Advertisement

Ecological Responses of Phytoplankton to Nutrient Structure of Seawater in Jiaozhou Bay

  • Zhiliang ShenEmail author
  • Qun Liu
  • Yulin Wu
  • Yun Yao
Chapter
Part of the Springer Earth System Sciences book series (SPRINGEREARTH)

Abstract

Nutrient concentrations in seawater, and C, N, P, Si and chlorophyll-a content in different-sized particulates were measured in Jiaozhou Bay, and C, N, P, Si composition in different-sized fractions of phytoplankton and their ecological responses to nutrient structure of the seawater were studied. Microphytoplankton and nanophytoplankton were dominant in Jiaozhou Bay. High C (16.50–20.97 μmol L−1), N (2.46–2.99 μmol L−1), and low P (0.06–0.12 μmol L−1), Si (0.18–0.57 μmol L−1) content, and high N/P (24.7–64.6) and low Si/P (4.4–10.8) and Si/N (0.06–0.20) ratios were found in all sized groups of particulates. These values reflected the elemental compositions of different-sized fractions of phytoplankton as being an ecological response to the nutrients in the seawater. The ratios deviated significantly from the Redfield values. The nutrient composition of seawater and particulates and their relationship to chlorophyll-a showed that phytoplankton growth was possibly limited by Si. Si limitation appears favorable for controlling the ecological equilibrium of Jiaozhou Bay. Different-sized fractions of phytoplankton had different suitability to nutrient structures of the seawater. Among phytoplankton-sized groups, nanophytoplankton and microphytoplankton growths were more adaptable in eutrophic Jiaozhou Bay, and more competitive for assimilation of Si. This is consistent with their diatom-dominated composition, controlling the biomass and productivity of phytoplankton in Jiaozhou Bay.

Keywords

Nutrient structures of seawater Particulate nutrients Phytoplankton Si limitation Ecological responses Jiaozhou Bay 

