Advertisement

Homöostase: Wohlbefinden, Zufriedenheit, psychische Gesundheit

  • Hans J. Markowitsch
  • Margit M. Schreier
Chapter

Zusammenfassung

Für den Buchinhalt wesentliche Grundbegriffe werden herausgearbeitet und definiert, u. a die Termini Homöostase, Wohlbefinden, Zufriedenheit, psychische Gesundheit. Ein weiterer zentraler Begriff ist die Gehirnplastizität. Gehirnplastizität wird per se, aber auch in Zusammenhang mit Epigenetik und Stress – den beiden zentralen Einflussgrößen auf die Gehirnplastizität – dargestellt. Gehirnplastizität hält grundsätzlich über die gesamte Lebensspanne an und kann durch externe und interne Faktoren verändert werden. Eine bedeutende Veränderung geschieht durch Hormone: Bindungshormone stärken die soziale Interaktion, Stresshormone – insbesondere über längere Zeiträume oder kaskadenartig freigesetzte – reduzieren sie. Umwelteinflüsse können unser Genom verändern und so zu langfristigen Neujustierungen führen und die Fähigkeit zu Empathie und Mitgefühl ändern (Epigenetik). Die Konstanz des Selbst wird durch diese Einflussgrößen in Frage gestellt und Grundbedürfnisse ändern sich.

Literatur

  1. Alpers, G. P. (2008). Eye-catching: Right hemisphere attentional bias for emotional pictures. Laterality, 13, 158–178.CrossRefGoogle Scholar
  2. Badre, D. (2008). Cognitive control, hierarchy, and the rostro-caudal organization of the frontal lobes. Trends in Cognitive Sciences, 12, 193–200.CrossRefGoogle Scholar
  3. Bargh, J. A., & Chartrandt, T. L. (1999). The unbearable automaticity of being. American Psychologist, 54, 462–479.CrossRefGoogle Scholar
  4. Bartels, A., & Zeki, S. (2004). The neural correlates of maternal and romantic love. NeuroImage, 21, 1155–1166.CrossRefGoogle Scholar
  5. Bechara, A., Damasio, H., Damasio, A. R., & Lee, G. P. (1999). Different contributions of the human amygdala and ventromedial prefrontal cortex to decision-making. Journal of Neuroscience, 19, 5473–5481.CrossRefGoogle Scholar
  6. Bernhardt, B. C., & Singer, T. (2012). The neural basis of empathy. Annual Review of Neuroscience, 35, 1–23.CrossRefGoogle Scholar
  7. Berridge, K. C., & Kringelbach, M. L. (2015). Pleasure systems in the brain. Neuron, 86, 646–664.CrossRefGoogle Scholar
  8. Bettelheim, B. (1950). Love Is not enough: The treatment of emotionally disturbed children. Glencoe: Free Press.Google Scholar
  9. Bishop, S. J., Aguirre, G. K., Nunez-Elizalde, A. O., & Toker, D. (2015). Seeing the world through non rose-colored glasses: Anxiety and the amygdala response to blended expressions. Frontiers in Human Neuroscience, 9, Art. 152.Google Scholar
  10. Blair, R. J. (2009). Too much of a good thing: Increased grey matter in boys with conduct problems and callous-unemotional traits. Brain, 132, 831–832.CrossRefGoogle Scholar
  11. Blair, R. J. (2013). The neurobiology of psychopathic traits in youths. Nature Reviews Neuroscience, 14, 786–799.CrossRefGoogle Scholar
  12. Bonnet, L., Comte, A., Tatu, L., Millot, J.-L., Moulin, T., & Medeiros de Bustos, E. (2015). The role of the amygdala in the perception of positive emotions: An „intensity detector“. Frontiers in Behavioral Neuroscience, 9, Art. 178.Google Scholar
  13. Borg-Laufs, M. (2012). Die Befriedigung psychischer Grundbedürfnisse als Weg und Ziel der Kinder- und Jugendlichenpsychotherapie. Forum für Kinder- und Jugendpsychiatrie, Psychosomatik und Psychotherapie, 1, 6–21.Google Scholar
  14. Borg-Laufs, M. (2014). Psychische Grundbedürfnisse in der Kinder- und Jugendlichen-Verhaltenstherapie. https://www.dgvt.de/fileadmin/user_upload/Dokumente/Kongress/Kongress_2014/Borg-Laufs_Hauptvortrag_Fr.28.03.2014.pdf. Zugegriffen am 31.12.2017.
