Advertisement

Der „kraftvolle Mensch“

  • Hans J. Markowitsch
  • Margit M. Schreier
Chapter

Zusammenfassung

Der „kraftvolle Mensch“ wird mit Blick auf seine phylogenetische Abstammung und im Vergleich zu anderen Primaten und weiteren Säugetieren betrachtet. Dabei spielt die soziale Dimension eine Hauptrolle: der Mensch als soziales Wesen und als Geschlechtspartner. Darüber hinaus geht es um sexuellen Dimorphismus, also Geschlechtsunterschiede, wie sie im Gehirn, in der Hormonzusammensetzung und im Paarungsverhalten zu finden sind. Als bedeutend für die Verwirklichung eines „kraftvollen Menschen“ wird die Integration von Kognition und Emotion angesehen. Unser Gehirn kann diese Integration nur dann adäquat bewerkstelligen, wenn beide Hirnhälften synchron miteinander interagieren, weil die rechte Hemisphäre eine Dominanz auf emotionalem, die linke auf kognitivem Gebiet hat. Die Bedeutung von Digitalisierung für Lernen und von Fehlerinnerungen, Erinnerungsvorstellungen und Lügen wird in Abgrenzung zu Psychischen Neuroimplantaten erläutert, wobei dem „sozialen Gehirn“ eine besondere Bedeutung beigemessen wird.

Literatur

  1. Abe, N., Okuda, J., Suzuki, M., Sasaki, H., Matsuda, T., Mori, E., Tsukada, M., & Fujii, T. (2008). Neural correlates of true memory, false memory, and deception. Cerebral Cortex, 18, 2811–2819.Google Scholar
  2. Adler, M., & Saupe, R. (1979). Psychochirurgie. Stuttgart: Enke.Google Scholar
  3. Adolphs, R. (2009). The social brain: Neural basis of social knowledge. Annual Review of Psychology, 60, 693–716.CrossRefGoogle Scholar
  4. Adorján, J. (2009). Eine exklusive Liebe. München: Luchterhand.Google Scholar
  5. Aigner, M., Demal, U., Zitterl, W., Bach, M., & Lenz, G. (2004). Verhaltenstherapeutische Gruppentherapie für Zwangsstörungen. Verhaltenstherapie, 14, 7–14.Google Scholar
  6. Aigner, M., Sachs, G., Bruckmüller, E., Winklbaur, B., Zitterl, W., Kryspin-Exner, I., Gur, R., & Katschnig, H. (2007). Cognitive and emotion recognition deficits in obsessive-compulsive disorder. Psychiatry Research, 149, 121–118.CrossRefGoogle Scholar
  7. Allen, L. S., & Gorski, R. A. (1992). Sexual orientation and the size of the anterior commissure in the human brain. Neurobiology, 89, 7199–7202.Google Scholar
  8. Allen, L. S., Hines, M., Shryne, J. E., & Gorski, R. A. (1989). Two sexually dimorphie cell groups in the human brain. Journal of Neuroscience, 9, 497–506.CrossRefGoogle Scholar
  9. Allen, L. S., Richey, M. F., Chai, Y. M., & Gorski, R. A. (1991). Sex differences in the corpus callosum of the living human being. Journal of Neuroscience, 11, 933–942.CrossRefGoogle Scholar
  10. Alt, D. (2015). College students’ academic motivation, media engagement and fear of missing out. Computers in Human Behavior, 49, 1116–1119.CrossRefGoogle Scholar
  11. Anderson, A. L. (1949). Personality changes following prefrontal lobotomy in a case of severe psychoneurosis. Journal of Consulting Psychology, 13, 105–107.CrossRefGoogle Scholar
  12. Anderson, J. R., & Gallup, G. G., Jr. (2011). Do rhesus monkeys recognize themselves in mirrors? American Journal of Primatology, 73, 603–606.CrossRefGoogle Scholar
  13. Anderson, M. C., & Green, C. (2001). Suppressing unwanted memories by executive control. Nature, 410, 366–369.CrossRefGoogle Scholar
  14. Anderson, M. C., & Hanslmayr, S. (2014). Neural mechanisms of motivated forgetting. Trends in Cognitive Sciences, 18, 279–292.CrossRefGoogle Scholar
  15. Anonymus. (1982). Tratschkes Lexikon für Besserwesser vom 13.08.1982. www.zeit.de/1982/33/tratschkes-lexikon-fuer-besserwesser. Zugegriffen am 29.06.2018.
  16. Appel, M., & Schreiner, C. (2014). Digitale Demenz? Mythen und wissenschaftliche Befundlage zur Auswirkung von Internetnutzung. Psychologische Rundschau, 65, 1–10.CrossRefGoogle Scholar
  17. Ardila, A. (2016). Some unusual neuropsychological syndromes: Somatoparaphrenia, akinetopsia, reduplicative paramnesia, autotopagnosia. Archives of Clinical Neuropsychology, 31, 456–464.CrossRefGoogle Scholar
  18. Arseneault, L., Cannon, M., Fisher, H. L., Polanczyk, G., Moffit, T. E., & Caspi, A. (2011). Childhood trauma and children’s emerging psychotic symptoms: A genetically sensitive longitudinal cohort study. American Journal of Psychiatry, 168, 65–72.CrossRefGoogle Scholar
  19. Babcock, H. (1947). A case of anxiety neurosis before and after lobotomy. Journal of Abnormal and Social Psychology, 42, 466–472.CrossRefGoogle Scholar
  20. Babinsky, R., Calabrese, P., Durwen, H. F., Markowitsch, H. J., Brechtelsbauer, D., Heuser, L., & Gehlen, W. (1993). On the possible contribution of the amygdala in memory. Behavioural Neurology, 6, 167–170.CrossRefGoogle Scholar
  21. Baddeley, A. (2012). Working memory: Theories, models, and controversies. Annual Reviews of Psychology, 63, 1–29.CrossRefGoogle Scholar
  22. Bailey, J. M., & Pillard, R. C. (1991, Dez. 17). Are some people born gay? New York Times, A21.Google Scholar
  23. Bailey, H. R., Dowling, J. L., & Davies, E. (1977). Cingulotractotomy and related procedures for severe depressive illness (Studies in depression: IV). In W. H. Sweet, S. Obrador & J. G. Martin-Rodriques (Hrsg.), Neurosurgical treatment in psychiatry, pain and epilepsy (S. 229–251). Baltimore: University Park Press.Google Scholar
  24. Baird, A. D., Schegger, I. E., & Wilson, S. J. (2011). Mirror neuron system involvement in empathy: A critical look at the evidence. Social Neuroscience, 6, 327–335.CrossRefGoogle Scholar
  25. Banaye, R. S., & Davidoff, L. (1942). Apparent recovery of a sex psychopath after lobotomy. Journal of Criminal Psychopathology, 4, 59–66.Google Scholar
  26. Bartsch, W. (1953). Erfahrungen mit der Leukotomie bei schwersten chronischen Schmerzzuständen. Nervenarzt, 24, 107–112.Google Scholar
  27. Bartsch, T., & Deuschl, G. (2010). Transient global amnesia: functional anatomy and clinical implications. Lancet Neurology, 9, 205–214.CrossRefGoogle Scholar
  28. Baxter, L. R., Mazziotta, J. C., Phelps, M. E., Selin, C. E., Guze, B. H., & Fairbanks, J. (1987). Cerebral glucose metabolic rates in normal human females versus normal males. Psychiatry Research, 21, 237–245.CrossRefGoogle Scholar
  29. Beck, E., McLardy, T., & Meyer, A. (1950). Anatomical comments on psychosurgical procedures. Journal of Mental Science, 96, 157–167.CrossRefGoogle Scholar
  30. Benoit, R. G., & Anderson, M. C. (2012). Opposing mechanisms support the voluntary forgetting of unwanted memories. Neuron, 76, 450–460.CrossRefGoogle Scholar
  31. Berridge, K. C., & Robinson, T. E. (1998). What is the role of dopamine in reward: hedonic impact, reward learning, or incentive salience? Brain Research Reviews, 28, 309–369.CrossRefGoogle Scholar
  32. Bischof-Köhler, D. (2011). Von Natur aus anders: Die Psychologie der Geschlechtsunterschiede. Stuttgart: Kohlhammer.Google Scholar
  33. Bixter, M. T., & Daniel, F. (2013). Working memory differences in illusory recollection of critical lures. Memory and Cognition, 41, 716–725.CrossRefGoogle Scholar
  34. Blum, S. (1992). Sex and the single brain. Current Contents, Life Sciences, 35, 6–8.Google Scholar
  35. Boesch, C. (2007). What makes us human (Homo sapiens)? The challenge of cross-species comparison. Journal of Comparative Psychology, 121, 227–240.CrossRefGoogle Scholar
  36. Bor, D., Billington, J., & Baron-Cohen, S. (2007). Savant memory for digits in a case of synaesthesia and Asperger syndrome is related to hyperactivity in the lateral prefrontal cortex. Neurocase, 13, 311–319.CrossRefGoogle Scholar
  37. Borsutzky, S., Fujiwara, E., Brand, M., & Markowitsch, H. J. (2008). Confabulations in alcoholic Korsakoff patients. Neuropsychologia, 46, 3133–3143.CrossRefGoogle Scholar
  38. Borsutzky, S., Fujiwara, E., Brand, M., & Markowitsch, H. J. (2010). Susceptibility to false memories in patients with ACoA aneurysm. Neuropsychologia, 48, 2811–2823.CrossRefGoogle Scholar
  39. Brand, M., & Markowitsch, H. J. (2010). Environmental influences on autobiographical memory: The mnestic block syndrome. In L. Bäckman & L. Nyberg (Hrsg.), Memory, aging, and brain (S. 229–264). New York: Psychology Press.Google Scholar
  40. Brand, M., Roth-Bauer, M., Driessen, M., & Markowitsch, H. J. (2008). Executive functions and risky decision-making in patients with opiate dependence. Drug and Alcohol Dependence, 97, 64–72.CrossRefGoogle Scholar
  41. Breedlove, S. M. (1992). Sexual dimorphism in the vertebrate nervous system. Journal of Neuroscience, 12, 4133–4142.CrossRefGoogle Scholar
  42. Breedlove, S. M. (1994). Sexual differentiation of the human nervous system. Annual Reviews of Psychology, 45, 389–418.CrossRefGoogle Scholar
  43. Brizendine, L. (2007). Das weibliche Gehirn. Warum Frauen anders sind als Männer. Hamburg: Hoffmann und Campe.Google Scholar
  44. Brothers, L. (1990). The social brain: A project for integrating primate behavior and neurophysiology in a new domain. Concepts in Neuroscience, 1, 27–51.Google Scholar
  45. Budson, A. E., Simons, J. S., Waring, J. D., Sullivan, A. L., Hussoin, T., & Schacter, D. L. (2007). Memory for the September 11, 2001, terrorist attacks one year later in patients with Alzheimer’s disease, patients with mild cognitive impairment, and healthy older adults. Cortex, 43, 875–888.Google Scholar
  46. Buglass, S. L., Binder, J. F., Betts, L. R., & Underwood, J. D. M. (2017). Motivators of online vulnerability: The impact of social network site use and FOMO. Computers in Human Behavior, 66, 248–255.CrossRefGoogle Scholar
  47. Burckhardt, G. (1891). Ueber Rindenexcisionen, als Beitrag zur operativen Therapie der Psychosen. Allgemeine Zeitschrift für Psychiatrie und psychiatrisch-gerichtliche Medicin (Bd. 47, S. 463–548).Google Scholar
  48. Burns, J. M., & Swerdlow, R. H. (2003). Right orbitofrontal tumor with pedophilia symptom and constructional apraxia sign. Archives of Neurology, 60, 437–440.CrossRefGoogle Scholar
  49. Buss, D. M. (1989). Sex differences in human mate preferences: Evolutionary hypotheses testing in 37 cultures. Behavioral and Brain Sciences, 12, 1–49.CrossRefGoogle Scholar
  50. Buss, D. M. (1994a). The evolution of desire: Strategies of human mating. New York: Basic Books.Google Scholar
  51. Buss, D. M. (1994b). The strategies of human mating. American Scientist, 82, 238–249.Google Scholar
  52. Buss, D. M. (1999). Evolutionary psychology: The new science of the mind. Boston: Allyn & Bacon.Google Scholar
  53. Buss, D. M. (2002). Human mating strategies. SAMFUNDSØKONOMEN NR. 4, 47–58.Google Scholar
  54. Buss, D. M. (2006). Strategies of human mating. Psihologijske Teme, 15, 239–260.Google Scholar
  55. Buss, D. M., & Schmitt, D. P. (1993). Sexual strategies theory: An evolutionary perspective on human mating. Psychological Review, 100, 204–232.CrossRefGoogle Scholar
  56. Cahill, L. (2005). His brain, her brain. Scientific American, 292, 40–47.CrossRefGoogle Scholar
  57. Cahill, L. (2006). Why sex matters for neuroscience. Nature Reviews Neuroscience, 7, 477–484.CrossRefGoogle Scholar
  58. Cahill, L., Babinsky, R., Markowitsch, H. J., & McGaugh, J. L. (1995). Involvement of the amygdaloid complex in emotional memory. Nature, 377, 295–296.CrossRefGoogle Scholar
  59. Calabrese, P., & Markowitsch, H. J. (Hrsg.). (2013). Verhaltensneurologische Aspekte neurologischer Störungen. In Kognitive Störungen in Neurologie und Psychiatrie: Grundlagen, Krankheitsbilder, Diagnostik (S. 17–27). Bad Honnef: Hippocampus Verlag.Google Scholar
  60. Cao, X., Madore, K. P., Wang, D., & Schacter, D. L. (2018). Remembering the past and imagining the future: attachment effects on production of episodic details in close relationships. Memory, 26, 1140–1150.Google Scholar
  61. Cattaneo, L., & Rizzolatti, G. (2009). The mirror neuron system. Archives of Neurology, 66, 557–560.CrossRefGoogle Scholar
  62. Champagne, F. A., & Curley, J. P. (2009). Epigenetic mechanisms mediating the long-term effects of maternal care on development. Neuroscience and Biobehavioral Reviews, 33(4), 593–600.CrossRefGoogle Scholar
  63. Chan, C. C., Szeszko, P. R., Wong, E., Tang, C. Y., Kelliher, C., Penner, J. D., Perez-Rodriguez, M. M., Rosell, D. R., McClure, M., Roussos, P., New, A. S., Siever, L. J., & Hazlett, E. A. (2018). Frontal and temporal cortical volume, white matter tract integrity, and hemispheric asymmetry in schizotypal personality disorder. Schizophrenia Research, 197, 226–232.Google Scholar
  64. Chapman, W. P., Livingston, R. B., & Livingston, K. E. (1949). Frontal lobotomy and electrical stimulation of orbital surface and frontal lobes. A.M.A. Archives of Neurology and Psychiatry, 62, 701–716.CrossRefGoogle Scholar
  65. Choleris, E., Galea, L. A. M., Sohrabji, F., & Frick, K. M. (2018). Sex differences in the brain: Implications for behavioral and biomedical research. Neuroscience and Biobehavioral Reviews, 85, 126–145.CrossRefGoogle Scholar
  66. Chrobak, Q. M., & Zaragoza, M. S. (2013). When forced fabrications become truth: Causal explanations and false memory development. Journal of Experimental Psychology: General, 142, 827–844.CrossRefGoogle Scholar
  67. Clark, A. (2003). Natural-born Cyborgs: Minds, technologies, and the future of human intelligence. New York: Oxford University Press.Google Scholar
  68. Clarke, S., Kraftsik, R., van der Loos, H., & Innocenti, G. M. (1989). Forms and measures of adult and developing human corpus callosum: Is there sexual dimorphism. Journal of Comparative Neurology, 280, 213–230.CrossRefGoogle Scholar
  69. Compère, L., Rari, E., Gallarda, T., Assens, A., Nys, M., Coussinoux, S., Machefaux, S., & Piolino, P. (2017). Gender identity better than sex explains individual differences in episodic and semantic components of autobiographical memory and future thinking. Consciousness and Cognition, 57, 1–19.CrossRefGoogle Scholar
  70. Conway, M. A., Anderson, S. J., Larsen, S. F., Donnelly, C. M., McDaniel, M. A., McClelland, A. G., Rawles, R. E., & Logie, R. H. (1994). The formation of flashbulb memories. Memory and Cognition, 22, 326–343.CrossRefGoogle Scholar
  71. Corballis, M. C. (2009). Mental time travel and the shaping of language. Experimental Brain Research, 192, 553–560.CrossRefGoogle Scholar
  72. Corlett, P. R., Simons, J. S., Pigott, J. S., Gardner, J. M., Murray, G. K., Krystal, J. H., & Fletcher, P. C. (2009). Illusions and delusions: Relating experimentally-induced false memories to anomalous experiences and ideas. Frontiers in Behavioral Neuroscience, 3, Art. 53.  https://doi.org/10.3389/neuro.08.053.2009. Zugegriffen am 12.03.2018.