References

  1. Agawin, N. S. R., Duarte, C. M., & Agusti, S. (2000). Nutrient and temperature control of the contribution of picoplankton to phytoplankton biomass and production. Limnology and Oceanography, 45, 591–600.CrossRefGoogle Scholar
  2. Brown, E. J., & Button, D. K. (1979). Phosphate-limited growth kinetics of Selanastrum capricornutum (Chlorophyceae). Journal of Phycology, 15, 305–311.CrossRefGoogle Scholar
  3. Brzezinski, M. A. (1985). The Si: C: N ratio of marine diatoms: interspecific variability and the effect of some environmental variables. Journal of Phycology, 21, 347–357.CrossRefGoogle Scholar
  4. Burkhardt, S., & Riebesell, U. (1997). CO2 availability affects elemental composition (C:N:P) of the marine diatom Skeletonema costatum. Marine Ecology Progress Series, 155, 67–76.CrossRefGoogle Scholar
  5. Conley, D. J., & Malone, T. C. (1992). Annual cycle of dissolved silicate in Chesapeake Bay: Implications for the production and fate of phytoplankton biomass. Marine Ecology Progress Series, 81, 121–128.CrossRefGoogle Scholar
  6. Correll, D. L., Jordan, T. E., & Weller, D. E. (2000). Beaver pond biogeochemical effects in the Maryland Coastal Plain. Biogeochemistry, 49, 217–239.CrossRefGoogle Scholar
  7. Dortch, Q., & Whitledge, T. E. (1992). Does nitrogen or silicon limit phytoplankton production in the Mississippi River plume and nearby regions? Continental Shelf Research, 12, 1293–1309.CrossRefGoogle Scholar
  8. Dugdale, R. C., & Wilkerson, F. P. (1998). Silicate regulation of new production in the equatorial Pacific upwelling. Nature, 391, 270–273.CrossRefGoogle Scholar
  9. Geider, R. J., & La Roche, J. (2002). Redfield revisited: Variability of C: N: P in marine microalgae and its biochemical basis. European Journal of Phycology, 37, 1–17.CrossRefGoogle Scholar
  10. Goldman, J. C., & Glibert, P. M. (1983). Kinetics of inorganic nitrogen uptake by phytoplankton. In E. J. Carpenter & D. G. Capone (Eds.), Nitrogen in marine environments (pp. 233–274). New York: Academic Press.CrossRefGoogle Scholar
  11. Heldal, M., Scanlan, D. J., Norland, S., Thingstad, F., & Mann, N. H. (2003). Elemental composition of single cells of various strains of marine Prochlorcoccus and Synechococcus using X-ray microanalysis. Limnology and Oceanography, 48, 1732–1743.CrossRefGoogle Scholar
  12. Ho, T. Y., Quigg, A., & Finkel, Z. V. (2003). The elemental composition of some marine phytoplankton. Journal of Phycology, 39, 1145–1159.CrossRefGoogle Scholar
  13. Humborg, C., Conley, D. J., Rahm, L., Wulff, F., Cociasu, A., & Ittekkot, V. (2000). Silicon retention in river basins: Far-reaching effects on biogeochemistry and aquatic food webs in coastal marine environments. Ambio, 29, 45–50.CrossRefGoogle Scholar
  14. Jeffery, S. W., & Humphrey, G. F. (1975). New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 on higher plants, algae and natural phytoplankton. Biochemie und Physiologie der Pflanzen, 167, 191–194.CrossRefGoogle Scholar
  15. Justic, D., Rabalais, N. N., Turner, R. E., & Dortch, Q. (1995). Changes in nutrient structure of river-dominated coastal waters: Stoichiometric nutrient balance and its consequences. Estuarine, Coastal and Shelf Science, 40, 339–356.CrossRefGoogle Scholar
  16. Koroleff, F. (1976). Determination of total phosphorus. In K. Grasshoff (Ed.), Methods of seawater analysis (pp. 123–125). Weinheim: Verlag Chemie.Google Scholar
  17. Lavrentyev, P. J., Bootsma, H. A., Johengen, T. H., Cavaletto, J. F., & Gardner, W. S. (1998). Microbial plankton response to resource limitation: Insights from the community structure and seston stoichiometry in Florida Bay, USA. Marine Ecology Progress Series, 165, 45–57.CrossRefGoogle Scholar
  18. Nelson, D. M., & Brzezinski, A. (1990). Kinetics of silicate acid uptake by natural diatom assemblages in two Gulf and Stream warm-core rings. Marine Ecology Progress Series, 62, 283–292.CrossRefGoogle Scholar
  19. Nixon, S. W. (1995). Coastal eutrophication: A definition, social causes, and future concerns. Ophelia, 41, 199–220.CrossRefGoogle Scholar
  20. Paerl, H. W. (1997). Coastal eutrophication and harmful algal blooms: Importance of atmospheric deposition and groundwater as ‘‘new’’ nitrogen and other nutrient sources. Limnology and Oceanography, 42, 1154–1165.CrossRefGoogle Scholar
  21. Perry, M. J., & Eppley, R. W. (1981). Phosphate uptake by phytoplankton in the central North Pacific Ocean. Deep-Sea Research, 28, 39–49.CrossRefGoogle Scholar