  15. Brand, M., & Markowitsch, H. J. (2006). Memory processes and the orbitofrontal cortex. In D. Zald & S. Rauch (Hrsg.), The orbitofrontal cortex (S. 285–306). Oxford: Oxford University Press.CrossRefGoogle Scholar
  16. Brand, M., & Markowitsch, H. J. (2010a). Aging and decision making: A neurocognitive perspective. Gerontology, 56, 319–324.CrossRefGoogle Scholar
  17. Brand, M., & Markowitsch, H. J. (2010b). Mechanims contributing to decision-making difficulties in late adulthood: Theoretical approaches, speculations and empirical evidence. Gerontology, 56, 435–440.CrossRefGoogle Scholar
  18. Brand, M., Kalbe, E., Kracht, L. W., Riebel, U., Münch, J., Kessler, J., & Markowitsch, H. J. (2004a). Organic and psychogenic factors leading to executive dysfunctions in a patient suffering from surgery of a colloid cyst of the Foramen of Monro. Neurocase, 10, 420–425.CrossRefGoogle Scholar
  19. Brand, M., Labudda, K., Kalbe, E., Hilker, R., Emmans, D., Fuchs, G., Kessler, J., & Markowitsch, H. J. (2004b). Decision-making impairments in patients with Parkinson’s disease. Behavioural Neurology, 15, 77–85.CrossRefGoogle Scholar
  20. Brand, M., Fujiwara, E., Borsutzky, S., Kalbe, E., Kessler, J., & Markowitsch, H. J. (2005a). Decision-making deficits of Korsakoff patients in a new gambling task with explicit rules – associations with executive functions. Neuropsychology, 19, 267–277.CrossRefGoogle Scholar
  21. Brand, M., Kalbe, E., Labudda, K., Fujiwara, E., Kessler, J., & Markowitsch, H. J. (2005b). Decision-making impairments in patients with pathological gambling. Psychiatry Research, 133, 91–99.CrossRefGoogle Scholar
  22. Brand, M., Franke-Sievert, C., Jacoby, G. E., Markowitsch, H. J., & Tuschen-Caffier, B. (2007a). Neuropsychological correlates of decision-making in patients with bulimia nervosa. Neuropsychology, 21, 742–750.CrossRefGoogle Scholar
  23. Brand, M., Grabenhorst, F., Starcke, K., Vandekerckhove, M. M. P., & Markowitsch, H. J. (2007b). Role of the amygdala in decisions under ambiguity and decisions under risk: Evidence from patients with Urbach-Wiethe disease. Neuropsychologia, 45, 1305–1317.CrossRefGoogle Scholar
  24. Brand, M., Labudda, K., Kalbe, E., Hilker, R., Emmans, D., Fuchs, G., Kessler, J., & Markowitsch, H. J. (2004b). Decision-making impairments in patients with Parkinson’s disease. Behavioural Neurology, 15, 77–85.Google Scholar
  25. Brand, M., Heinze, K., Labudda, K., & Markowitsch, H. J. (2008). The role of strategies in deciding advantageously in ambiguous and risky situations. Cognitive Processing, 9, 159–173.CrossRefGoogle Scholar
  26. Breeden, A. L., Cardinale, E. M., Lozier, L. M., VanMeter, J. W., & Marsh, A. A. (2015). Callous-unemotional traits drive reduced white-matter integrity in youths with conduct problems. Psychological Medicine, 19, 1–14.Google Scholar
  27. Bremner, J. D. (1999). Does stress damage the brain? Biological Psychiatry, 45, 797–805.CrossRefGoogle Scholar
  28. Brodmann, K. (1914). Physiologie des Gehirns. In P. von Bruns (Hrsg.), Neue deutsche Chirurgie (Bd. 11, Tl. 1, S. 85–426). Stuttgart: Enke.Google Scholar
  29. Buchheim, A., Erk, S., George, C., Kächele, H., Ruchsow, M., Spitzer, M., Kircher, T., & Walter, H. (2006). Measuring attachment representation in an FMRI environment: A pilot study. Psychopathology, 39, 44–52.Google Scholar
  30. Buchheim, A., Heinrichs, M., George, C., Pokorny, D., Koops, E., Henningsen, P., O’Connor, M. F., & Gündel, H. (2009). Oxytocin enhances the experience of attachment security. Psychoneuroendocrinology, 34, 1417–1422.CrossRefGoogle Scholar
  31. Buckner, R. L. (2012). The serendipitous discovery of the brain’s default network. NeuroImage, 62, 1137–1145.CrossRefGoogle Scholar
  32. Buckner, R. L., & Carroll, D. C. (2007). Self-projection and the brain. Trends in Cognitive Science, 11, 49–57.Google Scholar
  33. Buckner, R. L., Andrews-Hanna, J. R., & Schacter, D. L. (2008). The brain’s default network: Anatomy, function, and relevance to disease. Annals of the New York Academy of Sciences, 1124, 1–38.CrossRefGoogle Scholar
  34. Burgdorf, J., & Panksepp, J. (2006). The neurobiology of positive emotions. Neuroscience and Biobehavioral Reviews, 30, 173–187.Google Scholar
  35. Burgess, P. W., Dumontheil, I., & Gilbert, S. J. (2007). The gateway hypothesis of rostral prefrontal cortex (area 10) function. Trends in Cognitive Sciences, 11, 290–298.CrossRefGoogle Scholar
  36. Burton, H., & Silva, A. (2015). Learning and memory. Ideas Roadshow: Open Agenda Publishing. www.IdeasRoadshow.com. Zugegriffen am 06.04.2018.
  37. Cahill, L., Babinsky, R., Markowitsch, H. J., & McGaugh, J. L. (1995). Involvement of the amygdaloid complex in emotional memory. Nature, 377, 295–296.CrossRefGoogle Scholar
  38. Callaghan, B. L., & Tottenham, N. (2016). The Stress Acceleration Hypothesis: Effects of early-life adversity on emotion circuits and behavior. Current Opinion in Behavioral Sciences, 7, 76–81.CrossRefGoogle Scholar
  39. Champagne, F. A., & Curley, J. P. (2009). Epigenetic mechanisms mediating the long-term effects of maternal care on development. Neuroscience and Biobehavioral Reviews, 33, 593–600.CrossRefGoogle Scholar
  40. Contreras-Rodríguez, O., Pujol, J., Batalla, I., Harrison, B. J., Soriano-Mas, C., Deus, J., López-Solà, M., Macià, D., Pera, V., Hernández-Ribas, R., Pifarré, J., Menchón, J. M., & Cardoner, N. (2014). Functional connectivity bias in the prefrontal cortex of psychopaths. Biological Psychiatry, 78, 647–655.CrossRefGoogle Scholar
  41. Damasio, A. R. (1995). Descartes’ Irrtum. München: List.Google Scholar