  73. Corrigan, N. M., Richards, T. L., Treffert, D. A., & Dager, S. R. (2012). Toward a better understanding of the savant brain. Comprehensive Psychiatry, 53, 706–717.CrossRefGoogle Scholar
  74. Curci, A., Lanciano, T., Maddalena, C., Mastandrea, S., & Sartori, G. (2015). Flashbulb memories of the Pope’s resignation: Explicit and implicit measures across differing religious groups. Memory, 23, 529–544.Google Scholar
  75. Cyr, M., Nee, D. E., Nelson, E., Senger, T., Jonides, J., & Malapani, C. (2017). Effects of proactive interference on non-verbal working memory. Cognitive Processes, 18, 1–12.CrossRefGoogle Scholar
  76. Dal Bianco, P. (1950). Transorbitale Leukotomie, zur Technik und Problematik der ihrer Indikationsstellung zugrunde liegenden Modellvorstellung. Archiv für Psychiatrie und Nervenkrankheiten, 184, 278–282.Google Scholar
  77. Damasio, A. R. (1994). Descartes’ Irrtum. Fühlen, Denken und das menschliche Gehirn. München: List Verlag.Google Scholar
  78. Damasio, A. R., Graff-Radford, N. R., & Damasio, H. (1983). Transient partial amnesia. Archives of Neurology, 40, 656–657.CrossRefGoogle Scholar
  79. Damasio, A. R., Tranel, D., & Damasio, H. (1990). Individuals with sociopathic behavior caused by frontal damage fail to respond autonomically to social stimuli. Behavioural Brain Research, 41, 81–94.CrossRefGoogle Scholar
  80. Damasio, H., Grabowski, T., Frank, R., Galaburda, A. M., & Damasio, A. R. (1994). The return of Phineas Gage: Clues about the brain from the skull of a famous patient. Science, 264, 1102–1105.CrossRefGoogle Scholar
  81. Darby, R. R., Horn, A., Cushman, F., & Fox, M. D. (2018). Lesion network localization of criminal behavior. Proceedings of the National Academy of Sciences of the United States of America, 115, 601–606.CrossRefGoogle Scholar
  82. Davatzikos, C., & Resnick, S. M. (1998). Sex differences in anatomic measures of interhemispheric connectivity: Correlations with cognition in women but not men. Cerebral Cortex, 8, 635–640.CrossRefGoogle Scholar
  83. Dax, E. C., & Ridley-Smith, E. J. (1943). The early effects of prefrontal leucotomy on disturbed patients with mental illness of long duration. Journal of Mental Science, 89, 182–185.CrossRefGoogle Scholar
  84. Day, M. V., & Ross, M. (2014). Predicting confidence in flashbulb memories. Memory, 22, 232–242.CrossRefGoogle Scholar
  85. De Vries, G. J., De Bruin, J. P. C., Uylings, H. B. M., & Corner, M. A. (1984). Sex differences in the brain. Amsterdam: Elsevier.Google Scholar
  86. Delacoste-Utamsing, M. C., & Holloway, R. L. (1982). Sexual dimorphism in the human corpus callosum. Science, 216, 1431–1432.CrossRefGoogle Scholar
  87. Delgado, J. M. R., & Livingston, R. B. (1948). Some respiratory, vascular and thermal responses to stimulation of orbital surface of frontal lobe. Journal of Neurophysiology, 11, 39–55.CrossRefGoogle Scholar
  88. Demiray, B., & Freund, A. M. (2015). Michael Jackson, Bin Laden and I: Functions of positive and negative, public and private flashbulb memories. Memory, 23, 487–506.Google Scholar
  89. Demos, K. E., Kelley, W. M., Ryan, S. L., Davis, F. C., & Whalen, P. J. (2008). Human amygdala sensitivity to the pupil size of others. Cerebral Cortex, 18, 2729–2734.CrossRefGoogle Scholar
  90. Derntl, B., Windischberger, C., Robinson, S., Lamplmayr, E., Kryspin-Exner, I., Gur, R. C., Moser, E., & Habel, U. (2008). Facial emotion recognition and amygdala activation are associated with menstrual cycle phase. Psychoneuroendocrinology, 33, 1031–1040.CrossRefGoogle Scholar
  91. Detre, G. J., Natarajan, A., Gershman, S. J., & Norman, K. A. (2013). Moderate levels of activation lead to forgetting in the thing/no-think paradigm. Neuropsychologia, 51, 2371–2388.CrossRefGoogle Scholar
  92. Dewhurst, S. A., Anderson, R. J., Berry, D. M., & Garner, S. R. (2017). Individual differences in susceptibility to false memories: The effect of memory specificity. Quarterly Journal of Experimental Psychology, 25, 1–26.Google Scholar
  93. Diliberto-Macaluso, K. A. (2005). Priming and false memories from Deese-Roediger-McDermott lists on a fragment completion test with children. American Journal of Psychology, 118, 13–28.Google Scholar
  94. Dubischar-Krivec, A. M., Bölte, S., Braun, C., Poustka, F., Birbaumer, N., & Neumann, N. (2014). Neural mechanisms of savant calendar calculating in autism: an MEG-study of few single cases. Brain and Cognition, 90, 157–164.CrossRefGoogle Scholar
  95. Dzieciol, A. M., Bachevalier, J., Saleem, K. S., Gadian, D. G., Saunders, R., Chong, W. K. K., Banks, T., Mishkin, M., & Vargha-Khadem, F. (2017). Hippocampal and diencephalic pathology in developmental amnesia. Cortex, 86, 33–44.CrossRefGoogle Scholar
  96. Ebeling, K. S., & Schmitz, S. (Hrsg.). (2006). Geschlechterforschung und Naturwissenschaften. Berlin: Springer.Google Scholar
  97. Edwards, T. L., Cottriall, C. L., Xue, K., Simunovic, M. P., Ramsden, J. D., Zrenner, E., & MacLaren, R. E. (2017). Assessment of the electronic retinal implant Alpha AMS in restoring vision to blind patients with end-stage retinitis pigmentosa. Ophthalmology, 27. pii: S0161–6420(17)32179–6.Google Scholar
  98. Egan, G. (1949). Results of isolation of the orbital lobes in leucotomy. Journal of Mental Science, 95, 115–123.CrossRefGoogle Scholar
  99. El Haj, M., & Larøi, F. (2017). Provoked and spontaneous confabulations in Alzheimer’s disease: An examination of their prevalence and relation with general cognitive and executive functioning. Psychiatry and Clinical Neuroscience, 71, 61–69.CrossRefGoogle Scholar
  100. Elhai, J. D., Tiamiyu, M. F., Weeks, J. W., Levine, J. C., Picard, K. J., & Hall, B. J. (2017). Depression and emotion regulation predict objective smartphone use measured over one week. Personality and Individual Differences, im Druck.Google Scholar
  101. Elhai, J. D., Hall, B. J., & Meredith, C. l. (2018). Emotion regulation’s relationships with depression, anxiety and stress due to imagined smartphone and social media loss. Psychiatry Research, 261, 28–34.CrossRefGoogle Scholar
  102. Elithorn, A., Piercy, M. F., & Crosskey, M. A. (1954). Autonomic changes after unilateral leucotomy. Journal of Neurology, Neurosurgery, and Psychiatry, 17, 139–144.CrossRefGoogle Scholar
  103. Endl, W., Walla, P., Lindinger, G., Deecke, L., & Lang, W. (1999). Event-related potential correlates of false recognitions of faces. Neuroscience Letters, 265, 115–118.CrossRefGoogle Scholar
  104. Evans, P. (1971). Failed leucotomy with misplaced cuts: A clinico-anatomical study of two cases. British Journal of Psychiatry, 118, 165–170.CrossRefGoogle Scholar
  105. Evatt, C. (2005). Männer sind vom Mars, Frauen von der Venus: Tausend und ein kleiner Unterschied zwischen den Geschlechtern. München: Piper.Google Scholar
  106. Farah, M. J., Hutchinson, J. B., Phelps, E. A., & Wagner, A. D. (2014). Functional MRI-based lie detection: Scientific and societal challenges. Nature Reviews Neuroscience, 15, 123–131.CrossRefGoogle Scholar
  107. Fehr, T., Weber, J., Willmes, K., & Herrmann, M. (2010). Neural correlates in exceptional mental arithmetic – About the neural architecture of prodigious skills. Neuropsychologia, 48, 1407–1416.CrossRefGoogle Scholar
  108. Fehr, T., Wallace, G., Erhard, P., & Herrmann, M. (2011). The functional neuroanatomy of expert calendar calculation: A matter of strategy? Neurocase, 17, 360–371.CrossRefGoogle Scholar
  109. Fehr, T., Staniloiu, A., Markowitsch, H. J., Erhard, P., & Herrmann, M. (2018). Neural correlated of free recall of „famous events“ in a „hypermnestic“ individual as compared to an age- and education-matched reference group. BMJ Neuroscience, 19, 35.  https://doi.org/10.1186/s12868-018-0435-y.CrossRefGoogle Scholar
  110. Feinstein, J. S., Adolphs, R., Damasio, A., & Tranel, D. (2011). The human amygdala and induction and experience of fear. Current Biology, 21, 1–5.CrossRefGoogle Scholar
  111. Ferrarelli, F., Riedner, B. A., Peterson, M. J., & Tononi, G. (2015). Altered prefrontal activity and connectivity predict different cognitive deficits in schizophrenia. Human Brain Mapping, 36, 4539–4552.CrossRefGoogle Scholar
  112. Feuchtwanger, E. (1923). Die Funktionen des Stirnhirns. Berlin: Springer.Google Scholar
  113. Filipek, P. A., Richelme, C., Kennedy, D. N., & Caviness, V. S. (1994). The young adult human brain. An MRI-based morphometric analysis. Cerebral Cortex, 4, 344–360.CrossRefGoogle Scholar
  114. Fink, G. R., Markowitsch, H. J., Reinkemeier, M., Bruckbauer, T., Kessler, J., & Heiss, W.-D. (1996). Cerebral representation of one’s own past: Neural networks involved in autobiographical memory. Journal of Neuroscience, 16, 4275–4282.CrossRefGoogle Scholar
  115. Fleming, G. W. T. H. (1944). Prefrontal leucotomy. Journal of Mental Science, 90, 486–500.CrossRefGoogle Scholar
  116. Forde, E. M. E., Francis, D., Riddoch, M. J., Rumiati, R. I., & Humphreys, G. W. (1997). On the links between visual knowledge and naming: A single-case study of a patient with a category-specific impairment for living things. Cognitive Neuropsychology, 14, 403–458.CrossRefGoogle Scholar
  117. Freeman, W. (1941). Brain-damaging therapeutics. Diseases of the Nervous System, 2, 91–94.Google Scholar
  118. Freeman, W. (1971). Frontal lobotomy in early schizophrenia: Long follow-up in 415 cases. British Journal of Psychiatry, 119, 621–624.CrossRefGoogle Scholar
  119. Freeman, W., & Watts, J. W. (1939). Interpretation of functions of frontal lobe based upon observations in 48 cases of prefrontal lobotomy. Yale Journal of Biology and Medicine, 11, 527–539.Google Scholar
  120. Freeman, W., & Watts, J. W. (1941). The frontal lobes and consciousness of the self. Psychosomatic Medicine, 3, 111–119.CrossRefGoogle Scholar
  121. Freeman, W., & Watts, J. W. (1942a). Radical treatment of psychoses and neuroses: Alterations in personality following prefrontal lobotomy. Diseases of the Nervous System, 3, 6–15.Google Scholar
  122. Freeman, W., & Watts, J. W. (1942b). Psychosurgery: Intelligence, emotion and social behavior following prefrontal lobotomy for mental disorders. Springfield: C.C. Thomas.CrossRefGoogle Scholar
  123. Freeman, W., & Watts, J. W. (1947a). Psychosurgery during 1936–46. A.M.A. Archives of Neurology and Psychiatry, 58, 417–425.CrossRefGoogle Scholar
  124. Freeman, W., & Watts, J. W. (1947b). Retrograde degeneration of the thalamus following prefrontal lobotomy. Journal of Comparative Neurology, 86, 65–93.CrossRefGoogle Scholar
  125. Frenda, S. J., Patihis, L., Loftus, E. F., Lewis, H. C., & Fenn, K. M. (2014). Sleep deprivation and false memories. Psychological Science, 25, 1674–1681.CrossRefGoogle Scholar
  126. Freud, S. (1901a). Zur Psychopathologie des Alltagslebens (Vergessen, Versprechen, Vergreifen) nebst Bemerkungen über eine Wurzel des Aberglaubens. Monatsschrift für Psychiatrie und Neurologie, 10, 1–32 und 95–143.Google Scholar
  127. Freud, S. (1901b). Zum psychischen Mechanismus der Vergesslichkeit. Monatsschrift für Psychiatrie und Neurologie, 4(5), 436–443.Google Scholar
  128. Freud, S. (1915/1957). Repression. Übers. C. M. Baines & J. Strachey. In J. Strachey (Hrsg.), The standard edition of the complete psychological works of Sigmund Freud (Bd. 14, S. 146–158). London: Hogarth Press, 1957.Google Scholar
  129. Friedman, A., & Pines, A. (1991). Sex differences in gender related childhood memories. Sex Roles, 25, 25–32.Google Scholar
  130. Gaesser, B. (2013). Constructing memory, imagination, and empathy: A cognitive neuroscience perspective. Frontiers in Psychology, 3, 576.  https://doi.org/10.3389/fpsyg.2012.00576. Zugegriffen am 09.08.2018.
