydreaming: A case history and discussion of mind wandering and high fantasy proneness. Consciousness and Cognition, 18, 290–292.CrossRefGoogle Scholar
  178. Scoboria, A., Wysman, L., & Otgaar, H. (2012). Credible suggestions affect false autobiographical beliefs. Memory, 20, 429–442.CrossRefGoogle Scholar
  179. Scoboria, A., Wade, K. A., Lindsay, D. S., Azad, T., Strange, D., Ost, J., & Hyman, I. E. (2017). A mega-analysis of memory reports from eight peer-reviewed false memory implantation studies. Memory, 25, 146–163.CrossRefGoogle Scholar
  180. Seibold, F. (ohne Jahr). Logisch-metaphysische Abhandlungen. Einheitlicher Denkfehler in drei philosophischen Grundproblemen. Mannheimer Texte Online. http://www.philoreal.de/websystem/beitraege/seibold/seibold00.pdf. Zugegriffen am 20.10.2015.
  181. Shapero, B. G., Black, S. K., Liu, R. T., Klugman, J., Bender, R. E., Abramson, L. Y., & Alloy, L. B. (2014). Stressful life events and depression symptoms: The effect of childhood emotional abuse on stress reactivity. Journal of Clinical Psychology, 70, 209–223.CrossRefGoogle Scholar
  182. Shi, Z., Ma, Y., Wu, B., Wu, X., Wang, Y., & Han, S. (2016). Neural correlates of reflection on actual versus ideal self-discrepancy. NeuroImage, 124, 573–580.CrossRefGoogle Scholar
  183. Siebert, M., Markowitsch, H. J., & Bartel, P. (2003). Amygdala, affect, and cognition: Evidence from ten patients with Urbach-Wiethe disease. Brain, 126, 2627–2637.CrossRefGoogle Scholar
  184. Singer, W. (2003). Ein neues Menschenbild? Frankfurt. a. M.: Suhrkamp.Google Scholar
  185. Skodol, A. E., Siever, L. J., Livesley, W. J., Gunderson, J. G., Pfohl, B., & Widiger, T. A. (2002). The borderline diagnosis II: Biology, genetics, and clinical course. Biological Psychiatry, 51, 951–963.CrossRefGoogle Scholar
  186. Skrzypińska, D., & Szmigielska, B. (2015). Dream-reality confusion in borderline personality disorder: A theoretical analysis. Frontiers in Psychology, 6, Art. 1393.  https://doi.org/10.3389/fpsyg.2015.01393. Zugegriffen am 27.06.2016.
  187. Snyder, S. H. (2002). Neurobiology: Serotonin sustains serenity. Nature, 416, 377–380.CrossRefGoogle Scholar
  188. Sokolov, A. N., Pavlova, M. A., Klosterhalfen, S., & Enck, P. (2013). Chocolate and the brain: Neurobiological impact of cocoa flavanols on cognition and behavior. Neuroscience and Biobehavioral Reviews, 37, 2445–2453.CrossRefGoogle Scholar
  189. Staniloiu, A., & Markowitsch, H. J. (2010). Understanding psychogenic amnesia and psychiatric disorders as causes of dementia. Journal of General Medicine, 22, 41–49.Google Scholar
  190. Stead, H., & Bibby, P. A. (2017). Personality, fear of missing out and problematic internet use and their relationship to subjective well-being. Computers in Human Behavior, 76, 534–540.CrossRefGoogle Scholar
  191. Stickgold, T., & Walker, M. P. (2013). Sleep-dependent memory triage: Evolving generalization through selective processing. Nature Neuroscience, 16, 139–145.CrossRefGoogle Scholar
  192. Stirn, A., Thiel, A., & Oddo, S. (Hrsg.). (2010). Body integrity identity disorder: Psychological, neurobiological, ethical and legal apects. Lengerich: Pabst.Google Scholar
  193. Stix, G. (2009). Log-in ins Gehirn. Spektrum der Wissenschaft 27.03.2009. https://www.spektrum.de/magazin/log-in-ins-gehirn/983267. Zugegriffen am 27.06.2010.
  194. Storbeck, J., & Clore, G. L. (2011). Affect influences false memories at encoding: Evidence from recognition data. Emotion, 11, 981–989.CrossRefGoogle Scholar
  195. Straube, B. (2012). An overview of the neuro-cognitive processes involved in the encoding, consolidation, and retrieval of true and false memories. Behavioral and Brain Functions, 8, Art. 35. http://www.behavioralandbrainfunctions.com/content/8/1/35. Zugegriffen am 09.12.2013.
  196. Sun, J., Liu, Z., Rolls, E. T., Chen, Q., Yao, Y., Yang, W., Wei, D., Zhang, Q., Zhang, J., Feng, J., & Qiu, J. (2019). Verbal creativity correlates with the temporal variability of brain networks during the resting state. Cerebral Cortex, 29, 1047–1058.Google Scholar
  197. van Suntum, U. (2007). Warum gibt es nur so wenige Kinder? Erklär mir die Welt. Frankfurter Allg. http://www.faz.net/aktuell/wirtschaft/wirtschaftswissen/erklaer-mir-die-welt-67-warum-gibt-es-nur-so-wenige-kinder-1460492.html. Zugegriffen am 08.08.2018.
  198. Taipa, R., Pinho, J., & Malo-Pires, M. (2012). Clinico-pathological correlations of the most common degenerative dementias. Frontiers in Neurology, 3, Art. 68.  https://doi.org/10.3389/fneur.2012.00068. Zugegriffen am 24.06.2014.
  199. Takeuchi, H., Taki, Y., Nouchi, R., Sekiguchi, A., Kotozaki, Y., Makoto Miyauchi, C., Yokoyama, R., Iizuka, K., Hashizume, H., Nakagawa, S., Kunitoki, K., Sassa, Y., & Kawashima, R. (2012). A voxel-based morphometry study of gray and white matter correlates of a need for uniqueness. NeuroImage, 63, 1119–1126.CrossRefGoogle Scholar