  42. De Brito, S. A., Mechelli, A., Wilke, M., Laurens, K. R., Jones, A. P., Barker, G. J., Hodgins, S., & Viding, E. (2009). Size matters: Increased grey matter in boys with conduct problems and callous-unemotional traits. Brain, 132, 843–852.CrossRefGoogle Scholar
  43. Debbané, M., Badoud, D., Sander, D., Eliez, S., Luyten, P., & Vrtička, P. (2017). Brain activity underlying negative self- and other-perception in adolescents: The role of attachment-derived self-representations. Cognitive, Affective, & Behavioral Neuroscience, 17, 554–576.CrossRefGoogle Scholar
  44. Decety, J., Michalska, K. J., Akitsuki, Y., & Lahey, B. B. (2009). Atypical empathic responses in adolescents with aggressive conduct disorder: A functional MRI investigation. Biological Psychology, 80, 203–211.CrossRefGoogle Scholar
  45. Delgado, M. R., Nystrom, L. E., Fissell, C., Noll, D. C., & Fiez, J. A. (2000). Tracking the hemodynamic response to reward and punishment in the striatum. Journal of Neurophysiology, 84, 3072–3077.CrossRefGoogle Scholar
  46. Dolinoy, D. C., Weidman, J. R., & Jirtle, R. L. (2007). Epigenetic gene regulation: Linking early developmental environment to adult disease. Reproductive Toxicology, 23, 297–307.CrossRefGoogle Scholar
  47. Draganski, B., Gaser, C., Busch, V., Schuierer, G., Bogdahn, U., & May, A. (2004). Neuroplasticity: Changes in grey matter induced by training. Nature, 427, 311–312.CrossRefGoogle Scholar
  48. Driessen, M., Beblo, T., Mertens, M., Piefke, M., Rullkötter, N., Silva Saveedra, A., Reddemann, L., Rau, H., Markowitsch, H. J., Wulff, H., Lange, W., & Woermann, F. G. (2004). Different fMRI activation patterns of traumatic memory in borderline personality disorder with and without additional posttraumatic stress disorder. Biological Psychiatry, 55, 603–611.CrossRefGoogle Scholar
  49. Ekman, P. (2016). Gefühle lessen: Wie Sie Emotionen erkennen und richtig interpretieren (2. Aufl.). Berlin: Springer.Google Scholar
  50. Epstein, S. (1990). Cognitive-experiental self-theory of personality. In L. A. Pervin (Hrsg.), Handbook of personality: Theory and research (S. 165–197). New York: Guilford.Google Scholar
  51. Epstein, S. (2003). Cognitive-experiental self-theory of personality. In T. Millon & M. J. Lerner (Hrsg.), Handbook of psychology: Personality and social psychology (Personality and social psychology, Bd. 5, S. 159–184). Hoboken: Wiley.Google Scholar
  52. Fairchild, G., Hagan, C. C., Walsh, N. D., Passamonti, L., Calder, A. J., & Goodyer, I. M. (2013). Brain structure abnormalities in adolescent girls with conduct disorder. Journal of Child Psychology and Psychiatry, 54, 86–95.CrossRefGoogle Scholar
  53. Fast, K., & Markowitsch, H. J. (2003). Neuropsychologie des PTSD. In S. Lautenbacher & S. Gauggel (Hrsg.), Neuropsychologie psychischer Störungen (S. 223–248). Berlin: Springer.Google Scholar
  54. Fast, K., & Markowitsch, H. J. (2010). Neuropsychologie des PTSD. In S. Lautenbacher & S. Gauggel (Hrsg.), Neuropsychologie psychischer Störungen (2. Aufl., S. 223–248). Berlin: Springer.Google Scholar
  55. Fisher, H. E., Aron, A., Mashek, D., Li, H., & Brown, L. L. (2002). Defining the brain systems of lust, romantic attraction, and attachment. Archives of Sexual Behavior, 31, 413–419.CrossRefGoogle Scholar
  56. Frankenhaeuser, M. (1991). The psychophysiology of workload, stress, and health: Comparison between the sexes. Annals of Behavioral Medicine, 13, 197–204.Google Scholar
  57. Freud, S. (1910). Über Psychoanalyse. Fünf Vorlesungen gehalten zur 20jährigen Gründungsfeier der Clark University in Worcester Mass. September 1909. Leipzig: F Deuticke.Google Scholar
  58. Freud, S. (1920). Jenseits des Lustprinzips. Leipzig: Internationaler psychoanalytischer.Google Scholar
  59. Fridman, A., Bakermans-Kranenburg, M. J., Sagi-Schwartz, A., & Van Ijzendoorn, M. H. (2011). Coping in old age with extreme childhood trauma: Aging Holocaust survivors and their offspring facing new challenges. Aging and Mental Health, 15, 232–242.CrossRefGoogle Scholar
  60. Fries, A. B., Ziegler, T. E., Kurian, J. R., Jacoris, S., & Pollak, S. D. (2005). Early experience in humans is associated with changes in neuropeptides critical for regulating social behavior. Proceedings of the National Academy of Sciences of the United States of America, 102, 17237–17240.CrossRefGoogle Scholar
  61. Ghods-Sharifi, S., St. Onge, J. R., & Floresco, S. B. (2009). Fundamental contribution by the basolateral amygdala to different forms of decision making. Journal of Neuroscience, 29, 5251–5259.CrossRefGoogle Scholar
  62. Globig, M. (2000). Der Horrorfilm im Gehirn. Max-Planck-Forschung, 3, 54–58.Google Scholar
  63. Goldin, P. R., McRae, K., Ramel, W., & Gross, J. J. (2008). The neural bases of emotion regulation: Reappraisal and suppression of negative emotion. Biological Psychiatry, 63, 577–586.CrossRefGoogle Scholar
  64. Grawe, K. (2004). Neuropsychotherapie. Göttingen: Hogrefe.Google Scholar
  65. Grecucci, A., Giorgetta, C., Bonini, N., & Sanfey, A. G. (2013). Reapprasing social emotions: The role of inferior frontal gyrus, temporo-parietal junction and insula in interpersonal emotion regulation. Frontiers in Human Neuroscience, 7, Art. 513.Google Scholar
  66. Grüsser, O.-J. (1988). Die phylogenetische Hirnentwicklung und die funktionelle Lateralisation der menschlichen Großhirnrinde. In G. Oepen (Hrsg.), Psychiatrie des rechten und linken Gehirns: Neuropsychologische Ansätze zum Verständnis von „Persönlichkeit“, „Depression“ und „Schizophrenie“ (S. 34–50). Köln: Deutscher Ärzte-Verlag.Google Scholar
  67. Hagmann, P., Cammoun, L., Gigandet, X., Meuli, R., Honey, C. J., Wedeen, V. J., & Sporns, O. (2008). Mapping the structural core of human cerebral cortex. PLoS Biology, 6, e159.  https://doi.org/10.1371/journal.pbio.0060159. Zugegriffen am 21.04.2018.