  131. Gallese, V., Fadiga, L., Fogassi, L., & Rizzolatti, G. (1996). Action recognition in the premotor cortex. Brain, 119, 593–609.CrossRefGoogle Scholar
  132. Gangestad, S. W., & Cousins, A. J. (2001). Adaptive design, female mate preferences, and shifts across the menstrual cycle. Annual Reviews of Sexual Research, 12, 145–185.Google Scholar
  133. Gangestad, S. W., Thornhill, R., & Garver, C. E. (2002). Changes in women’s sexual interests and their partners’ mate-retention tactics across the menstrual cycle: evidence for shifting conflicts of interest. Proceedings of Biological Sciences, 269, 975–982.CrossRefGoogle Scholar
  134. Gangestad, S. W., Thornhill, R., & Garver-Apgar, C. E. (2005). Women’s sexual interests across the ovulatory cycle depend on primary partner developmental instability. Proceedings of Biological Sciences, 272, 2023–2027.CrossRefGoogle Scholar
  135. Ganis, G., & Schendan, H. E. (2013). Concealed semantic and episodic autobiographical memory electrified. Frontiers in Human Neuroscience, 7.  https://doi.org/10.3389/fnhum.2013.00354. Zugegriffen am 14.02.2015.
  136. Garcia-Falgueras, A., & Swaab, D. F. (2010). Sexual hormones and the brain: An essential alliance for sexual identity and sexual orientation. Endocrinology and Development, 17, 22–35.Google Scholar
  137. Gardner, A. (1957). Transorbital leucotomy in noninstitutional cases. American Journal of Psychiatry, 114, 140–142.CrossRefGoogle Scholar
  138. Georgiadis, J. R. (2014). Die Neuroanatomie der sexuellen Lust: Gehirn, Orgasmus und mehr. In A. Stirn, R. Stark, K. Tabbert, S. Wehrum-Osinsky & S. Oddo (Hrsg.), Sexualität, Körper und Neurobiologie. Grundlagen und Störungsbilder im interdisziplinären Fokus (S. 144–157). Stuttgart: Kohlhammer.Google Scholar
  139. Girgis, M. (1971). The orbital surface of the frontal lobe of the brain and mental disorders. Acta Psychiatrica Scandinavica, Suppl., 222, 1–58.Google Scholar
  140. Gloning, K., & Hoff, H. (1969). Cerebral localisation of disorders of higher nervous activity. In P. J. Vinken & G. W. Bruyn (Hrsg.), Handbook of neurology (Bd. 3, S. 22–47). Amsterdam: North-Holland Publishing Company.Google Scholar
  141. Goldstein, K. (1944). The mental changes due to frontal lobe damage. Journal of Psychology, 17, 187–208.CrossRefGoogle Scholar
  142. Goldstein, K. (1949). Mental changes due to frontal lobe damage. Journal of Psychology, 17, 187–208.CrossRefGoogle Scholar
  143. Goldstein, J. M., Seidman, L. J., Horton, N. J., Makris, N., Kennedy, D. N., Caviness, J. R., Faraone, S. V., & Tsuang, M. T. (2001). Normal sexual dimorphism of the adult human brain assessed by in vivo magnetic resonance imaging. Cerebral Cortex, 11, 490–497.CrossRefGoogle Scholar
  144. Gorski, R. A. (1988). Structural sex differences in the brain: Their origin and significance. In J.-M. Lakoski, J. R. Perez-Polo, D. K. Rassin, C. R. Gustavson & C. S. Watson (Hrsg.), Neural control of reproductive function (S. 33–44). New York: A. R. Liss.Google Scholar
  145. Granadillo, E. D., & Mendez, M. F. (2016). Pathological Joking or Witzelsucht revisited. Journal of Neuropsychiatry and Clinical Neuroscience, 28, 162–167.CrossRefGoogle Scholar
  146. Grantham, E. G. (1951). Prefrontal lobotomy for relief of pain. With a report of a new operative technique. Journal of Neurosurgery, 8, 405–410.CrossRefGoogle Scholar
  147. Grapperon, J., Pignol, A.-C., & Vion-Dury, J. (2012). La mesure de la réaction électrodermale. Encephale, 38, 149–155.CrossRefGoogle Scholar
  148. Grassi, J. R. (1950). Impairment of abstract behavior following bilateral prefrontal lobotomy. Psychiatric Quarterly, 24, 74–88.CrossRefGoogle Scholar
  149. Graves, L. V., Moreno, C. C., Seewald, M., Holden, H. M., Van Etten, E. J., Uttarwar, V., McDonald, C. R., Delano-Wood, L., Bondi, M. W., Woods, S. P., Delis, D. C., & Gilbert, P. E. (2017). Effects of age and gender on recall and recognition discriminability. Archives of Clinical Neuropsychology, 32, 972–979.CrossRefGoogle Scholar
  150. Green, P., Iverson, G. L., & Allen, L. (1999). Detecting malingering in head injury litigation with the Word Memory Test. Brain Injury, 13, 813–819.CrossRefGoogle Scholar
  151. Green, P., Lees-Haley, P. R., & Allen, L. M. (2002). The Word Memory Test and the validity of neuropsychological test scores. Journal of Forensic Neuropsychology, 2, 97–124.CrossRefGoogle Scholar
  152. Greenberg, D. L. (2004). President Bush’s false ‚flashbulb‘ memory of 9/11/01. Applied Cognitive Psychology, 18, 363–370.Google Scholar
  153. Gross, J., Jack, F., Davis, N., & Hayne, H. (2013). Do children recall the birth of a younger sibling? Implications for the study of childhood amnesia. Memory, 21, 336–346.CrossRefGoogle Scholar
  154. Grossi, D., Trojano, L., Grasso, A., & Orsini, A. (1988). Selective „semantic amnesia“ after closed-head injury. A case report. Cortex, 24, 457–464.CrossRefGoogle Scholar
  155. Grüsser, O. J. (1988). Die phylogenetische Hirnentwicklung und die funktionelle Lateralisation der menschlichen Großhirnrinde. In G. Oepen (Hrsg.), Psychiatrie des rechten und linken Gehirns: Neuro·psychologische Ansätze zum Verständnis von „Persönlichkeit“, „Depression“ und „Schizophrenie“ (S. 34–50). Köln: Deutscher Ärzte-Verlag.Google Scholar
  156. Gunkel, E. (2015). Neue Westfälische unter der Überschrift der digitalen Verblödung. www.nw.de/lokal/bielefeld/mitte/mitte/20331728_Die-digitale-Verbloedung.html. Zugegriffen am 16.06.2018.
  157. Hakola, H. P. A., Puranen, M., Repo, L., & Tühonen, J. (1993). Long-term effects of bilateral frontal lobe lesions from neuropsychiatric and neuroradiological aspects. Dementia, 4, 109–112.Google Scholar
  158. Hall, J. A. Y., & Kimura, D. (1994). Dermatoglyphic asymmetry and sexual orientation in men. Behavioral Neuroscience, 108, 1203–1206.CrossRefGoogle Scholar
  159. Halstead, W. C. (1947). Brain and intelligence. A quantitative study of the frontal lobes. Chicago: University of Chicago Press.Google Scholar
  160. Halstead, W. C., Carmichael, H. T., & Bucy, P. C. (1946). Prefrontal lobotomy: A preliminary appraisal of the behavioral results. American Journal of Psychiatry, 103, 217–228.CrossRefGoogle Scholar
  161. Harlow, J. M. (1848). Passage of an iron rod through the head. Boston Medical and Surgical Journal, 39, 389–393.CrossRefGoogle Scholar
  162. Harlow, J. M. (1869). Recovery from the passage of an iron bar through the head. Boston: D. Clapp and Son.Google Scholar
  163. Hassler, R. (1950). Über die anatomischen Grundlagen der Leukotomien. Fortschritte der Neurologie und Psychiatrie (Bd. 18, S. 351–367).Google Scholar
  164. Haynes, J.-D., & Rees, G. (2006). Decoding mental states from brain activity in humans. Nature Reviews Neuroscience, 7, 523–534.CrossRefGoogle Scholar
  165. Heilbrunn, G., & Hletko, P. (1943). Disappointing results with bilateral prefrontal lobotomy in chronic schizophrenia. American Journal of Psychiatry, 99, 569–570.CrossRefGoogle Scholar
  166. Heimann, H. (1963). Psychochirurgie. In H. W. Gruhle, R. Jung, W. Mayer-Gross & M. Müller (Hrsg.), Psychiatrie der Gegenwart (Grundlagen und Methoden der Klinischen Psychiatrie, Bd. I/2, S. 660–719). Göttingen: Springer.Google Scholar
  167. Herz, R. (2016). The role of odor-evoked memory in psychological and physiological health. Brain Sciences, 6, 22.CrossRefGoogle Scholar
  168. Hirose, S. (1979). Past and present trends of psychiatric surgery in Japan. In E. R. Hitchcock, H. T. Ballantine Jr. & B. A. Meyerson (Hrsg.), Modern concepts in psychiatric surgery (S. 349–357). New York: Elsevier/North-Holland Biomedical Press.Google Scholar
  169. Hirst, W., & Phelps, E. A. (2016). Flashbulb memories. Current Directions in Psychological Science, 25, 36–41.CrossRefGoogle Scholar
  170. Hirst, W., Phelps, E. A., Buckner, R. L., Budson, A. E., Cuc, A., Gabrieli, J. D. E., Johnson, M. K., Lustig, C., Lyle, K. B., Mather, M., Meksin, R., Mitchell, K. J., Ochsner, K. N., Schacter, D. L., Simons, J. S., & Vaidya, C. J. (2009). Long-term memory for the terrorist attack of September 11: Flashbulb memories, event memories, and the factors that influence their retention. Journal of Experimental Psychology: General, 138, 161–176.Google Scholar
  171. Hirst, W., Phelps, E. A., Meksin, R., Vaidya, C. J., Johnson, M. K., Mitchell, K. J., Buckner, R. L., Budson, A. E., Gabrieli, J. D. E., Lustig, C., Mather, M., Ochsner, K. N., Schacter, D. L., Simons, J. S., Lyle, K. B., Cuc, A., & Olsson, A. (2015). A ten-year follow-up of a study of memory for the attack of September 11, 2001: Flashbulb memories and memories for flashbulb events. Journal of Experimental Psychology: General, 144, 604–623.Google Scholar
  172. Hiser, J., & Koenigs, M. (2017). The multifaceted tole of the ventromedial prefrontal cortex in emotion, decision making, social cognition, and psychopathology. Biological Psychiatry, im Druck.Google Scholar
  173. Hofstatter, L., Smolik, E. A., & Busch, A. K. (1945). Prefrontal lobotomy in treatment of chronic psychoses. A.M.A. Archives of Neurology and Psychiatry, 53, 125–130.CrossRefGoogle Scholar
  174. Holman, S. D., & Hutchinson, J. B. (1993). Lateralization of a sexually dimorphic brain area associated with steroidsensitive behavior in the male gerbil. Behavioral Neuroscience, 107, 186–193.Google Scholar
  175. Hosking, J. G., Kastman, E. K., Dorfman, H. M., Samanez-Larkin, G. R., Baskin-Sommers, A., Kiehl, K. A., Newman, J. P., & Buckholtz, J. W. (2017). Disrupted prefrontal tegulation of striatal subjective value signals in psychopathy. Neuron., 95, 221–231.CrossRefGoogle Scholar
  176. Hu, X. S., Hong, K. S., & Ge, S. S. (2012). fNIRS-based online deception decoding. Journal of Neural Engeneering, 9, 026012.  https://doi.org/10.1088/1741–2560/9/2/026012. Zugegriffen am 18.05.2018.
  177. Hulbert, J. C., Henson, R. N., & Anderson, M. C. (2016). Inducing amnesia through systemic suppression. Nature Communications, 7, 11003.  https://doi.org/10.1038/ncomms11003. Zugegriffen am 18.06.2018.