  22. Raven, J. A. (1986). Physiological consequences of extremely small size for autotrophic organisms in the sea. In T. Platt & W. K. W. Li (Eds.), Photosynthetic picoplankton. Canadian Bulletin of Fisheries and Aquatic Sciences (pp. 1–70). Ottawa.Google Scholar
  23. Ray, S., Berec, L., Straskraba, M., & Joergensen, S. E. (2001). Optimization of exergy and implications of body sizes of phytoplankton and zooplankton in an aquatic ecosystem model. Ecological Modeling, 140, 219–234.CrossRefGoogle Scholar
  24. Redfield, A.C. (1934). On the proportions of organic derivatives in sea water and their relation to the composition of plankton. In R. J. Daniel (Ed.), James Johnstone Memorial Volume (pp. 176–192). Liverpool, UK: University of Liverpool Press.Google Scholar
  25. Redfield, A. C., Ketchum, B. H., & Richards, F. (1963). The influence of organisms on the composition of seawater. In M. N. Hill (Ed.), The sea (Vol. 2, pp. 26–77). New York: Wiley.Google Scholar
  26. Scor-Unesco. (1966). Determination of photosynthetic pigments in sea water, Monographs on Oceanographic Methodology (Vol. 1, pp. 1–69). Unesco, Paris.Google Scholar
  27. Shen, Z. L. (2001). Historical changes in nutrient structure and its influences on phytoplankton composition in Jiaozhou Bay. Estuarine, Coastal and Shelf Science, 52, 211–224.CrossRefGoogle Scholar
  28. Shen, Z. L., & Liu, M. X. (1997). Studies on carbon dioxide in Jiaozhow Bay Seawater. Acta Oceanologica Sinica, 19, 115–120. (in Chinese).Google Scholar
  29. Shen, Z. L., Yang, H. M., & Liu, Q. (1997). Studies on particulate organic carbon in the Jiaozhow Bay. The Yellow Sea, 3, 71–75.Google Scholar
  30. Smayda, T. J. (1990). Novel and nuisance phytoplankton blooms in the sea: evidence for a global epidemic. In E. Graneli, B. Sundstrom, L. Edler, & D. M. Anderson (Eds.), Toxic marine phytoplankton (pp. 29–40). New York: Elsevier Science.Google Scholar
  31. Suttle, C. A., Cochlan, W. P., & Stockner, J. G. (1991). Size-dependent ammonium and phosphate uptake, and N: P supply ratios in an Oligotropic Lake. Canadian Journal of Fisheries and Aquatic Sciences, 48, 1226–1234.CrossRefGoogle Scholar
  32. Tada, K., Pithakpol, S., Ichimi, K., & Montani, S. (2000). Carbon, nitrogen, phosphorus, and chlorophyll a content of the large diatom, Coscinodiscus wailesii and its abundance in the Seto Inland Sea, Japan. Fisheries Science, 66, 509–514.CrossRefGoogle Scholar
  33. Treguer, P., & Gueneley, S. (1988). Biogenic silica and particulate organic matter from the Indian Sector of the Southern Ocean. Marine Chemistry, 23, 167–180.CrossRefGoogle Scholar
  34. Turner, R. E., & Rabalais, N. N. (1994). Evidence for coastal eutrophication near the Mississippi River delta. Nature, 368, 619–621.CrossRefGoogle Scholar
  35. Turner, R. E., Rabalais, N. N., Justic, D., & Dortch, Q. (2003). Future aquatic nutrient limitations. Marine Pollution Bulletin, 46, 1032–1034.CrossRefGoogle Scholar
  36. Verity, P. G., Robertson, C. Y., Tronzo, C. R., Andrews, M. G., Nelson, J. R., & Sieracki, M. E. (1992). Relationships between cell-volume and the carbon and nitrogen-content of marine photosynthetic nanoplankton. Limnology and Oceanography, 37, 1434–1446.CrossRefGoogle Scholar
  37. Vrede, K., Heldal, M., Norland, S., & Bratbak, G. (2002). Elemental composition (C, N, P) and cell volume of exponentially growing and nutrient limited bacterioplankton. Applied and Environmental Microbiology, 68, 2965–2971.CrossRefGoogle Scholar
  38. Wu, Y. L., Sun, S., Zhang, Y. S., & Zhang, F. (2004). Quantitative study on longterm variation of phytoplankton in Jiaozhou Bay. Oceanologia Limnologia Sinica, 35, 518–523. (in Chinese with English abstract).Google Scholar
  39. Xiao, T., Jiao, N. Z., & Wang, R. (1995). Quantitative distribution of cyanobacteria and bacteria in Jiaozhou Bay. In J. H. Dong & N. Z. Jiao (Eds.), Ecology studies in Jiaozhou Bay (pp. 118–124). Beijing: Science Press. (in Chinese with English abstract).Google Scholar
  40. Yang, Y. H., & Jiao, N. Z. (2001). Ecological significance of picoplankton in the Jiaozhou Bay. In N. Z. Jiao, et al. (Eds.), Ecological processes and sustainable development of typical coastal water ecosystems in China (pp. 88–95). Beijing: Science Press. (in Chinese).Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Key Laboratory of Marine Ecology and Environmental SciencesInstitute of Oceanology, Chinese Academy of SciencesQingdaoChina
  2. 2.Jiaozhou Bay Marine Ecosystem Research Station, Institute of Oceanology, Chinese Academy of SciencesQingdaoChina
  3. 3.Research Center for the Computer and Chemical Engineering, Qingdao University of Science and TechnologyQingdaoChina

Personalised recommendations