  68. Harenski, C. L., Edwards, B. G., Harenski, K. A., & Kiehl, K. A. (2014). Neural correlates of moral and non-moral emotion in female psychopathy. Frontiers in Human Neuroscience, 8, Art. 741.Google Scholar
  69. Harlow, H. F., & Zimmerman, R. R. (1959). Affectional responses in the infant monkey. Science, 130, 421–432.CrossRefGoogle Scholar
  70. Haycock, P. C. (2009). Fetal alcohol spectrum disorders: The epigenetic perspective. Boreas.  https://doi.org/10.1095/biolreprod.108.074690. Zugegriffen am 08.04.2018.
  71. Hong, J. S., Kim, S. M., Jung, H. Y., Kang, K. D., Min, K. J., & Han, D. H. (2017). Cognitive avoidance and aversive cues related to tobacco in male smokers. Addictive Behavior, 73, 158–164.Google Scholar
  72. Hübener, M., & Bonhoeffer, T. (2010). Searching for engrams. Neuron, 67, 363–371.CrossRefGoogle Scholar
  73. Iacono, D., Markesbery, W. R., Gross, M., Pletnikova, O., Rudow, G., Zandi, P., & Troncoso, J. C. (2009). The Nun study: Clinically silent AD, neuronal hypertrophy, and linguistic skills in early life. Neurology, 73, 665–673.CrossRefGoogle Scholar
  74. Irle, E., & Markowitsch, H. J. (1986). Afferent connections of the substantia innominata/basal nucleus of Meynert in carnivores and primates. Journal für Hirnforschung, 27, 343–367.Google Scholar
  75. Isaacson, R. L. (1982). The limbic system (2. Aufl.). New York: Plenum Press.CrossRefGoogle Scholar
  76. Johnson, R., Browne, K., & Hamilton-Giachritsis, C. (2006). Young children in institutional care at risk of harm. Trauma – Violence – Abuse, 7, 34–60.Google Scholar
  77. Kennedy, D. P., & Adolphs, R. (2012). The social brain in psychiatric and neurological disorders. Trends in Cognitive Sciences, 16, 559–572.CrossRefGoogle Scholar
  78. Klimecki, O. M., Leiberg, S., Ricard, M., & Singer, T. (2014). Differential pattern of functional brain plasticity after compassion and empathy training. Social Cognitive and Affective Neuroscience, 9, 873–879.CrossRefGoogle Scholar
  79. Koechlin, E., & Hyafil, A. (2007). Anterior prefrontal function and the limits of human decision-making. Science, 318, 594–598.CrossRefGoogle Scholar
  80. Koenigs, M., & Tranel, D. (2007). Irrational economic decision-making after ventromedial prefrontal damage: Evidence from the Ultimatum Game. Journal of Neuroscience, 27, 951–956.CrossRefGoogle Scholar
  81. Koenigs, M., Kruepke, M., & Newman, J. P. (2010). Economic decision-making in psychopathy: A comparison with ventromedial prefrontal lesion patients. Neuropsychologia, 48, 2198–2204.CrossRefGoogle Scholar
  82. Kringelbach, M. L., & Berridge, K. C. (2009). Towards a functional neuroanatomy of pleasure and happiness. Trends in Cognitive Sciences, 13, 479–487.CrossRefGoogle Scholar
  83. Kroemer, N. B., Guevara, A., Ciocanea Teodorescu, I., Wuttig, F., Kobiella, A., & Smolka, M. N. (2014). Balancing reward and work: Anticipatory brain activation in NAcc and VTA predict effort differentially. NeuroImage, 102, 510–519.CrossRefGoogle Scholar
  84. Kuss, K., Falk, A., Trautner, P., Montag, C., Weber, B., & Fliessbach, K. (2015). Neural correlates of social decision making are influenced by social value orientation – An fMRI study. Frontiers in Behavioral Neuroscience, 9, Art. 40.Google Scholar
  85. Labudda, K., Wolf, O. T., Markowitsch, H. J., & Brand, M. (2007). Decision-making and neuroendocrine responses in pathological gamblers. Psychiatry Research, 153, 233–243.CrossRefGoogle Scholar
  86. Labudda, K., Woermann, F. G., Mertens, M., Pohlmann-Eden, B., Markowitsch, H. J., & Brand, M. (2008). Neural correlates of decision making with explicit information about probabilities and incentives in elderly healthy subjects. Experimental Brain Research, 187, 641–650.CrossRefGoogle Scholar
  87. Lamm, C., Decety, J., & Singer, T. (2011). Meta-analytic evidence for common and distinct neural networks associated with directly experienced pain and empathy for pain. NeuroImage, 54, 2492–2502.CrossRefGoogle Scholar
  88. Lane, T., Duncan, N. W., Cheng, T., & Northoff, G. (2016). The trajectory of self. Trends in Cognitive Sciences, 20, 481–482.CrossRefGoogle Scholar
  89. LeDoux, J. (1996). The emotional brain. New York: Simon and Schuster.Google Scholar
  90. Lee, W., & Kim, S. I. (2014). Effects of achievement goals on challenge seeking and feedback processing: Behavioral and FMRI evidence. PLoS One, 9, e107254.  https://doi.org/10.1371/journal.pone.0107254. eCollection 2014. Zugegriffen am 13.05.2018.