  178. Hunt, T. (1942). Intelligence and personality profiles. In W. Freeman & J. W. Watts (Hrsg.), Psychosurgery (S. 153–181). Springfield: C.C. Thomas.Google Scholar
  179. Hussain, E. S., Freeman, H., & Jones, R. A. C. (1988). A cohort study of psychosurgery cases from a defined population. Journal of Neurology, Neurosurgery, and Psychiatry, 51, 345–352.CrossRefGoogle Scholar
  180. Iverson, G. L., Green, P., & Gervais, R. (1999). Using the Word Memory Test to detect biased responding in head injury litigation. Journal of Cognitive Rehabilitation, 2, 4–8.Google Scholar
  181. Jacobs, B., & Scheibel, A. (1993). A quantitative dendritic analysis of Wernicke’s area in humans. 1. Lifespan changes. Journal of Comparative Neurology, 327, 83–96.CrossRefGoogle Scholar
  182. Jacobs, B., Schall, M., & Scheibel, A. (1993). A quantitative dendritic analysis of Wernicke’s area in humans. II. Gender, hemispheric and environmental factors. Journal of Comparative Neurology, 327, 97–111.CrossRefGoogle Scholar
  183. Jalal, B., & Ramachandran, V. S. (2017). „I feel your disgust and relief“: Can the action understanding system (mirror neuron system) be recruited to induce disgust and relief from contamination vicariously, in individuals with obsessive-compulsive disorder symptoms? Neurocase, 23, 31–35.CrossRefGoogle Scholar
  184. Jastrowitz, M. (1888). Beiträge zur Lokalisation im Großhirn und über deren praktische Verwerthung. Deutsche Medizinische Wochenschrift, IV, 108–112.CrossRefGoogle Scholar
  185. Johnson, S. C., Farnworth, T., Pinkston, J. B., Bigler, E. D., & Blatter, D. D. (1994). Corpus callosum surface area across the human adult life span: Effect of age and gender. Brain Research Bulletin, 35, 373–377.CrossRefGoogle Scholar
  186. Jones, R. E. (1949). Personality changes in psychotics following prefrontal lobotomy. Journal of Abnormal and Social Psychology, 44, 315–328.CrossRefGoogle Scholar
  187. Jones, E. P., Laurens, K. R., Herba, C. M., Barker, G. J., & Viding, E. (2009). Amygdala hypoactivity to fearful faces in boys with conduct problems and callous-unemotional traits. American Journal of Psychiatry, 166, 95–102.CrossRefGoogle Scholar
  188. Jones, O. D., Wagner, A. D., Faigman, D. L., & Raichle, M. E. (2013). Neuroscientists in court. Nature Reviews Neuroscience, 14, 730–736.CrossRefGoogle Scholar
  189. Jung, C. G. (1905). Kryptomnesie. Die Zukunft, 13, 103–115.Google Scholar
  190. Kalbe, E., Grabenhorst, F., Brand, M., Kessler, J., Hilker, R., & Markowitsch, H. J. (2007). Elevated emotional reactivity in affective but not cognitive components of theory of mind: A psychophysiological study. Journal of Neuropsychology, 1, 27–38.CrossRefGoogle Scholar
  191. Kertesz, A., Polk, M., Black, S. E., & Howell, J. (1990). Sex, handedness, and the morphometry of cerebral asymmetries on magnetic resonance imaging. Brain Research, 530, 40–48.CrossRefGoogle Scholar
  192. Kessels, R. P., Kortrijk, H. E., Wester, A. J., & Nys, G. M. (2008). Confabulation behavior and false memories in Korsakoff’s syndrome: Role of source memory and executive functioning. Psychiatry and Clinical Neuroscience, 62, 220–225.CrossRefGoogle Scholar
  193. Kessler, J., Irle, E., & Markowitsch, H. J. (1986). Korsakoff and alcoholic subjects are severely impaired in animal tasks of association memory. Neuropsychologia, 24, 671–680.CrossRefGoogle Scholar
  194. Kessler, J., Markowitsch, H. J., Ghaemi, M., Rudolf, J., Weniger, G. H., & Heiss, W.-D. (1999). Degenerative prefrontal damage in a young adult: Static and dynamic imaging and neuropsychological correlates. Neurocase, 5, 173–179.CrossRefGoogle Scholar
  195. Kikuchi, H., Fujii, T., Abe, N., Suzuki, M., Takagi, M., Mugikura, S., Takahashi, S., & Mori, E. (2010). Memory repression: Brain mechanisms underlying dissociative amnesia. Journal of Cognitive Neuroscience, 22, 602–613.CrossRefGoogle Scholar
  196. Kimura, D. (1992). Sex differences in the brain. Scientific American, 267, 119–125.CrossRefGoogle Scholar
  197. Kimura, D. (1996). Sex, sexual orientation and sex hormones influence human cognitive function. Current Opinion in Neurobiology, 6, 259–263.CrossRefGoogle Scholar
  198. Klein, C. A., & Hirachan, S. (2014). The masks of identities: Who’s who? Delusional misidentification syndromes. Journal of the American Academy of Psychiatry and the Law, 42, 369–378.Google Scholar
  199. Kleindienst, N., Priebe, K., Petri, M., Hecht, A., Santangelo, P., Bohus, M., & Schulte-Herbrüggen, O. (2017). Trauma-related memories in PTSD after interpersonal violence: An ambulatory assessment study. European Journal of Psychotraumatology, 8, 1409062.  https://doi.org/10.1080/20008198.2017.1409062. Zugegriffen am 08.06.2018.
  200. Kleist, K. (1934). Gehirnpathologie. Leipzig: Barth.Google Scholar
  201. Klingmüller, A., Caplan, J. B., & Sommer, T. (2017). Intrusions in episodic memory: Reconsolidation or interference? Learning and Memory, 24, 216–224.CrossRefGoogle Scholar
  202. Knisely, K. A., & Wind, S. A. (2015). Gendered language attitudes: Exploring language as a gendered construct using Rasch measurement theory. Journal of Applied Measurement, 16, 95–112.Google Scholar
  203. Köbcke, H. (1947). Psychochirurgie – „die präfrontale Leukotomie“. Deutsche medizinische Wochenschrift (Bd. 35/36, S. 515–517).Google Scholar
  204. Kohler, C. G., Anselmo-Gallagher, G., Bilker, W., Karlawish, J., Gur, R. E., & Clark, C. M. (2005). Emotion-discrimination deficits in mild Alzheimer disease. American Journal of Geriatric Psychiatry, 13, 926–933.CrossRefGoogle Scholar
  205. Kolb, L. C. (1953). Clinical evaluation of prefrontal lobotomy. Journal of the American Medical Association, 152, 1085–1089.CrossRefGoogle Scholar
  206. Korponay, C., Pujara, M., Deming, P., Philippi, C., Decety, J., Kosson, D. S., Kiehl, K. A., & Koenigs, M. (2017). Impulsive-antisocial psychopathic traits linked to increased volume and functional connectivity within prefrontal cortex. Society for Cognitive and Affective Neuroscience, 12, 1169–1178.CrossRefGoogle Scholar
  207. Korsakow, S. S. (1891). Erinnerungstäuschungen (Pseudoreminiscenzen) bei polyneuritischer Psychose. Allgemeine Zeitschrift für Psychiatrie, 47, 390–410.Google Scholar
  208. Koskoff, Y. D., Dennis, W., Lazovik, D., & Wheeler, E. T. (1948). The psychological effects of frontal lobotomy performed for the alleviation of pain. In J. F. Fulton, W. C. Aring & S. B. Wortis (Hrsg.), The frontal lobes. (Research publications of the association for research in nervous and mental disease (Bd. 27, S. 741–753). Baltimore: Williams & Wilkins.Google Scholar
  209. Kou, M., Toshiya, M., Buchli, D., & Storm, B. C. (2014). Forgetting as a consequence of retrieval: A meta-analytic review of retrieval-induced forgetting. Psychological Bulletin, 140, 1383–1409.CrossRefGoogle Scholar
  210. Kraepelin, E. (1887a). Ueber Erinnerungsfälschungen. Archiv für Psychiatrie und Nervenkrankheiten, 18, 199–239.CrossRefGoogle Scholar
  211. Kraepelin, E. (1887b). Ueber Erinnerungsfälschungen. Archiv für Psychiatrie und Nervenkrankheiten, 18, 395–436.CrossRefGoogle Scholar
  212. Kühn, S., & Gallinat, J. (2015). Brains online: Structural and functional correlates of habitual Internet use. Addiction Biology, 20, 415–422.CrossRefGoogle Scholar
  213. Kühnel, S., & Markowitsch, H. J. (2008). Falsche Erinnerungen. In A. Sentker & F. Wigger (Hrsg.), Schaltstelle Gehirn: Denken, Erkennen, Handeln (S. 50–76). Heidelberg: Spektrum.Google Scholar
  214. Kühnel, S., & Markowitsch, H. J. (2009). Falsche Erinnerungen. Heidelberg: Spektrum.CrossRefGoogle Scholar
  215. Kühnel, S., Woermann, F. G., Mertens, M., & Markowitsch, H. J. (2008). Involvement of the orbitofrontal cortex during correct and false recognitions of visual stimuli. Implications for eyewitness decisions on an fMRI study using a film paradigm. Brain Imaging and Behavior, 2, 163–176.CrossRefGoogle Scholar
  216. Labudda, K., Wolf, O. T., Markowitsch, H. J., & Brand, M. (2007). Decision-making and neuroendocrine responses in pathological gamblers. Psychiatry Research, 153, 233–243.CrossRefGoogle Scholar
  217. Lahmeyer, H. W. (1982). Frontal lobe meningioma and depression. Journal of Clinical Psychiatry, 43, 254–255.Google Scholar
  218. Lai, C., Altavilla, D., Ronconi, A., & Aceto, P. (2016). Fear of missing out (FOMO) is associated with activation of the right middle temporal gyrus during inclusion social cue. Computers in Human Behavior, 61, 516–521.CrossRefGoogle Scholar
  219. Lanciano, T., Curci, A., Matera, G., & Sartori, G. (2018). Measuring the flashbulb-like nature of memories for private events: The flashbulb memory checklist. Memory, 24, 1–13.Google Scholar
  220. Lancioni, G. E., O’Reilly, M. F., Singh, N. N., Sigafoos, J., Oliva, D., Montironi, G., Savino, M., & Bosco, A. (2005). Extending the evaluation of a computer system used as a microswitch for word utterances of persons with multiple disabilities. Journal of Intellectual Developmental Disabilities, 49, 639–646.Google Scholar
  221. Langleben, D. D., & Moriarty, J. C. (2013). Using brain imaging for lie detection: Where science, law and research policy collide. Psychology and Public Policy Law, 19, 222–234.CrossRefGoogle Scholar
  222. Langleben, D. D., Hakun, J. G., Seelig, D., Wang, A. L., Ruparel, K., Bilker, W. B., & Gur, R. C. (2016). Polygraphy and functional magnetic resonance imaging in lie detection: A controlled blind comparison using the concealed information test. Journal of Clinical Psychiatry, 77, 1372–1380.  https://doi.org/10.4088/JCP.15m09785.CrossRefGoogle Scholar
  223. Langnickel, R., & Markowitsch, H. J. (2006). Repression and the unconsciousness. Behavioral and Brain Sciences, 29, 524–525.CrossRefGoogle Scholar
  224. Langnickel, R., & Markowitsch, H. J. (2010). Das Unbewusste Freuds und die Neurowissenschaften. In A. Leitner & H. G. Petzold (Hrsg.), Sigmund Freud heute. Der Vater der Psychoanalyse im Blick der Wissenschaft und der psychotherapeutischen Schulen (S. 149–173). Wien: Krammer Verlag.Google Scholar
  225. Lawrence-Wood, E., Van Hooff, M., Baur, J., & McFarlane, A. C. (2016). Re-experiencing phenomena following a disaster: The long-term predictive role of intrusion symptoms in the development of post-trauma depression and anxiety. Journal of Affective Disorders, 190, 278–281.CrossRefGoogle Scholar
  226. Le Beau, J. (1951). The surgical uncertainties of prefrontal topectomy and leucotomy (observations on 100 cases). Journal of Mental Science, 97, 480–504.CrossRefGoogle Scholar
  227. Le Beau, J., & Choppy, M. (1956). Sur les variations du lobe frontal et de certaines fonctions mentales. Encéphale, 45, 242–255.Google Scholar
  228. Le Beau, J., & Petrie, A. (1953). A comparison of the personality changes after (1) prefrontal selective surgery for the relief of intract-cingulectomy and topectomy. Journal of Mental Science, 99, 53–61.CrossRefGoogle Scholar
  229. LeDoux, J. (1998). Fear and the brain: Where have we been, and where are we going? Biological Psychiatry, 44, 1229–1238.Google Scholar
  230. LePort, A. K. R., Mattfeld, A. T., Dickinson-Anson, H., Fallon, J. H., Craig, E. L., Stark, C. E. L., Kruggel, F., Cahill, L., & McGaugh, J. L. (2012). Behavioral and neuroanatomical investigation of Highly Superior Autobiographical Memory (HSAM). Neurobiology of Learning and Memory, 98, 78–92.CrossRefGoogle Scholar
  231. LeVay, S. (1991). A difference in hypothalamic structure between heterosexual and homosexual men. Science, 253, 1034–1037.CrossRefGoogle Scholar
  232. LeVay, S. (1993). The sexual brain. Cambridge, MA: MIT Press.CrossRefGoogle Scholar
  233. Levin, S., Greenblatt, M., Healey, M. M., & Solomon, H. C. (1950). Electroencephalographic and clinical effects of prefrontal lobotomy, with consideration of post-lobotomy convulsive seizures. In M. Greenblatt, R. Arnot & H. C. Solomon (Hrsg.), Studies in lobotomy (S. 400–427). New York: Grune & Stratton.Google Scholar
  234. Levy, S. T., & Nemeroff, C. B. (1993). From psychoanalysis to neurobiology. National Forum, 73, 18.Google Scholar
  235. Liberson, W. T., Scoville, W. B., & Dunsmore, R. H. (1951). Stimulation studies of the prefrontal lobe and uncus in man. Electroencephalography and Clinical Neurophysiology, 3, 1–8.CrossRefGoogle Scholar
  236. Lieberman, M. D. (2007). Social cognitive neuroscience: A review of core processes. Annual Review of Psychology, 58, 259–289.CrossRefGoogle Scholar
  237. Liu, S., Schackel, T., Weidner, N., & Puttagunta, R. (2018). Biomaterial-supported cell transplantation treatments for spinal cord injury: Challenges and perspectives. Frontiers in Cellular Neuroscience, 11, 430.  https://doi.org/10.3389/fncel.2017.00430. Zugegriffen am 11.07.2018.
  238. Livingston, R. B., Chapman, W. P., Livingston, K. E., & Kraintz, L. (1948a). Stimulation of orbital surface of man prior to frontal lobotomy. In J. F. Fulton, W. C. Aring & S. B. Wortis (Hrsg.), The frontal lobes (Research publications of the association for research in nervous and mental disease, Bd. 27, S. 421–432). Baltimore: Williams & Wilkins.Google Scholar
  239. Livingston, R. B., Fulton, J. F., Delgado, J. M. R., Sachs, E., Brendler, S. J., Jr., & Davis, G. D. (1948b). Stimulation and regional ablation of orbital surface of frontal lobes. In J. F. Fulton, W. C. Aring & S. B. Wortis (Hrsg.), The frontal lobes (Research publications of the association for research in nervous and mental disease, Bd. 27, S. 405–420). Baltimore: Williams & Wilkins.Google Scholar
  240. Loftus, E. F. (2000). Remembering what never happened. In E. Tulving (Hrsg.), Memory, consciousness, and the brain (S. 106–118). Philadelphia: Psychology Press.Google Scholar
  241. Loftus, E. F. (2003). Our changeable memories: Legal and practical implications. Nature Neuroscience, 4, 232–233.Google Scholar
  242. Loftus, E. F. (2014). The malleability of memory – Ideas Roadshow. Open Agenda Publ. http://www.ideasroadshow.com.
  243. Luria, A. R. (1965). Two kinds of motor perseveration in massive injury of the frontal lobes. Brain, 88, 1–10.CrossRefGoogle Scholar
  244. Luria, A. R. (1968). The mind of a mnemonist: A little book about a vast memory. New York: Basic Books.Google Scholar
  245. Lurija, A. R. (1971). Der Mann, dessen Welt in Scherben ging. Reinbek bei. Hamburg: Rowohlt.Google Scholar
  246. Macherey, O., & Carlyon, R. P. (2014). Cochlear implants. Current Biology, 24, R878–R884.CrossRefGoogle Scholar
  247. Maddox, J. (1991). Is homosexuality hard-wired? Nature, 353, 13.CrossRefGoogle Scholar
  248. Maier, C. (2016). Bion and C. G. Jung. How did the container-contained model find its thinker? The fate of a cryptomnesia. Journal of Analytic Psychology, 61, 134–154.CrossRefGoogle Scholar
  249. Malcolm, C. P., Picchioni, M. M., & Ellett, L. (2015). Intrusive prospective imagery, posttraumatic intrusions and anxiety in schizophrenia. Psychiatry Research, 230, 899–904.CrossRefGoogle Scholar
  250. Malmo, R. B. (1948). Psychological aspects of frontal gyrectomy and frontal-lobotomy in mental patients. In J. F. Fulton, W. C. Aring & S. B. Wortis (Hrsg.), The frontal lobes (Research publications of the association for research in nervous and mental disease, Bd. 27, S. 537–564). Baltimore: Williams & Wilkins.Google Scholar
  251. Marini, M., Agosta, S., Mazzoni, G., Barba, G. D., & Sartori, G. (2012). True and false DRM memories: Differences detected with an implicit task. Frontiers in Psychology, 3, 310.  https://doi.org/10.3389/fpsyg.2012.00310. eCollection 2012. Zugegriffen am 23.01.2013.