  200. Takeuchi, H., Taki, Y., Nouchi, R., Hashizume, H., Sassa, Y., Sekiguchi, A., Kotozaki, Y., Nakagawa, S., Nagase, T., Miyauchi, C. M., & Kawashima, R. (2014). Anatomical correlates of quality of life: Evidence from voxel-based morphometry. Human Brain Mapping, 35, 1834–1846.CrossRefGoogle Scholar
  201. Tarr, B., Launay, J., & Dunbar, R. I. (2014). Music and social bonding: „self-other“ merging and neurohormonal mechanisms. Frontiers in Psychology, 30, Art. 1096.  https://doi.org/10.3389/fpsyg.2014.01096. Zugegriffen am 14.08.2015.
  202. Tik, M., Sladky, R., Luft, C. D. B., Willinger, D., Hoffmann, A., Banissy, M. J., Bhattacharya, J., & Windischberger, C. (2018). Ultra-high-field fMRI insights on insight: Neural correlates of the Aha!-moment. Human Brain Mapping, 39, 3241–3252.Google Scholar
  203. Tulving, E. (2002). Episodic memory: From mind to brain. Annual Reviews of Psychology, 53, 1–25.CrossRefGoogle Scholar
  204. Tulving, E. (2005). Episodic memory and autonoesis: Uniquely human? In H. S. Terrace & J. Metcalfe (Hrsg.), The missing link in cognition: Self-knowing consciousness in man and animals (S. 3–56). New York: Oxford University Press.Google Scholar
  205. Ulmer-Yaniv, A., Avitsur, R., Kanat-Maymon, Y., Schneiderman, I., Zagoory-Sharon, O., & Feldman, R. (2016). Affiliation, reward, and immune biomarkers coalesce to support social synchrony during periods of bond formation in humans. Brain, Behavior and Immunology, 56, 130–139.CrossRefGoogle Scholar
  206. Wade, K. A., & Garry, M. (2005). Strategies for verifying false autobiographical memories. American Journal of Psychology, 118, 587–602.Google Scholar
  207. Wade, K. A., Garry, M., Read, J. D., & Lindsay, D. S. (2002). A picture is worth a thousand lies: Using false photographs to create false childhood memories. Psychonomic Bulletin & Review, 9, 597–603.CrossRefGoogle Scholar
  208. Wartberg, L., Kriston, L., Kammerl, R., Petersen, K. U., & Thomasius, R. (2015). Prevalence of pathological internet use in a representative German sample of adolescents: Results of a latent profile analysis. Psychopathology, 48, 25–30.CrossRefGoogle Scholar
  209. Wegner, D. M. (2002). The illusion of conscious will. Cambridge, MA: Bradford Books.CrossRefGoogle Scholar
  210. Wegner, D. M. (2003). The mind’s best trick: How we experience conscious will. Trends in Cognitive Science, 7, 65–69.CrossRefGoogle Scholar
  211. Weinstein, Y., & Shanks, D. R. (2010). Rapid induction of false memory for pictures. Memory, 18, 533–542.CrossRefGoogle Scholar
  212. Weinstein, D., Launay, J., Pearce, E., Dunbar, R. I., & Stewart, L. (2016). Group music performance causes elevated pain thresholds and social bonding in small and large groups of singers. Evolution and Human Behavior, 37, 152–158.CrossRefGoogle Scholar
  213. Willander, J., & Larsson, M. (2006). Smell your way back to childhood: Autobiographical odor memory. Psychonomic Bulletin and Review, 13, 240–244.CrossRefGoogle Scholar
  214. Wilson, B. M., Mickes, L., Stolarz-Fantino, S., Evrard, M., & Fantino, E. (2015). Increased false-memory susceptibility after mindfulness meditation. Psychological Science, 26, 1567–1573.CrossRefGoogle Scholar
  215. Wolniewicz, C. A., Tiamiyu, M. F., Weeks, J. W., & Elhai, J. D. (2018). Problematic smartphone use and relations with negative affect, fear of missing out, and fear of negative and positive evaluation. Psychiatry Research, 262, 618–623.Google Scholar
  216. Wright, D. B., & Loftus, E. F. (1998). How misinformation alters memories. Journal of Experimental Child Psychology, 71, 155–164.CrossRefGoogle Scholar
  217. Xue, H., Lu, K., & Hao, N. (2018). Cooperation makes two less-creative individuals turn into a highly-creative pair. NeuroImage, 172, 527–537.CrossRefGoogle Scholar
  218. Yim, J. (2016). Therapeutic benefits of laughter in mental health: A theoretical review. Tohoku Journal of Experimental Medicine, 239, 243–249.CrossRefGoogle Scholar
  219. Zatorre, R. J. (2015). Musical pleasure and reward: Mechanisms and dysfunction. Annals of the New York Academy of Sciences, 1337, 202–211.CrossRefGoogle Scholar
  220. Zittlau, J. (2012). Die ganze Wahrheit über das Lügen. Welt 13.05.2012. https://www.welt.de/gesundheit/psychologie/article106292192/Die-ganze-Wahrheit-ueber-das-Luegen.html. Zugegriffen am 13.02.2013.

Copyright information

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2019

Authors and Affiliations

  • Hans J. Markowitsch
    • 1
  • Margit M. Schreier
    • 2
  1. 1.Baden-BadenDeutschland
  2. 2.StuttgartDeutschland

Personalised recommendations