  91. Lee, T.-W., Northoff, G., & Wu, Y.-T. (2014). Resting network is composed of more than one neural pattern: an fMRI study. Neuroscience, 274, 198–208.CrossRefGoogle Scholar
  92. Leonhard, K. (1970). Kaspar Hauser und die moderne Kenntnis des Hospitalismus. Confinia Psychiatrica, 13, 213–229.Google Scholar
  93. Li, X., Ma, R., Pang, L., Lv, W., Xie, Y., Chen, Y., Zhang, P., Chen, J., Wu, Q., Cui, G., Zhang, P., Zhou, Y., & Zhang, X. (2017). Delta coherence in resting-state EEG predicts the reduction in cigarette craving after hypnotic aversion suggestions. Scientific Reports, 7, 2430.Google Scholar
  94. Lutz, P. E., & Turecki, G. (2014). DNA methylation and childhood maltreatment: from animal models to human studies. Neuroscience, 264, 142–156.Google Scholar
  95. Maguire, E. A., Gadian, D. G., Johnsrude, I. S., Good, C. D., Ashburner, J., Frackowiak, R. S., & Frith, C. D. (2000). Navigation-related structural change in the hippocampi of taxi drivers. Proceedings of the National Academy of Sciences of the United States of America, 97, 4398–4403.CrossRefGoogle Scholar
  96. Markowitsch, H. J. (1999a). Limbic system. In R. Wilson & F. Keil (Hrsg.), The MIT encyclopedia of the cognitive sciences (S. 472–475). Cambridge, MA: MIT Press.Google Scholar
  97. Markowitsch, H. J. (1999b). Gestalt view of the limbic system and the Papez circuit – another approach on unity and diversity of brain structures and functions. Behavioral and Brain Sciences, 22, 459–460.CrossRefGoogle Scholar
  98. Markowitsch, H. J. (2002). Functional retrograde amnesia – mnestic block syndrome. Cortex, 38, 651–654.CrossRefGoogle Scholar
  99. Markowitsch, H. J. (2006). Das autobiographische Gedächtnis. Neurowissenschaftliche Grundlagen. In G. Bittner (Hrsg.), Ich bin mein Erinnern (S. 23–40). Würzburg: Könighausen & Neumann.Google Scholar
  100. Markowitsch, H. J. (2008). Emotions: The shared heritage of animals and humans. In B. Röttger-Rössler & H. J. Markowitsch (Hrsg.), Emotions as bio-cultural processes (S. 95–109). New York: Springer.Google Scholar
  101. Markowitsch, H. J. (2009). Das Gedächtnis: Entwicklung – Funktionen – Störungen. München: C. H. Beck.Google Scholar
  102. Markowitsch, H. J. (2013a). Fetales Alkoholsyndrom und Kriminalität. In R. Feldmann, G. Michalowski, K. Lepke & FASD Deutschland e.V. (Hrsg.), Perspektiven für Menschen mit Fetalen Alkoholspektrumstörungen (FASD) (S. 59–62). Idstein: Schulz-Kirchner.Google Scholar
  103. Markowitsch, H. J. (2013b). Memory and self – neuroscientific landscapes. ISRN Neuroscience, Art. ID 176027, 26 S.  https://doi.org/10.1155/2013/176027.
  104. Markowitsch, H. J. (2015). Dissoziative Amnesien – ein Krankheitsbild mit wahrscheinlicher epigenetischer Komponente. PTT – Persönlichkeitsstörungen – Theorie und Therapie, 19, 1–16.Google Scholar
  105. Markowitsch, H. J., & Kessler, J. (2000). Massive impairment in executive functions with partial preservation of other cognitive functions: The case of a young patient with severe degeneration of the prefrontal cortex. Experimental Brain Research, 133, 94–102. (und in F. X. Schneider, A. M. Owen & J. Duncan (Hrsg.), Executive control and the frontal lobes (S. 94–102). Heidelberg: Springer).Google Scholar
  106. Markowitsch, H. J., & Kessler, J. (2002). Massive impairment in executive functions: The case of a patient with severe degeneration of the prefrontal cortex. Dementia Review Journal, 1, 89–103.Google Scholar
  107. Markowitsch, H. J., & Merkel, R. (2011). Das Gehirn auf der Anklagebank. Die Bedeutung der Hirnforschung für Ethik und Recht. In T. Bonhoeffer & P. Gruss (Hrsg.), Zukunft Gehirn (S. 210–240). München: Beck.Google Scholar
  108. Markowitsch, H. J., & Staniloiu, A. (2011a). Neurobiological aspects of individual violent behaviour. In I. Needham, P. Callaghan, T. Palmstierna, H. Nijman & N. Oud (Hrsg.), Violence in clinical psychiatry: Challenges for care and treatment (S. 65–68). Dwingelon: Kavanah.Google Scholar
  109. Markowitsch, H. J., & Staniloiu, A. (2011b). Amygdala in action: Relaying biological and social significance to autobiographic memory. Neuropsychologia, 49, 718–733.CrossRefGoogle Scholar
  110. Markowitsch, H. J., & Staniloiu, A. (2011c). Memory, autonoetic consciousness, and the self. Consciousness and Cognition, 20, 16–39.CrossRefGoogle Scholar
  111. Markowitsch, H. J., & Staniloiu, S. (2012a). Amnesic disorders. Lancet, 380, 1229–1240.CrossRefGoogle Scholar
  112. Markowitsch, H. J., & Staniloiu, A. (2012b). A rapprochement between emotion and cognition: Amygdala, emotion and self relevance in episodic-autobiographical memory. Behavioral and Brain Sciences, 35, 164–166.Google Scholar
  113. Markowitsch, H. J., & Staniloiu, A. (2012c). The contribution of the amygdala for etablishing and maintaining an autonomous self and autobiographical memory. In D. Yilmazer-Hanke (Hrsg.), Insights into the amygdala: Structure, function and implications for disorders (S. 277–318). Hauppauge: Nova Science Publishers.Google Scholar
  114. Markowitsch, H. J., & Staniloiu, A. (2012d). Autonoetic consciousness and the self. In A. E. Cavanna & A. Nani (Hrsg.), Consciousness: States, mechanisms and disorders (S. 85–110). New York: Nova Science Publs.Google Scholar
  115. Markowitsch, H. J., & Staniloiu, A. (2015). Dissoziative Amnesie. Psychologische Medizin, 26, 3–14.Google Scholar
  116. Markowitsch, H. J., & Staniloiu, A. (2016). Handlung zwischen Automatismus, Bauchgefühl und Erinnerung. In J. M. Erber-Schropp (Hrsg.), Planen und Handeln (S. 65–88). Berlin: Springer.Google Scholar
  117. Markowitsch, H. J., Weber-Luxenburger, G., Ewald, K., Kessler, J., & Heiss, W.-D. (1997). Patients with heart attacks are not valid models for medial temporal lobe amnesia. A neuropsychological and FDG-PET study with consequences for memory research. European Journal of Neurology, 4, 178–184.CrossRefGoogle Scholar