  252. Markowitsch, H. J. (1988). Anatomical and functional organization of the primate prefrontal cortical system. In H. D. Steklis & J. Erwin (Hrsg.), Comparative primate biology (Neurosciences, Bd. IV, S. 99–153). New York: Alan R. Liss.Google Scholar
  253. Markowitsch, H. J. (1992). Intellectual functions and the brain. An historical perspective. Toronto: Hogrefe & Huber Publs.Google Scholar
  254. Markowitsch, H. J. (1993). Effects of emotion and arousal on memory processing by the brain. In J. Delacour (Hrsg.), Memory, learning and the brain (S. 210–240). Singapore: World Scientific Publ. Comp.Google Scholar
  255. Markowitsch, H. J. (1998). The mnestic block syndrome: Environmentally induced amnesia. Neurology, Psychiatry, and Brain Research, 6, 73–80.Google Scholar
  256. Markowitsch, H. J. (1999). Das „mnestische Blockadesyndrom“. Einwirkungen von Umwelt und Psyche auf die Gedächtnisfähigkeit. In P. Calabrese (Hrsg.), Gedächtnis und Gedächtnisstörungen: Klinisch-neuropsychologische Aspekte aus Forschung und Praxis (S. 175–192). Lengerich: Pabst-Verlag.Google Scholar
  257. Markowitsch, H. J. (2000a). Repressed memories. In E. Tulving (Hrsg.), Memory, consciousness, and the brain: The Tallinn conference (S. 319–330). Philadelphia: Psychology Press.Google Scholar
  258. Markowitsch, H. J. (2000b). Functional amnesia: The mnestic block syndrome. Revue de Neuropsychologie, 10, 175–198.CrossRefGoogle Scholar
  259. Markowitsch, H. J. (2001a). Blockade. In N. Pethes & J. Ruchatz (Hrsg.), Gedächtnis und Erinnerung. Ein interdisziplinäres Lexikon (S. 92–93). Reinbek: Rowohlt Verlag.Google Scholar
  260. Markowitsch, H. J. (2001b). Mnestische Blockaden als Stress- und Traumafolgen. Zeitschrift für Klinische Psychologie und Psychotherapie, 30, 204–211.CrossRefGoogle Scholar
  261. Markowitsch, H. J. (2002). Functional retrograde amnesia – Mnestic block syndrome. Cortex, 38, 651–654.CrossRefGoogle Scholar
  262. Markowitsch, H. J. (2006a). Emotionen, Gedächtnis und das Gehirn. Der Einfluss von Stress und Hirnschädigung auf das autobiographische Erinnern. In H. Welzer & H. J. Markowitsch (Hrsg.), Warum Menschen sich erinnern können. Fortschritte in der interdisziplinären Gedächtnisforschung (S. 303–322). Stuttgart: Klett.Google Scholar
  263. Markowitsch, H. J. (2006b). Brain imaging correlates of stress-related memory disorders in younger adults. Biologicl Psychiatry and Psychopharmacology, 8, 50–53.Google Scholar
  264. Markowitsch, H. J. (2008a). Autobiographic memory: A biocultural relais between individuum and environment. European Archives of Psychiatry and Clinical Neuroscience, 258(Suppl 5), 98–103.CrossRefGoogle Scholar
  265. Markowitsch, H. J. (Hrsg.). (2008b). Neuroscience and crime. Hove: Psychology Press.Google Scholar
  266. Markowitsch, H. J. (2010). Korsakoff’s syndrome. In G. F. Koob, M. Le Moal & R. F. Thompson (Hrsg.), Encyclopedia of behavioral neuroscience (Bd. 2, R. Poldrack, Hrsg., S. 131–136). Oxford: Academic.CrossRefGoogle Scholar
  267. Markowitsch, H. J. (2016). Psychological science can no longer neglect neuroscience: Comment on Klein (2016). Psychology of Consciousness: Theory, Research, and Practice, 3, 382–386.Google Scholar
  268. Markowitsch, H. J., & Kessler, J. (2000). Massive impairment in executive functions: The case of a patient with severe degeneration of the prefrontal cortex. Experimental Brain Research, 133, 94–102. [und in F. X. Schneider, A. M. Owen, & J. Duncan (2000) (Hrsg.), Executive control and the frontal lobes (S. 94–102). Heidelberg: Springer].CrossRefGoogle Scholar
  269. Markowitsch, H. J., & Merkel, R. (2011). Das Gehirn auf der Anklagebank. Die Bedeutung der Hirnforschung für Ethik und Recht. In T. Bonhoeffer & P. Gruss (Hrsg.), Zukunft Gehirn (S. 210–240). München: Beck Verlag.Google Scholar
  270. Markowitsch, H. J., & Pritzel, M. (1979). The prefrontal cortex: Projection area of the thalamic mediodorsal nucleus? Physiological Psychology, 7, 1–6.CrossRefGoogle Scholar
  271. Markowitsch, H. J., & Staniloiu, A. (2009). Brain-environment interactions in violent crime. In I. Needham, P. Callaghan, T. Palmstierna, H. Nijman & N. Oud (Hrsg.), Violence in clinical psychiatry (S. 121–123). Dwingelon: Kavanah.Google Scholar
  272. Markowitsch, H. J., & Staniloiu, A. (2011a). Neurobiological aspects of individual violent behaviour. In I. Needham, P. Callaghan, T. Palmstierna, H. Nijman & N. Oud (Hrsg.), Violence in clinical psychiatry: Challenges for care and treatment (S. 65–68). Dwingelon: Kavanah.Google Scholar
  273. Markowitsch, H. J., & Staniloiu, A. (2011b). Amygdala in action: Relaying biological and social significance to autobiographic memory. Neuropsychologia, 49, 718–733.CrossRefGoogle Scholar
  274. Markowitsch, H. J., & Staniloiu, A. (2012). Gehirn und Gewalt: Der determinierte Täter. In H. Fink & R. Rosenzweig (Hrsg.), Verantwortung als Illusion? (S. 37–70). Paderborn: Mentis.Google Scholar
  275. Markowitsch, H. J., & Staniloiu, A. (2016). Functional (dissociative) retrograde amnesia. In M. Hallett, J. Stone & A. Carson (Hrsg.), Handbook of clinical neurology (3rd series): Functional neurological disorders (Bd. 139, S. 419–445). Amsterdam: Elsevier.Google Scholar
  276. Markowitsch, H. J., & Staniloiu, A. (2017a). Gedächtnis und Dissoziation. In C. Spitzer & A. Eckardt-Henn (Hrsg.), Dissoziation und dissoziative Störungen (S. 173–185). Stuttgart: Thieme.Google Scholar
  277. Markowitsch, H. J., & Staniloiu, A. (2017b). Lehrstück der Medizingeschichte. Die Machtspiele der Forscher um einen berühmten Patienten. Gehirn und Geist, 6, 81–82.Google Scholar
  278. Markowitsch, H. J., & Staniloiu, A. (2018). History of memory. In W. Barr & L. A. Bielauskas (Hrsg.), Oxford handbook of the history of clinical neuropsychology. Oxford: Oxford University Press, im Druck.Google Scholar
  279. Markowitsch, H. J. & Welzer, H. (2005/2006). Das autobiographische Gedächtnis. Hirnorganische Grundlagen und biosoziale Entwicklung (1./2. Aufl.). Stuttgart: Klett.Google Scholar
  280. Markowitsch, H. J., von Cramon, D. Y., & Schuri, U. (1993). Mnestic performance profile of a bilateral diencephalic infarct patient with preserved intelligence and severe amnesic disturbances. Journal of Clinical and Experimental Neuropsychology, 15, 627–652.CrossRefGoogle Scholar
  281. Markowitsch, H. J., Calabrese, P., Würker, M., Durwen, H. F., Kessler, J., Babinsky, R., Brechtelsbauer, D., Heuser, L., & Gehlen, W. (1994). The amygdala’s contribution to memory – A PET-study on two patients with Urbach-Wiethe disease. NeuroReport, 5, 1349–1352.Google Scholar
  282. Markowitsch, H. J., Thiel, A., Kessler, J., von Stockhausen, H.-M., & Heiss, W.-D. (1997). Ecphorizing semi-conscious episodic information via the right temporopolar cortex – A PET study. Neurocase, 3, 445–449.Google Scholar
  283. Markowitsch, H. J., Kessler, J., Russ, M. O., Frölich, L., Schneider, B., & Maurer, K. (1999). Mnestic block syndrome. Cortex, 35, 219–230.CrossRefGoogle Scholar
  284. Markowitsch, H. J., Kessler, J., Weber-Luxenburger, G., Van der Ven, C., Albers, M., & Heiss, W. D. (2000a). Neuroimaging and behavioral correlates of recovery from mnestic block syndrome and other cognitive deteriorations. Neuropsychiatry Neuropsychology and Behavioral Neurology, 13, 60–66.Google Scholar
  285. Markowitsch, H. J., Thiel, A., Reinkemeier, M., Kessler, J., Koyuncu, A., & Heiss, W.-D. (2000b). Right amygdalar and temporofrontal activation during autobiographic, but not during fictitious memory retrieval. Behavioural Neurology, 12, 181–190.CrossRefGoogle Scholar
  286. Marrocco, J., & McEwen, B. S. (2016). Sex in the brain: Hormones and sex differences. Dialogues in Clinical Neuroscience, 18, 373–383.Google Scholar
  287. Masters, C. L., Morelli, S. A., & Eisenberger, N. J. (2011). An fMRI investigationof empathy for „social pain“ and subsequent prosocial behavior. NeuroImage, 55, 381–388.CrossRefGoogle Scholar
  288. Matsuda, I., Nittono, H., & Allen, J. J. B. (2012). The current and future oft he concealed information test for field use. Frontiers in Psychology, 3.  https://doi.org/10.3389/fpsyg.2012.00532. Zugegriffen am 13.09.2014.
  289. Matsumoto, A. (2000). Sexual differentiation of the brain. Boca Raton: CRC Press.Google Scholar
  290. McCormick, C. M., & Witelson, S. F. (1991). A cognitive profile of homosexual men compared to heterosexual men and women. Psychoneuroendocrinology, 16, 459–473.CrossRefGoogle Scholar
  291. McCormick, C. M., & Witelson, S. F. (1994). Functional cerebral asymmetry and sexual orientation in men and women. Behavioral Neuroscience, 108, 525–531.CrossRefGoogle Scholar
  292. Meeks, T. W., & Jeste, D. V. (2009). Neurobiology of wisdom: A literature overview. Archives of General Psychiatry, 66, 355–365.CrossRefGoogle Scholar
  293. Meijer, E. H., Bente, G., Ben-Shakhar, G., & Schumacher, A. (2012). Detecting concealed information from groups using a dynamic questioning approach: Simultaneous skin conductance measurement and immediate feedback. Frontiers in Psychology, 4.  https://doi.org/10.3389/fpsyg.2012.00068. Zugegriffen am 13.09.2014.
  294. Meijer, E. H., Verschuere, B., Gamer, M., Merckelbach, H., & Ben-Shakhar, G. (2016). Deception detection with behavioral, autonomic, and neural measures: Conceptual and methodological considerations that warrant modesty. Psychophysiology, 53, 593–604.CrossRefGoogle Scholar
  295. Mendez, M. F. (2005). Moria and Witzelsucht from frontotemporal dementia. Journal of Neuropsychiatry and Clinical Neuroscience, 17, 429–430.CrossRefGoogle Scholar
  296. Meng, Y., Deng, W., Wang, H., Guo, W., & Li, T. (2015). The prefrontal dysfunction in individuals with Internet gaming disorder: A meta-analysis of functional magnetic resonance imaging studies. Addiction Biology, 20, 799–808.CrossRefGoogle Scholar
  297. Mier, D., & Kirsch, P. (2014). Social brain. In A. Stirn, R. Stark, K. Tabbert, S. Wehrum-Osinsky & S. Oddo (Hrsg.), Sexualität, Körper und Neurobiologie. Grundlagen und Störungsbilder im interdisziplinären Fokus (S. 315–325). Stuttgart: Kohlhammer.Google Scholar
  298. Miller, L. (1985). Cognitive risk-taking after frontal or temporal lobectomy – I. The synthesis of fragmented visual information. Neuropsychologia, 23, 359–369.CrossRefGoogle Scholar
  299. Miller, G. (2009). Brain scans of pain raise questions for the law. Science, 323, 195.CrossRefGoogle Scholar
  300. Miller, L., & Milner, B. (1985). Cognitive risk-taking after frontal or temporal lobectomy – II. The synthesis of phonemic and semantic information. Neuropsychologia, 23, 371–379.CrossRefGoogle Scholar
  301. Mitchell, J. P. (2007). Activity in right temporo-parietal junction is not selective for theory-of-mind. Cerebral Cortex, 18, 262–271.CrossRefGoogle Scholar
  302. Mitchell, T. M., Shinkareva, S. V., Carlson, A., Chang, K.-M., Malave, V. L., Mason, R. A., & Just, M. A. (2008). Predicting human brain activity associated with the meanings of nouns. Science, 320, 1191–1195.CrossRefGoogle Scholar
  303. Mixter, W. J., Tillotson, K. J., & Wies, D. (1941). Reports of partial frontal lobectomy and frontal lobotomy performed on three patients: One chronic epileptic and two cases of chronic agitated depression. Psychosomatic Medicine, 3, 26–37.CrossRefGoogle Scholar
  304. Mizukami, S., Nishizuka, N., & Arai, Y. (1983). Sexual differences in the nuclear volume and its ontogeny in the rat amygdala. Experimental Neurology, 69, 569–575.CrossRefGoogle Scholar
  305. Mohamed, F. B., Faro, S. H., Gordon, N. J., Platek, S. M., Ahmad, H., & Williams, J. M. (2006). Brain mapping of deception and truth telling about an ecologically valid situation: Functional MR imaging and polygraph investigation – Initial experience. Radiology, 238, 679–688.Google Scholar
  306. Molfese, D. L., & Molfese, V. (1979). Hemisphere and stimulus differences a reflected in cortical responses of newborn infants to speech stimuli. Developmental Biology, 15, 505–511.Google Scholar
  307. Moniz, E. (1937). Prefrontal leucotomy in the treatment of mental disorders. American Journal of Psychiatry, 93, 1379–1385.CrossRefGoogle Scholar
  308. Moniz, E. (1948). Mein Weg zur Leukotomie. Deutsche medizinische Wochenschrift, 73, 581–583.CrossRefGoogle Scholar
  309. Moniz, E. (1956). How I succeeded in performing the prefrontal leukotomy. In A. M. Sackler (Hrsg.), The great psychodynamic therapies in psychiatry (S. 131–137). New York: Hoeber-Harper.Google Scholar
  310. Moniz, E., & Lima, A. (1936). Premier essais de psychochirurgia technique et résultats. Lisboa Medica, 38, 725.Google Scholar
  311. Morgenstern, C. (o. J.). Gedichte – Palmström. http://www.oppisworld.de/morgen/palm09.html. Zugegriffen am 19.07.2018.
  312. Morrison, R., & Reiss, D. (2018). Precocious development of self-awareness in dolphins. PLoS One, 13, e0189813.  https://doi.org/10.1371/journal.pone.0189813. Zugegriffen am 21.07.2018.
  313. Mottron, L., Dawson, M., & Soulières, I. (2009). Enhanced perception in savant syndrome: Patterns, structure and creativity. Philosophical Transactions of the Royal Society, London B, 364, 1385–1391.CrossRefGoogle Scholar
  314. Muhle-Karbe, P. S., Jiang, J., & Egner, T. (2018). Causal evidence for learning-dependent frontal lobe contributions to cognitive control. Journal of Neuroscience, 38, 962–973.CrossRefGoogle Scholar
  315. Müller, J. L., Sommer, M., Wagner, V., Lange, K., Taschler, H., Röder, C. H., Schuierer, G., Klein, H. E., & Hajak, G. (2003). Abnormalities in emotion processing within cortical and subcortical regions in criminal psychopaths: Evidence from a functional magnetic resonance imaging study using pictures with emotional content. Biological Psychiatry, 54, 152–162.CrossRefGoogle Scholar
  316. Murgatroyd, C., & Spengler, D. (2011). Epigenetics of early child development. Frontiers in Psychiatry, 2, 1–15.CrossRefGoogle Scholar
  317. Murray, B. D., Anderson, M. C., & Kensinger, E. A. (2015). Older adults can suppress unwanted memories when given an appropriate strategy. Psychology of Aging, 30(1), 9–25.CrossRefGoogle Scholar
  318. Muschalla, B., Rau, H., Willmund, G. D., & Knaevelsrud, C. (2018). Work disability in soldiers with posttraumatic stress disorder, posttraumatic embitterment disorder, and not-event-related common mental disorders. Psychology and Trauma., 10, 30–35.CrossRefGoogle Scholar
  319. Nakamura, K., Iwahashi, K., Fukunishi, I., & Suwaki, H. (2000). Social skills training for a case of Savant syndrome and Asperger’s syndrome. Australian and New Zealnd Journal of Psychiatry, 34, 697.CrossRefGoogle Scholar
  320. Nash, R., & Ost, J. (2017). False and distorted memories. Hove: Psychology Press.Google Scholar
  321. Nauta, W. J. H. (1979). Expanding border of the limbic system concept. In T. Rasmussen & R. Marino (Hrsg.), Functional neurosurgery (S. 7–23). New York: Raven Press.Google Scholar
  322. Neisser, U., & Libby, L. K. (2000). Remembering life experiences. In E. Tulving & F. M. Craik (Hrsg.), The Oxford handbook of memory (S. 315–332). New York: Oxford University Press.Google Scholar
  323. Nieuwenhuys, R. (1996). The greater limbic system, the emotional motor system and the brain. Progress in Brain Research, 107, 551–580.CrossRefGoogle Scholar
  324. Nieuwenhuys, R. (2012). The insular cortex. Progress in Brain Research, 195, 123–163.CrossRefGoogle Scholar
  325. Nieuwenhuys, R., Voogd, J., & van Hujzen, C. (2008). The human central nervous system (4. Aufl.). Berlin: Springer.CrossRefGoogle Scholar
  326. Nourkova, V. V., & Vasilenko, D. A. (2017). On the advantage of autobiographical memory pliability: Implantation of positive self-defining memories reduces trait anxiety. Memory, 28, 1–13.Google Scholar
  327. O’Brien, D. J. (2011). Unconscious by any other name. Nature Review Neurosciences, 12, 302.CrossRefGoogle Scholar
  328. Oberst, U., Wegmann, E., Stodt, B., Brand, M., & Chamarro, A. (2017). Negative consequences from heavy social networking in adolescents: The mediating role of fear of missing out. Journal of Adolescence, 55, 51–60.CrossRefGoogle Scholar
  329. Ochsner, K. N., Kosslyn, S. M., Cosgrove, G. R., Cassem, E. H., Price, B. H., Nierenberg, A. A., & Rauch, S. L. (2001). Deficits in visual cognition and attention following bilateral anterior cingulotomy. Neuropsychologia, 39, 219–230.CrossRefGoogle Scholar
  330. Offner, M. (1924). Das Gedächtnis. Die Ergebnisse der experimentellen Psychologie und ihre Anwendungen in Unterricht und Erziehung. Berlin: Reuther & Reichard.Google Scholar
  331. Oka, S., Miyamoto, O., Janjua, N. A., Honjo-Fujiwara, N., Ohkawa, M., Nagao, S., Kondo, H., Minami, T., Toyoshima, T., & Itano, T. (1999). Re-evaluation of sexual dimorphism in human corpus callosum. NeuroReport, 10, 937–940.CrossRefGoogle Scholar
  332. Onofrj, V., Delli Pizzi, S., Franciotti, R., & Bonanni, L. (2016). Medio-dorsal thalamus and confabulations: Evidence from a clinical case and combined MRI/DTI study. Neuroimage: Clinical, 12, 776–784.CrossRefGoogle Scholar
  333. Oppenheim, H. (1891). Zur Pathologie der Großhirngeschwülste. Archiv für Psychiatrie und Nervenkrankheiten, 22, 27–72.CrossRefGoogle Scholar
  334. Ortega, A., Wagenmakers, E.-J., Lee, M. D., Markowitsch, H. J., & Piefke, M. (2012). A Bayesian latent group analysis for detecting poor effort in the assessment of malingering. Archives of Clinical Neuropsychology, 27, 453–465.CrossRefGoogle Scholar
  335. Ortega, A., Labrenz, S., Markowitsch, H. J., & Piefke, M. (2013). Diagnostic accuracy of a Bayesian latent group analysis for the detection of malingering-related poor effort. Clinical Neuropsychologist, 27, 1019–1042.CrossRefGoogle Scholar
  336. Ortega, A., Piefke, M., & Markowitsch, H. J. (2014). A Bayesian latent group analysis for detecting poor effort in a sample of cognitively impaired patients. Journal of Clinical and Experimental Neuropsychology, 36, 659–667.CrossRefGoogle Scholar
  337. Otani, H., Kusumi, T., Kato, K., Matsuda, K., Kern, R. P., Widner, R., Jr., & Ohta, N. (2005). Remembering a nuclear accident in Japan: Did it trigger flashbulb memories? Memory, 13, 6–20.CrossRefGoogle Scholar
  338. Pakkenberg, B. (1989). What happens in the leucotomised brain? A postmortem morphological study of brains from schizophrenic patients. Journal of Neurology, Neurosurgery, and Psychiatry, 52, 156–161.CrossRefGoogle Scholar
  339. Pakkenberg, B., Scheel-Krüger, J., & Kristiansen, L. V. (2009). Schizophrenia; from structure to function with special focus on the mediodorsal thalamic nucleus. Acta Psychiatrica Scandinavica, 120, 345–354.CrossRefGoogle Scholar
  340. Palkovits, M., & Zaborszky, L. (1979). Neural connections of the hypothalamus. In P. J. Morgane & J. Panksepp (Hrsg.), Handbook of the hypothalamus, Vol. 1: Anatomy of the hypothalamus (S. 379–509). New York: Dekker.Google Scholar
  341. Palombo, D. J., Alain, C., Söderlund, H., Khuu, W., & Levine, B. (2015). Severely deficient autobiographical memory (SDAM) in healthy adults: A new mnemonic syndrome. Neuropsychologia, 72, 105–118.CrossRefGoogle Scholar
  342. Park, K. K., Hwang, H. W., & Lee, J.-H. (2013). A functional analysis of detection of a mock crime using infrared thermal imaging and the Concealed Information Test. Frontiers in Human Neuroscience, 7.  https://doi.org/10.3389/fnhum.2013.00070. Zugegriffen am 11.11.2014.
  343. Parker, E. S., Cahill, L., & McGaugh, J. L. (2006). A case of unusual autobiographical remembering. Neurocase, 12, 35–49.CrossRefGoogle Scholar
  344. Parsons, S., & Mitchell, P. (2002). The potential of virtual reality in social skills training for people with autistic spectrum disorders. Journal of Intellectual Developmental Disabilities, 46, 430–443.Google Scholar
  345. Patai, E. Z., Gadian, D. G., Cooper, J. M., Dzieciol, A. M., Mishkin, M., & Vargha-Khadem, F. (2015). Extent of hippocampal atrophy predicts degree of deficit in recall. Proceedings of the National Academy of Sciences of the United States of America, 112, 12830–12833.CrossRefGoogle Scholar
  346. Paul, N. L., Fitzgerald, E., & Greenblatt, M. (1956). Five-year follow up of patients subjects to three different lobotomy procedures. Journal of the American Medical Association, 161, 815–819.CrossRefGoogle Scholar
  347. Paz-Alonso, P. M., Ghetti, S., Matlen, B. J., Anderson, M. C., & Bunge, S. A. (2009). Memory suppression is an active process that improves over childhood. Frontiers in Human Neuroscience, 3, 24.CrossRefGoogle Scholar
  348. Paz-Alonso, P. M., Bunge, S. A., Anderson, M. C., & Ghetti, S. (2013). Strength of coupling within a mnemonic control network differentiates those who can and cannot suppress memory retrieval. Journal of Neuroscience, 33, 5017–5026.CrossRefGoogle Scholar
  349. Premack, D., & Woodruff, G. (1978). Does the chimpanzee have a theory of mind? Behavioral and Brain Sciences, 4, 515–526.Google Scholar
  350. Perrett, D. I., Lee, K. J., Penton-Voak, I., Rowland, D., Yoshikawa, S., Burt, D. M., Henzi, S. P., Castles, D. L., & Akamatsu, S. (1998). Effects of sexual dimorphism on facial attractiveness. Nature, 394, 884–887.CrossRefGoogle Scholar
  351. Piefke, M., Weiss, P. H., Markowitsch, H. J., & Fink, G. R. (2005). Gender differences in the functional neuroanatomy of emotional episodic autobiographical memory. Human Brain Mapping, 24, 313–324.CrossRefGoogle Scholar
  352. Pilgrim, C., & Hutchinson, J. B. (1994). Developmental regulation of sex differences in the brain: Can the role of the gonadal steroids be redefined? Neuroscience, 60, 843–855.Google Scholar
  353. Pillemer, D. B. (1984). Flashbulb memories of the assassination attempt on President Reagan. Cognition, 16, 63–80.CrossRefGoogle Scholar
  354. Pitarque, A., Satorres, E., Escudero, J., Algarabel, S., Bekkers, O., & Meléndez, J. C. (2018). Motivated forgetting reduces veridical memories but slightly increases false memories in both young and healthy older people. Consciousness and Cognition, 59, 26–31.CrossRefGoogle Scholar
  355. Porteus, S. D. (1952). A survey of recent results obtained with the Porteus maze test. British Journal of Medical Psychology, 23, 180–188.Google Scholar
  356. Porteus, S. D., & Kepner, R. d. M. (1942). Mental changes after bi-lateral pre-frontal lobotomy. American Journal of Psychiatry, 99, 426–430.CrossRefGoogle Scholar
  357. Porteus, S. D., & Kepner, R. d. M. (1944). Mental changes after bilateral prefrontal lobotomy. Genetic Psychology Monographs, 29, 1–115.Google Scholar
  358. Porteus, S. D., & Peters, H. N. (1947). Psychosurgery and test validity. Journal of Abnormal and Social Psychology, 42, 473–475.CrossRefGoogle Scholar
  359. Price, J. (2008). The woman who can’t forget: The extraordinary story of living with the most remarkable memory known to science. New York: Free Press.Google Scholar
  360. Pritzel, M., & Markowitsch, H. J. (1997). Sexueller Dimorphismus: Inwieweit bedingen Unterschiede im Aufbau des Gehirns zwischen Mann und Frau auch Unterschiede im Verhalten? Psychologische Rundschau, 48, 16–31.Google Scholar
  361. Pritzel, M., & Markowitsch, H. J. (2014). Neurowissenschaftliche Daten. In N. Baur & J. Blasius (Hrsg.), Handbuch Methoden der empirischen Sozialforschung (S. 989–994). Wiesbaden: Springer Fachmedien.Google Scholar
  362. Prochnow, D., Kossack, H., Brunheim, S., Mueller, K., Seitz, R. J., Wittsack, H.-J., & Markowitsch, H.-J. (2013). Processing of subliminal facial expressions of emotion: A behavioral and fMRI study. Social Neuroscience, 8, 448–461.CrossRefGoogle Scholar
  363. Puusepp, L. (1937). Alcune considerazioni sugli interventi chirurgici nelle malattie mentali. Giornale della accademia di medicina di Torino, 100, 3–16.Google Scholar
  364. Raine, A., Meloy, J. R., Bihrle, S., Stoddard, J., LaCasse, L., & Buchsbaum, M. S. (1998a). Reduced prefrontal and increased subcortical brain functioning assessed using positron emission tomography in predatory and affective murderers. Behavioral Science and the Law, 16, 319–332.CrossRefGoogle Scholar
  365. Raine, A., Stoddard, J., Bihrle, S., & Buchsbaum, M. (1998b). Prefrontal glucose in murderers lacking psychosocial deprivation. Neuropsychiatry, Neuropsychology, and Behavioral Neurology, 11, 1–7.Google Scholar
  366. Raine, A., Lencz, T., Bihrle, S., LaCasse, L., & Colletti, P. (2000). Reduced prefrontal gray matter volume and reduced autonomic activity in antisocial personality disorder. Archives of General Psychiatry, 57, 119–127.CrossRefGoogle Scholar
  367. Ransohoff (kein Vorname genannt) (1897). Ueber Erinnerungstäuschungen bei Alkoholparalyse. Allgemeine Zeitschrift für Psychiatrie, 53, 933–943.Google Scholar
  368. Reinhold, N., & Markowitsch, H. J. (2008, Apr 10). Theory of mind and the sense of self [letter to the editor]. Science, online.Google Scholar