  118. Markowitsch, H. J., Kessler, J., Van der Ven, C., Weber-Luxenburger, G., & Heiss, W.-D. (1998). Psychic trauma causing grossly reduced brain metabolism and cognitive deterioration. Neuropsychologia, 36, 77–82.CrossRefGoogle Scholar
  119. Markowitsch, H. J., Kessler, J., Weber-Luxenburger, G., Van der Ven, C., Albers, M., & Heiss, W. D. (2000). Neuroimaging and behavioral correlates of recovery from mnestic block syndrome and other cognitive deteriorations. Neuropsychiatry, Neuropsychology, and Behavioral Neurology, 13, 60–66.Google Scholar
  120. Marsh, A. A., Finger, E. C., Mitchell, D. G. V., Reid, M. E., Sims, C., Kosson, D. S., Towbin, K. E., Leibenluft, E., Pine, D. S., & Blair, R. J. R. (2008). Reduced amgdala response to fearful expressions in children and adolescents with callous-unemotional traits and siruptive behavior disorders. American Journal of Psychiatry, 165, 712–720.CrossRefGoogle Scholar
  121. Mayford, M., Siegelbaum, S. A., & Kandel, E. R. (2012). Synapses and memory storage. Cold Spring Harbour Perspectives in Biology, 4, a005751.Google Scholar
  122. McEwen, B. S. (1992). Re-examination of the glucocorticoid hypothesis of stress and aging. Progress in Brain Research, 93, 365–381. discussion 382–383.CrossRefGoogle Scholar
  123. McEwen, B. S., & Magarinos, A. M. (1997). Stress effects on morphology and function of the hippocampus. Annals of the New York Academy of Sciences, 821, 271–284.CrossRefGoogle Scholar
  124. Modinos, G., Ormel, J., & Aleman, A. (2009). Activation of anterior insula during self-reflection. PLoS One, 4, e4618.  https://doi.org/10.1371/journal.pone.0004618. Zugegriffen am 05.06.2018.
  125. Morelli, S. A., & Lieberman, M. D. (2013). The role of automaticity and attention in neural processes underlying empathy for happiness, sadness, and anxiety. Frontiers in Human Neuroscience, 7, Art. 160.Google Scholar
  126. Mortimer, J. A. (2012). The Nun Study: Risk factors for pathology and clinical-pathologic correlations. Current Alzheimer Research, 9, 621–627.CrossRefGoogle Scholar
  127. Nauta, W. J. H. (1979). Expanding borders of the limbic system concept. In T. Rasmussen & R. Marino (Hrsg.), Functional neurosurgery (S. 7–23). New York: Raven Press.Google Scholar
  128. Nelson, K. (2006). Über Erinnerungen reden: Ein soziokultureller Zugang zur Entwicklung des autobiographischen Gedächtnisses. In H. Welzer & H. J. Markowitsch (Hrsg.), Warum Menschen sich erinnern können (S. 78–94). Stuttgart: Klett-Verlag.Google Scholar
  129. Nelson, K., & Fivush, R. (2000). Socialization of memory. In E. Tulving & F. I. M. Craik (Hrsg.), The Oxford handbook of memory (S. 283–296). New York: Oxford University Press.Google Scholar
  130. Nelson, K., & Fivush, R. (2004). The emergence of autobiographical memory: A social cultural developmental theory. Psychological Review, 111, 486–511.CrossRefGoogle Scholar
  131. Nieuwenhuys, R. (1996). The greater limbic system, the emotional motor system and the brain. In G. Holstege, R. Bandler & C. B. Saper (Hrsg.), The emotional motor system (Progress in brain research, Bd. 107, S. 551–580). Amsterdam: Elsevier.CrossRefGoogle Scholar
  132. Norris, P., & Epstein, S. (2011). An experiential thinking style: Its facets and relations with objective and subjective criterion measures. Journal of Personality, 79, 1044–1080.CrossRefGoogle Scholar
  133. Northoff, G. (2014). Do cortical midline variability and low frequency fluctuations mediate William James’ „Stream of Consciousness“? „Neurophenomenal Balance Hypothesis“ of „Inner Time Consciousness“. Consciousness and Cognition, 30, 184–200.CrossRefGoogle Scholar
  134. Ohira, H., Ichikawa, N., Nomura, M., Isowa, T., Kimura, K., Kanayama, N., Fukuyama, S., Shinoda, J., & Yamaha, J. (2010). Brain and autonomous association accompanying stochastic decision-making. NeuroImage, 49, 1024–1037.CrossRefGoogle Scholar
  135. Pacini, R., & Epstein, S. (1999). The relation of rational and experiential information processing styles to personality, basic beliefs, and the ratio-bias phenomenon. Journal of Personality and Social Psychology, 76, 972–987.CrossRefGoogle Scholar
  136. Panksepp, J., & Biven, L. (2012). The archaeology of mind. New York: W.W. Norton & Company.Google Scholar
  137. Paquette, V., Levesque, J., Mensour, B., Leroux, J. M., Beaudoin, G., Bourgouin, P., & Beauregard, M. (2003). „Change the mind and you change the brain“: Effects of cognitive-behavioral therapy on the neural correlates of spider phobia. NeuroImage, 18, 401–409.CrossRefGoogle Scholar
  138. Pauly, K., Finkelmeyer, A., Schneider, F., & Habel, U. (2013). The neural correlates of positive self-evaluation and self-related memory. Social and Affective Neuroscience, 8, 878–886.CrossRefGoogle Scholar
  139. Peper, M., & Markowitsch, H. J. (2001). Pioneers of affective neuroscience and early conceptions of the emotional brain. Journal of the History of the Neurosciences, 10, 58–66.CrossRefGoogle Scholar
  140. Porter, N., & Landfield, P. W. (1998). Stress hormones and brain ageing: Adding injury to insult. Nature Neuroscience, 1, 3–4.CrossRefGoogle Scholar
  141. Preckel, K., Kanske, P., & Singer, T. (2018). On the interaction of social affect and cognition: Empathy, compassion and theory of mind. Current Opinion in Behavioral Sciences, 19, 1–6.CrossRefGoogle Scholar
  142. Qin, P., & Northoff, G. (2011). How is our self related to midline regions and the default mode network? NeuroImage, 57, 1221–1233.CrossRefGoogle Scholar
  143. Radtke, K. M., Ruf, M., Gunter, H. M., Dohrmann, K., Schauer, M., Meyer, A., & Elbert, T. (2011). Transgenerational impact of intimate partner violence on methylation in the promoter of the glucocorticoid receptor. Translational Psychiatry, 1, e21.  https://doi.org/10.1038/tp.2011.21. Zugegriffen am 28.05.2018.