  369. Reiss, D., & Marino, L. (2001). Mirror self-recognition in the bottlenose dolphin: A case of cognitive convergence. Proceedings of the National Academy of Sciences of the United States of America, 98, 5937–5942.CrossRefGoogle Scholar
  370. Reitman, F. (1946). Orbital cortex syndrome following leucotomy. American Journal of Psychiatry, 103, 238–241.CrossRefGoogle Scholar
  371. Reitman, F. (1948). Evaluation of leucotomy results. American Journal of Psychiatry, 105, 86–89.CrossRefGoogle Scholar
  372. Riechert, T. (1950). Klinisches zur Leukotomie Archiv für. Psychiatrie und Nervenkrankheiten, 184, 282–284.Google Scholar
  373. Risius, U.-M., Staniloiu, A., Piefke, M., Maderwald, S., Schulte, F., Brand, M., & Markowitsch, H. J. (2013). Retrieval, monitoring and control processes: A 7 Tesla fMRI approach to memory accuracy. Frontiers in Behavioral Neuroscience, 7, Art. 24, 1–21.Google Scholar
  374. Robin, A. A., & Macdonald, D. (1975). Lessons of leucotomy. London: Henry Kimpton Publs.Google Scholar
  375. Robinson, M. F. (1946). What price lobotomy? Journal of Abnormal and Social Psychology, 41, 421–436.CrossRefGoogle Scholar
  376. Roediger, H. L., III, & McDermott, K. B. (1995). Creating false memories: Remembering words not presented in lists. Journal of Experimental Psychology: Learning, Memory, and Cognition, 21, 803–814.Google Scholar
  377. Roediger, H. L., & McDermott, K. B. (2000). Distortions of memory. In E. Tulving & F. M. Craik (Hrsg.), The Oxford handbook of memory (S. 149–162). New York: Oxford University Press.Google Scholar
  378. Romeu, P. F. (2006). Memories of the terrorist attacks of September 11, 2001: A study of the consistency and phenomenal characteristics of flashbulb memories. Spanish Journal of Psychology, 9, 52–60.Google Scholar
  379. Rosenbaum, R. S., Gao, F., Honjo, K., Raybaud, C., Olsen, R. K., Palombo, D. J., Levine, B., & Black, S. E. (2014). Congenital absence of the mammillary bodies: A novel finding in a well-studied case of developmental amnesia. Neuropsychologia, 65, 82–87.CrossRefGoogle Scholar
  380. Ross, D. A., Arbuckle, M. R., Travis, M. J., Dwyer, J., van Schalkwyk, G. I., & Ressler, K. J. (2017). An integrated neuroscience perspective on formulation and treatment planning for posttraumatic stress disorder. An educational review. JAMA Psychiatry, 74, 407–415.CrossRefGoogle Scholar
  381. Rowe, S. N., & Moyar, J. B. (1950). Experiences with unilateral prefrontal lobotomies for pain. Journal of Neurosurgery, 7, 121–126.CrossRefGoogle Scholar
  382. Rylander, G. (1950). Persönlichkeitsveränderungen nach verschiedenen Formen der Leukotomie. Zeitschrift für die gesamte Neurologie und Psychiatrie, 108, 303–305.Google Scholar
  383. Sai, L., Zhou, X., Ding, X. P., Fu, G., & Sang, B. (2014). Detecting concealed information using functional near-infrared spectroscopy. Brain Topography, 27, 652–662.CrossRefGoogle Scholar
  384. Sargant, W. (1951). Leucotomy in psychosomatic disorders. Lancet, II, 87–91.CrossRefGoogle Scholar
  385. Savic, I., Garcia-Falgueras, A., & Swaab, D. F. (2010). Sexual differentiation of the human brain in relation to gender identity and sexual orientation. Progress in Brain Research, 186, 41–62.CrossRefGoogle Scholar
  386. Saxe, R. (2006). Uniquely human social cognition. Current Opinion in Neurobiology, 16, 235–239.CrossRefGoogle Scholar
  387. Scarff, J. E. (1950). Unilateral prefrontal lobotomy for the relief of intractable pain. Report of 58 cases with special consideration of failures. Journal of Neurosurgery, 7, 330–336.CrossRefGoogle Scholar
  388. Schmand, B., & Lindeboom, J. (2005). Amsterdamer Kurzzeitgedächtnistest. Leiden: PITS.Google Scholar
  389. Schmitz, T. W., Correia, M. M., Ferreira, C. S., Prescot, A. P., & Anderson, M. C. (2017). Hippocampal GABA enables inhibitory control over unwanted thoughts. Nature Communications, 8, 1311.  https://doi.org/10.1038/s41467–017–00956-z. Zugegriffen am 08.08.2018.
  390. Schneider, K. (2011). Neuroimaging in German court rooms. Human Cognitive Neurophysiology, 4(1). http://geb.uni-giessen.de/geb/volltexte/2011/8056. Zugegriffen am 02.03.2012.
  391. Schneider, F., Gur, R. C., Koch, K., Backes, V., Amunts, K., Shah, N. J., Bilker, W., Gur, R. E., & Habel, U. (2006). Impairment in the specificity of emotion processing in schizophrenia. American Journal of Psychiatry, 163, 442–447.CrossRefGoogle Scholar
  392. Schneider, S., Peters, J., Bromberg, U., Brassen, S., Menz, M. M., Miedl, S. F., Loth, E., Banaschewski, S., Barbot, A., Barker, G., Conrod, P. J., Dalley, J. W., Flor, H., Gallinat, J., Garavan, H., Heinz, A., Ittermann, B., Mallik, C., Mann, K., Artiges, E., Paus, T., Poline, J.-B., Rietschel, A., Reed, L., Smolka, M. N., Spanagel, R., Speiser, C., Ströhle, A., Struve, M., Schumann, G., & Büchel, C. (2011). Boys do it the right way: Sex-dependent amygdala lateralization during face processing in adolescents. NeuroImage, 56, 1847–1853.CrossRefGoogle Scholar
  393. Schnider, A., Nahum, L., Pignat, J. M., Leemann, B., Lövblad, K. O., Wissmeyer, M., & Ptak, R. (2013). Isolated prospective confabulation in Wernicke-Korsakoff syndrome: A case for reality filtering. Neurocase, 19, 90–104.CrossRefGoogle Scholar
  394. Schrader, P. J., & Robinson, M. F. (1945). An evaluation of prefrontal lobotomy through ward behavior. Journal of Abnormal and Social Psychology, 40, 61–69.CrossRefGoogle Scholar
  395. Schulte-Rüther, M., Markowitsch, H. J., Fink, G. R., & Piefke, M. (2007). Mirror neuron and theory of mind mechanisms involved in face-to-face interactions: an fMRI approach to empathy. Journal of Cognitive Neuroscience, 19, 1354–1372.CrossRefGoogle Scholar
  396. Schulte-Rüther, M., Markowitsch, H. J., Shah, N. J., Fink, G. R., & Piefke, M. (2008). Gender differences in the functional neuroanatomy of emotional perspective taking. NeuroImage, 14, 393–403.CrossRefGoogle Scholar
  397. Scoboria, A., Wade, K. A., Lindsay, D. S., Azad, T., Strange, D., Ost, J., & Hyman, I. E. (2017). A mega-analysis of memory reports from eight peer-reviewed false memory implantation studies. Memory, 25, 146–163.CrossRefGoogle Scholar
  398. Scoville, W. B. (1971). The effect of surgical lesions of the brain on psyche and behavior in man. In A. Winter (Hrsg.), Symposium on the surgical control of behavior (S. 53–68). Springfield: C.C. Thomas.Google Scholar
  399. Seifritz, E., & Dürsteler-MacFarland, K. M. (2001). Is prefrontal cortex thinning specific for antisocial personality disorder? Archives of General Psychiatry, 58, 402–403.CrossRefGoogle Scholar
  400. Shamay-Tsoory, S. G., Tomer, R., Berger, B. D., Goldsher, D., & Aharon-Peretz, J. (2005). Impaired „affective theory of mind” is associated with right ventromedial prefrontal damage. Cognitive and Behavioral Neurology, 18, 55–67.CrossRefGoogle Scholar
  401. Shrestha, R. (2015). Post-traumatic stress disorder among medical personnel after Nepal earthquake. Journal of Nepal Health Research Council, 13(30), 144–148.Google Scholar
  402. Siebert, M., Markowitsch, H. J., & Bartel, P. (2003). Amygdala, affect, and cognition: Evidence from ten patients with Urbach-Wiethe disease. Brain, 126, 2627–2637.CrossRefGoogle Scholar
  403. Simerly, R. B. (1990). Hormonal control of neuropepticle gene expression in sexually dimorphie olfactory pathways. Trends in Neuroscience, 13, 104–109.CrossRefGoogle Scholar
  404. Singer, T., Seymour, B., O’Doherty, J., Stephan, K. E., Dolan, R. J., & Frith, C. D. (2006). Empathic neural responses are modulated by the perceived fairness of others. Nature, 439, 466–469.CrossRefGoogle Scholar
  405. Sip, K. E., Roepstorff, A., McGregor, W., & Frith, C. D. (2008). Detecting deception: The scope and limits. Trends in Cognitive Sciences, 12, 48–53.CrossRefGoogle Scholar
  406. Sip, K. E., Carmel, D., Marchant, J. l., Li, J., Petrovic, P., Roepstorff, A., McGregor, W. B., & Frith, C. D. (2013). When Pinocchio’s nose does not grow: Belief regarding lie-detectability modulates production of deception. Frontiers in Human Neuroscience, 7.  https://doi.org/10.3389/fnhum.2013.00016. Zugegriffen am 25.4.2014.
  407. Slegers, K., van Boxtel, M., & Jolles, J. (2009). Effects of computer training and internet usage on cognitive abilities in older adults: A randomized controlled study. Aging: Clinical and Experimental Research, 21, 43–54.Google Scholar
  408. Smith, A., & Kinder, E. F. (1959). Changes in psychological test performances of brain-operated schizophrenies after 8 years. Science, 129, 149–150.CrossRefGoogle Scholar
  409. Sparrow, B., Liu, J., & Wegner, D. M. (2011). Google effects on memory: Cognitive consequences of having information at our fingertips. Science, 333, 776–778.CrossRefGoogle Scholar
  410. Spence, S. A., & Kaylor-Hughes, C. J. (2008). Looking for truth and finding lies: The prospects for a nascent neuroimaging of deception. Neurocase, 14, 68–81.CrossRefGoogle Scholar
  411. Spitzer, M. (2012). Digitale Demenz. Wie wir uns und unsere Kinder um den Verstand bringen. München: Droemer-Knaur.Google Scholar
  412. Spork, P. (2009). Der zweite Code. Epigenetik – oder wie wir unser Erbgut steuern können. Reinbek bei. Hamburg: Rowohlt.Google Scholar
  413. Spork, P. (2015). Prägung der Persönlichkeit. Eine Einführung in die Epigenetik. PTT – Persönlichkeitsstörungen – Theorie und Therapie, 19, 155–174.Google Scholar
  414. Stämpfli, K. (1952). Leukotomieversager bei indizierten Fällen von chronischer Schizophrenie. Nervenarzt, 23, 241–248.Google Scholar
  415. Staniloiu, A., & Markowitsch, H. J. (2012). Gender differences in violence. Procedia Social and Behavioral Sciences, 33, 1027–1033.CrossRefGoogle Scholar
  416. Staniloiu, A., & Markowitsch, H. J. (2014a). Dissociative amnesia. Lancet Psychiatry, 1, 226–241.CrossRefGoogle Scholar
  417. Staniloiu, A., & Markowitsch, H. J. (2014b). Sexueller Dimorphismus: Unterschiede im Aufbau des Gehirns zwischen Mann und Frau – Konsequenzen für das Verhalten. In A. Stirn, R. Stark, K. Tabbert, S. Wehrum-Osinsky & S. Oddo (Hrsg.), Sexualität, Körper und Neurobiologie. Grundlagen und Störungsbilder im interdisziplinären Fokus (S. 107–129). Stuttgart: Kohlhammer.Google Scholar
  418. Staniloiu, A., Borsutzky, S., Woermann, F., & Markowitsch, H. J. (2013). Social cognition in a case of amnesia with neurodevelopmental mechanisms. Frontiers in Cognition, 4, 1–28. Art. 342.  https://doi.org/10.3389/fpsyg.2013.00342.CrossRefGoogle Scholar
  419. Stead, H., & Bibby, P. A. (2017). Personality, fear of missing out and problematic internet use and their relationship to subjective well-being. Computers in Human Behavior, 76, 534–540.Google Scholar
  420. Stewart, J. T. (2018). Carbamazepine treatment of hyperactivity and intrusiveness in dementia. Clinical Neuropharmacology, 41, 43–44.CrossRefGoogle Scholar
  421. Stickgold, T., & Walker, M. P. (2013). Sleep-dependent memory triage: Evolving generalization through selective processing. Nature Neuroscience, 16, 139–145.CrossRefGoogle Scholar
  422. Stingl, K., Bartz-Schmidt, K. U., Besch, D., Chee, C. K., Cottriall, C. L., Gekeler, F., Groppe, M., Jackson, T. L., MacLaren, R. E., Koitschev, A., Kusnyerik, A., Neffendorf, J., Nemeth, J., Naeem, M. A., Peters, T., Ramsden, J. D., Sachs, H., Simpson, A., Singh, M. S., Wilhelm, B., Wong, D., & Zrenner, E. (2015). Subretinal visual implant alpha IMS – Clinical trial interim report. Vision Research, 111, 149–160.CrossRefGoogle Scholar
  423. Stirn, A., Stark, R., Tabbert, K., Wehrum-Osinsky, S., & Oddo, S. (Hrsg.). (2014). Sexualität, Körper und Neurobiologie. Grundlagen und Störungsbilder im interdisziplinären Fokus. Stuttgart: Kohlhammer.Google Scholar
  424. Stock, S. E., Davies, D. K., Daviesm, K. R., & Wehmeyer, M. L. (2006). Evaluation of an application for making palmtop computers accessible to individuals with intellectual disabilities. Journal of Intellectual Developmental Disabilities, 31, 39–46.CrossRefGoogle Scholar
  425. Straube, B. (2012) An overview of the neuro-cognitive processes involved in the encoding, consolidation, and retrieval of true and false memories. Behavioral and Brain Functions, 8, Art. 35. http://www.behavioralandbrainfucntions.com/content/8/1/35. Zugegriffen am 13.03.2018.
  426. Strauss, E., Wada, J., & Hunter, M. (1992). Sex-related differences in the cognitive consequences of early left hemisphere lesions. Joumal of Clinical and Experimental Neuropsychology, 14, 738–748.CrossRefGoogle Scholar
  427. Strecker, E. A., Palmer, H. D., & Grant, F. C. (1942). A study of frontal lobotomy. American Journal of Psychiatry, 98, 524–532.CrossRefGoogle Scholar
  428. Ström-Olsen, R., Last, S. L., Brody, M. B., & Knight, G. G. (1943). Results of pre-frontal leucotomy in thirty cases of mental disorder, with observations. Journal of Mental Science, 89, 165–174.CrossRefGoogle Scholar
  429. Stuss, D. T., Benson, D. F., Kaplan, E. F., Weir, W. S., & Della Malva, C. L. (1981). Leucotomized and nonleucotomized schizophrenics: Comparison on tests of attention. Biological Psychiatry, 16, 1085–1100.Google Scholar
  430. Stuss, D. T., Kaplan, E. F., Benson, D. F., Weir, W. S., Chiulli, S., & Sarazin, F. F. (1982). Evidence for the involvement of orbitofrontal cortex in memory functions: An interference effect. Journal of Comparative and Physiological Psychology, 96, 913–925.CrossRefGoogle Scholar
  431. Stuss, D. T., & Benson, D. F. (1983). Emotional concomitants of psychosurgery. In K. M. Heilman & P. Satz (Hrsg.), Advances in neuropsychology and behavioral neurology, Vol. 1: Neuropsychology of human emotion (S. 111–140). New York: Guilford Press.Google Scholar
  432. Stuss, D. T., Benson, D. F., Kaplan, E. F., Weir, W. S., Naeser, M. A., Lieberman, I., & Ferrill, D. (1983). The involvement of orbitofrontal cerebrum in cognitive tasks. Neuropsychologia, 21, 235–248.CrossRefGoogle Scholar
  433. Stuss, D. T., Benson, D. F., Clermont, R., Della Malva, C. L., Kaplan, E. F., & Weir, W. S. (1986). Language functioning after bilateral prefrontal leukotomy. Brain and Language, 28, 66–70.CrossRefGoogle Scholar
  434. Suddendorf, T., & Butler, D. L. (2013). The nature of visual self-recognition. Trends in Cognitive Sciences, 17, 121–127.CrossRefGoogle Scholar
  435. Suddendorf, T., & Corballis, M. C. (2007). The evolution of foresight: What is mental time travel, and is it unique to humans? Behavioral and Brain Sciences, 30, 299–313.CrossRefGoogle Scholar
  436. Suddendorf, T., Addis, D. R., & Corballis, M. C. (2009). Mental time travel and the shaping of the human mind. Philosophical Transactions of the Royal Society, London B, 364, 1317–1324.CrossRefGoogle Scholar
  437. Swaab, D. F. (2003). Other sexual dimorphisms. In M. J. Aminoff, F. Boller & D. F. Swaab (Hrsg.), Handbook of clinical neurology (Bd. 79: 3rd Series, Bd. I, S. 135–147). Amsterdam: Elsevier.Google Scholar
  438. Swaab, D. F., & Hofman, M. A. (1988). Sexual differentiation of the human hypothalamus: Autogeny of the sexually dimorphic nucleus of the preoptic area. Developmental Brain Research, 44, 314–318.CrossRefGoogle Scholar
  439. Swaab, D. F., & Hofman, M. A. (1990). An enlarged suprachiasmatic nucleus in homosexual men. Brain Research, 537, 141–148.CrossRefGoogle Scholar
  440. Swaab, D. F., Gooren, L. J. G., & Hofman, M. A. (1992). The human hypothalamus in relation to gender and sexual orientation. Progress in Brain Research, 93, 205–219.CrossRefGoogle Scholar
  441. Szelag, E., Wasilewski, R., & Fersten, E. (1992). Hemispheric differences in the perception of words and faces in deaf and hearing children. Scandinavian Journal of Psychology, 33, 1–11.CrossRefGoogle Scholar
  442. Tan, E., Marks, I. M., & Marset, P. (1971). Bimedial leucotomy in obsessive-compulsive neurosis: A controlled serial enquiry. British Journal of Psychiatry, 118, 155–164.CrossRefGoogle Scholar
  443. Tennie, C., Call, J., & Tomasello, M. (2012). Untrained chimpanzees (Pan troglodytes schweinfurthii) fail to imitate novel actions. Plos One, 7, e41548.  https://doi.org/10.1371/journal.pone.0041548. Zugegriffen am 15.04.2013.
  444. Tinti, C., Schmidt, S., Testa, S., & Levine, L. J. (2014). Distinct processes shape flashbulb and event memories. Memory and Cognition, 42, 539–551.CrossRefGoogle Scholar
  445. Tombaugh, T. N. (1996). Test of Memory Malingering (TOMM). New York: Multi Health Systems.Google Scholar
  446. Treffert, D. A. (1988). The idiot savant: A review of the syndrome. American Journal of Psychiatry, 145, 563–572.CrossRefGoogle Scholar
  447. Treffert, D. A. (2014). Savant syndrome: Realities, myths and misconceptions. Journal of Autism and Developmental Disorders, 44, 564–571.CrossRefGoogle Scholar
  448. Triviño, M., Ródenas, E., Lupiáñez, J., & Arnedo, M. (2017). Effectiveness of a neuropsychological treatment for confabulations after brain injury: A clinical trial with theoretical implications. PLoS One, 12, e0173166.  https://doi.org/10.1371/journal.pone.0173166. Zugegriffen am 05.07.2018.
  449. Turnbull, O. H., & Salas, C. E. (2017). Confabulation: Developing the ‘emotion dysregulation’ hypothesis. Cortex, 87, 52–61.CrossRefGoogle Scholar
  450. Ulatowska, J., & Sawicka, M. (2017). Recovered memories in clinical practice – A research review. Psychiatria Polska, 51, 609–618.CrossRefGoogle Scholar
  451. Valenstein, E. S. (1980a). Historical perspective. In E. S. Valenstein (Hrsg.), The psychosurgery debate. Scientific, legal, and ethical perspectives (S. 11–54). San Francisco: W. H. Freeman.Google Scholar
  452. Valenstein, E. S. (Hrsg.). (1980b). Review of the literature on postoperative evaluation. In The psychosurgery debate. Scientific, legal, and ethical perspectives (S. 141–163). San Francisco: W. H. Freeman.Google Scholar
  453. Valenstein, E. S. (Hrsg.). (1980c). The psychosurgery debate. Scientific, legal, and ethical perspectives. San Francisco: W. H. Freeman.Google Scholar
  454. Valenstein, E. S. (1990). The prefrontal area and psychosurgery. In H. B. M. Uylings, C. G. van Eden, J. P. C. de Bruin, M. A. Corner & M. G. P. Feenstra (Hrsg.), The prefrontal cortex. Its structure, function and pathology (Progress in brain research, Bd. 85, S. 539–554). Amsterdam: Elsevier.CrossRefGoogle Scholar
  455. van Schie, K., Geraerts, E., & Anderson, M. C. (2013). Emotional and non-emotional memories are suppressible under direct suppression instructions. Cognition and Emotion, 27, 1122–1131.CrossRefGoogle Scholar
  456. Vandekerckhove, M., Plessers, M., Van Mieghem, A., Beeckmans, K., Van Acker, F., Maex, R., Mariën, P., Markowitsch, H. J., & Van Overwalle, F. (2014). Impaired facial emotion recognition in patients with ventromedial prefrontal hypoperfusion. Neuropsychology, 28, 605–612.CrossRefGoogle Scholar
  457. Vannucci, M., Mazzoni, G., Marchetti, I., & Lavezzini, F. (2012). „It’s a hair-dryer…No, it’s a drill“: Misidentification-related false recognitions in younger and older adults. Archives of Gerontology and Geriatry, 54, 310–316.CrossRefGoogle Scholar
  458. Vinken, P. J. (1982). Onjuiste toeschrijvingen in de wetenschappelijke literatuur: Plagiaat, cryptomnesie, palimpsestie en hyperloyaliteit. Nederlands Tijdschrift for Geneeskunde, 126, 14–19.Google Scholar
  459. Wade, K. A., Garry, M., Read, J. D., & Lindsay, D. S. (2002). A picture is worth a thousand lies: Using false photographs to create false childhood memories. Psychonomic Bulletin & Review, 9, 597–603.CrossRefGoogle Scholar
  460. Walczyk, J. J., Igou, F. P., & Tcholakian, T. (2013). Advancing lie detection by inducing cognitive load on liars: A review of relevant theories and techniques guided by lesion from polygraph-based approaches. Frontiers in Psychology, 4.  https://doi.org/10.3389/fpsyg.2013.00014. Zugegriffen am 23.12.2014.
  461. Wardlaw, J. M., O’Connell, G., Shuler, K., DeWilde, J., Haley, J., Escobar, O., Murray, S., Rae, R., Jarvie, D., Sandercock, P., & Schafer, B. (2011). Can it read my mind?“ – What do the public and experts think of the current (mis)uses of neuroimaging? PLoS One, 6, e25829.  https://doi.org/10.1371/journal.pone.0025829. Zugegriffen am 31.07.2012.
  462. Watts, J. W., & Freeman, W. (1938). Psychosurgery, effect on certain mental symptoms of surgical interruption of pathways in the frontal lobe. Journal of Nervous and Mental Disease, 88, 589–601.CrossRefGoogle Scholar
  463. Watts, J. W., & Freeman, W. (1945). Intelligence following prefrontal lobotomy in obsessive tension states. A.M.A. Archives of Neurology and Psychiatry, 53, 244.CrossRefGoogle Scholar
  464. Webb, C. E., & Dennis, N. A. (2018). Differentiating true and false schematic memories in older adults. Journal of Gerontology B: Psychological Science & Social Science.  https://doi.org/10.1093/geronb/gby011. Zugegriffen am 15.08.2018.
  465. Welt, L. (1888). Ueber Charakterveränderungen des Menschen infolge von Läsionen des Stirnhirns. Deutsches Archiv für klinische Medicin, 42, 339–390 (und 1 Tabelle).Google Scholar
  466. Welzer, H., & Markowitsch, H. J. (2005). Towards a bio-psycho-social model of autobiographical memory. Memory, 13, 63–78.CrossRefGoogle Scholar
  467. Werner, N., Kühnel, S., Ortega, A., & Markowitsch, H. J. (2012). Drei Wege zur Falschaussage: Lügen, Simulation und falsche Erinnerungen. In J. C. Joerden, E. Hilgendorf, N. Petrillo & F. Thiele (Hrsg.), Menschenwürde in der Medizin: Quo vadis? (S. 373–391). Baden-Baden: Nomos.CrossRefGoogle Scholar
  468. Willander, J., & Larsson, M. (2006). Smell your way back to childhood: Autobiographical odor memory. Psychonomic Bulletin and Review, 13, 240–244.CrossRefGoogle Scholar
  469. Williams, J. M., Ellis, N. C., Tyers, C., Healy, H., Rose, G., & McLeod, A. K. (1996). The specificity of autobiographical memory and imageability of the future. Memory and Cognition, 24, 116–125.CrossRefGoogle Scholar
  470. Williams, L. M., Mathersul, D., Palmer, D. M., Gur, R. C., Gur, R. E., & Gordon, E. (2009). Explicit identification and implicit recognition of facial emotions: I. Age effects in males and females across 10 decades. Journal of Clinical and Experimental Neuropsychology, 31, 257–277.CrossRefGoogle Scholar
  471. Wittenborn, J. R., & Mettler, F. A. (1951). Some psychological changes following psychosurgery. Journal of Abnormal and Social Psychology, 46, 548–556.CrossRefGoogle Scholar
  472. Wolniewicz, C. A., Tiamiyu, M. F., Weeks, J. W., & Elhai, J. D. (2018). Problematic smartphone use and relations with negative affect, fear of missing out, and fear of negative and positive evaluation. Psychiatry Research, 262, 618–623.Google Scholar
  473. Worchel, P., & Lyerly, J. G. (1941). Effects of prefrontal lobotomy on depressed patients. Journal of Neurophysiology, 4, 62–67.CrossRefGoogle Scholar
  474. Wright, G. R. T., Berry, C. J., & Bird, G. (2012). „You can’t kid a kidder”: Association between production and detection of deception in an interactive deception task. Frontiers in Human Neuroscience, 6.  https://doi.org/10.3389/fnhum.2012.00087. Zugegriffen am 19.07.2013.
  475. Yacorzynski, G. K., Boshes, B., & Davis, L. (1948). Psychological changes produced by frontal lobotomy. In J. F. Fulton, W. C. Aring & S. B. Wortis (Hrsg.), The frontal lobes (Research publications of the association for research in nervous and mental disease, Bd. 27, S. 642–657). Baltimore: Williams & Wilkins.Google Scholar
  476. Yang, C. F., Chiang, M. C., Gray, D. C., Prabhakaran, M., Alvarado, M., Juntti, S. A., Unger, E. K., Wells, J. A., & Shah, N. M. (2013). Sexually dimorphic neurons in the ventromedial hypothalamus govern mating in both sexes and aggression in males. Cell, 153, 896–909.CrossRefGoogle Scholar
  477. Yonker, J. E., Eriksson, E., Nilsson, L.-G., & Herlitz, A. (2003). Sex differences in episodic memory: Minimal influence of estradiol. Brain and Cognition, 52, 231–238.CrossRefGoogle Scholar
  478. Yuan, K., Qin, W., Wang, G., Zeng, F., Zhao, L., Yang, X., Liu, P., Liu, J., Sun, J., von Deneen, K. M., Gong, Q., Liu, Y., & Tian, J. (2011). Micro-structure abnormalities in adolescents with internet addiction disorder. PLoS One, 6, e20708.CrossRefGoogle Scholar
  479. Zhou, J.-N., Hofman, M. A., Gooren, L. J. G., & Swaab, D. F. (1995). A sex difference in the human brain and its relation to transsexuality. Nature, 378, 68–70.CrossRefGoogle Scholar
  480. Zhu, Y., Zhang, H., & Tian, M. (2015). Molecular and functional imaging of internet addiction. BioMedical Research International, 2015, 378675. http://dx.doi.org.myaccess.library.utoronto.ca/10.1155/2015/378675. Zugegriffen am 14.07.2018.

Copyright information

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2019

Authors and Affiliations

  • Hans J. Markowitsch
    • 1
  • Margit M. Schreier
    • 2
  1. 1.Baden-BadenDeutschland
  2. 2.StuttgartDeutschland

Personalised recommendations