  144. Raichle, M. E., MacLeod, A. M., Snyder, A. Z., Powers, W. J., Gusnard, D. A., & Shulman, G. L. (2001). A default mode of brain function. Proceedings of the National Academy of Sciences of the U. S. A., 98, 676–682.Google Scholar
  145. Raichle, M. E., & Snyder, A. Z. (2007). A default mode of brain function: A brief history of an evolving idea. Neuroimage, 37, 1083–1090.Google Scholar
  146. Ramnani, N., & Owen, A. M. (2004). Anterior prefrontal cortex: Insights into function from anatomy and neuroimaging. Nature Reviews Neuroscience, 5, 184–194.CrossRefGoogle Scholar
  147. Reddemann, L., & Dehner-Rau, C. (2012). Trauma heilen: Ein Übungsbuch für Körper und Seele. Stuttgart: Trias Verlag.Google Scholar
  148. Rigon, A., Duff, M. C., & Voss, M. W. (2016). Structural and functional neural correlates of self-reported attachment in healthy adults: Evidence for an amygdalar involvement. Brain Imaging and Behavior, 10, 941–952.CrossRefGoogle Scholar
  149. Rogers, L., & Vallortigara, G. (2017). Lateralized brain functions – methods in human and non-human species. New York: Springer.CrossRefGoogle Scholar
  150. Rolls, E. T. (2014). Emotion and decision-making explained: A précis. Cortex, 59, 185–195.CrossRefGoogle Scholar
  151. Röttger-Rössler, B., & Markowitsch, H. J. (Hrsg.). (2008). Emotions as biocultural processes. New York: Springer-Press.Google Scholar
  152. Russo, S. J., & Nestler, E. J. (2013). The brain reward circuitry in mood disorders. Nature Reviews Neuroscience, 14, 609–625.CrossRefGoogle Scholar
  153. Sapolsky, R. M. (1996). Stress, glucocorticoids, and damage to the nervous system: The current state of confusion. Stress, 1, 1–19.CrossRefGoogle Scholar
  154. Sapolsky, R. M. (1998). Why zebras don’t get ulcers: An updated guide to stress, stress related diseases, and coping (2. Aufl.). San Francisco: W. H. Freeman.Google Scholar
  155. Sapolsky, R. M. (2000). Glucocorticoids and hippocampal atrophy in neuropsychiatric disorders. Archives of General Psychiatry, 57, 925–935.CrossRefGoogle Scholar
  156. Schore, A. N. (2002). Dysregulation of the right brain: A fundamental mechanism of traumatic attachment and the psychopathogenesis of posttraumatic stress disorder. Australian and New Zealand Journal of Psychiatry, 36, 9–30.CrossRefGoogle Scholar
  157. Schore, A. N. (2005). Back to basics: Attachment, affect regulation, and the developing right brain: Linking developmental neuroscience to pediatrics. Pediatric Reviews, 26, 204–217.CrossRefGoogle Scholar
  158. Selye, H. (1956). The stress of life. New York: McGraw-Hill.Google Scholar
  159. Serpeloni, F., Radtke, K., de Assis, S. G., Henning, F., Nätt, D., & Elbert, T. (2017). Grandmaternal stress during pregnancy and DNA methylation of the third generation: an epigenome-wide association study. Translational Psychiatry, 7, e1202.  https://doi.org/10.1038/tp.2017.153. Zugegriffen am 23.04.2018.
  160. Sharot, T., Shiner, T., Brown, A. C., Fan, J., & Dolan, R. J. (2009). Dopamine enhances expectation of pleasure in humans. Current Biology, 19, 2077–2080.CrossRefGoogle Scholar
  161. Siebert, M., Markowitsch, H. J., & Bartel, P. (2003). Amygdala, affect, and cognition: Evidence from ten patients with Urbach-Wiethe disease. Brain, 126, 2627–2637.CrossRefGoogle Scholar
  162. Singer, T., & Klimecki, O. M. (2014). Empathy and compassion. Current Biology, 24, R875–R878.CrossRefGoogle Scholar
  163. Small, D. M., Zatorre, R. J., Dagher, A., Evans, A. C., & Jones-Gotman, M. (2001). Changes in brain activity related to eating chocolate. From pleasure to aversion. Brain, 124, 1720–1733.CrossRefGoogle Scholar
  164. Spinelli, S., Chefer, S., Suomi, S. J., Highleyx, J. D., Barr, C. S., & Stein, E. (2009). Early-life stress induces long-term morphological changes in primate brain. Archives of General Psychiatry, 66, 658–665.CrossRefGoogle Scholar
  165. Staniloiu, A., & Markowitsch, H. J. (2010). Understanding psychogenic amnesia and psychiatric disorders as causes of dementia. Journal of General Medicine, 22, 41–49.Google Scholar
  166. Staniloiu, A., & Markowitsch, H. J. (2011). Genetische und neuroanatomische Korrelate von antisozialem und kriminellem Verhalten. PTT – Persönlichkeitsstörungen – Theorie und Therapie, 15, 3–16.Google Scholar
  167. Staniloiu, A., & Markowitsch, H. J. (2012). The splitting of the brain: A reorientation towards fiber tracts damage in amnesia. In A. J. Schäfer & J. Müller (Hrsg.), Brain damage: Causes, management, and prognosis (S. 41–70). Hauppauge: Nova Science Publishers.Google Scholar
  168. Staniloiu, A., & Markowitsch, H. J. (2014). Dissociative amnesia. Lancet Psychiatry, 1, 226–241.Google Scholar
  169. Staniloiu, A., Markowitsch, H. J., & Kordon, A. (2018). Psychological causes of amnesia: A study of 28 cases. Neuropsychologia, 110, 134–147.CrossRefGoogle Scholar
  170. Starcke, K., Wolf, O. T., Markowitsch, H. J., & Brand, M. (2008). Anticipatory stress influences decision-making under explicit risk conditions. Behavioral Neuroscience, 122, 1352–1360.CrossRefGoogle Scholar
  171. Stein, D. J., & Vythilingum, B. (2009). Love and attachment: The psychobiology of social bonding. CNS Spectrums, 14, 239–242.CrossRefGoogle Scholar
  172. Straube, T., Glauer, M., Dilger, S., Mentzel, H. J., & Miltner, W. H. (2006). Effects of cognitive-behavioral therapy on brain activation in specific phobia. NeuroImage, 29, 125–135.CrossRefGoogle Scholar
  173. Strauß, B. (2014). Bindungstheorie. In A. Stirn, R. Stark, K. Tabbert, S. Wehrum-Osinsky & S. Oddo (Hrsg.), Sexualität, Körper und Neurobiologie. Grundlagen und Störungsbilder im interdisziplinären Fokus (S. 46–56). Stuttgart: Kohlhammer.Google Scholar
  174. Strauss, C., Taylor, B. L., Gu, J., Kuyken, W., Baer, R., Jones, F., & Cavanagh, K. (2016). What is compassion and how can we measure it? A review of definitions and measures. Clinical Psychology Review, 47, 15–27.CrossRefGoogle Scholar
  175. Stuss, D. T., & Benson, D. S. (1986). The frontal lobes. New York: Raven Press.Google Scholar
  176. Stuss, D. T., & Levine, B. (2002). Adult clinical neuropsychology lessons from studies of the frontal lobes. Annual Reviews of Psychology, 53, 401–433.CrossRefGoogle Scholar
  177. Toepper, M., Markowitsch, H. J., Gebhardt, H., Beblo, T., Bauer, E., Woermann, F. G., Driessen, M., & Sammer, G. (2014). The impact of age on prefrontal cortex integrity during spatial working memory retrieval. Neuropsychologia, 59, 157–168.Google Scholar
  178. Tulving, E. (2005). Episodic memory and autonoesis: Uniquely human? In H. S. Terrace & J. Metcalfe (Hrsg.), The missing link in cognition: Self-knowing consciousness in man and animals (S. 3–56). New York: Oxford University Press.Google Scholar
  179. Ulrich, M., Stauβ, P., & Grön, G. (2018). Glucose modulates human ventral tegmental activity in response to sexual stimuli. Journal of Sexual Medicne, 15, 20–28.CrossRefGoogle Scholar
  180. Ursin, H., Baade, E., & Levine, S. (1978). Psychobiology of stress. A study of coping men. New York: Academic Press.Google Scholar
  181. Vincent, J. L., Kahn, I., Snyder, A. Z., Raichle, M. E., & Buckner, R. L. (2008). Evidence for a frontoparietal control system revealed by intrinsic functional connectivity. Journal of Neurophysiology, 100, 3328–3342.CrossRefGoogle Scholar
  182. Wallace, G. L., White, S. F., Robustelli, B., Sinclair, S., Hwang, S., Martin, A., & Blair, R. J. (2014). Cortical and subcortical abnormalities in youths with conduct disorder and elevated callous-unemotional traits. Journal of the American Academy of Child and Adolescent Psychiatry, 53, 456–465.CrossRefGoogle Scholar
  183. Waller, C., Wittfoth, M., Fritzsche, K., Timm, L., Wittfoth-Schardt, D., Rottler, E., Heinrichs, M., Buchheim, A., Kiefer, M., & Gündel, H. (2015). Attachment representation modulates oxytocin effects on the processing of own-child faces in fathers. Psychoneuroendocrinology, 62, 27–35.CrossRefGoogle Scholar
  184. Wittfoth-Schardt, D., Gründing, J., Wittfoth, M., Lanfermann, H., Heinrichs, M., Domes, G., Buchheim, A., Gündel, H., & Waller, C. (2012). Oxytocin modulates neural reactivity to children’s faces as a function of social salience. Neuropsychopharmacology, 37, 1799–1807.CrossRefGoogle Scholar
  185. Wu, Y., Zang, Y., Yuan, B., & Tian, X. (2015). Neural correlates of decision making after unfair treatment. Frontiers in Human Neuroscience, 9, Art. 123.Google Scholar
  186. Yang, J., Xu, X., Chen, Y., Shi, Z., & Han, S. (2016). Trait self-esteem and neural activities related to self-evaluation and social feedback. Science Report, 6, Art. 20274.  https://doi.org/10.1038/srep20274. Zugegriffen am 13.06.2018.
  187. Yehuda, R., Elkin, A., Binder-Brynes, K., Kahana, B., Southwick, S. M., Schmeidler, J., & Giller, E. L., Jr. (1996). Dissociation in aging holocaust survivors. American Journal of Psychiatry, 153, 935–940.CrossRefGoogle Scholar
  188. Yehuda, R., Schmeidler, R., Siever, L. J., Binder-Brynes, K., & Elkin, A. (1997). Individual differences in posttraumatic stress disorder symptom profiles in holocaust survivors in concentration camps or in hiding. Journal of Traumata and Stress, 10, 453–463.Google Scholar
  189. Zelman, D. C., Brandon, T. H., Jorenby, D. E., & Baker, T. B. (1992). Measures of affect and nicotine dependence predict differential response to smoking cessation treatments. Journal of Consulting and Clinical Psychology, 60, 943–952.Google Scholar
  190. Zimbardo, P. G. (1982). Shyness and the stresses of the human connection. In L. Goldberger & S. Breznitz (Hrsg.), Handbook of stress: Theoretical and clinical aspects (S. 466–481). New York: Free Press.Google Scholar

Copyright information

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2019

Authors and Affiliations

  • Hans J. Markowitsch
    • 1
  • Margit M. Schreier
    • 2
  1. 1.Baden-BadenDeutschland
  2. 2.StuttgartDeutschland

Personalised recommendations