Advertisement

Klinischer Stellenwert der Bildgebung nach neoadjuvanter Therapie

  • Ulrike I. AttenbergerEmail author
  • Ralf D. Hofheinz
  • Barbara D. Wichtmann
Chapter
  • 59 Downloads

Zusammenfassung

Die Behandlung des lokal fortgeschrittenen Rektumkarzinoms hat sich in den letzten 20  Jahren wesentlich weiterentwickelt und konnte die Prognose der Patienten deutlich verbessern. Dies ist vor allem auf bessere Bildgebungsmöglichkeiten, die Einführung neoadjuvanter Therapieoptionen mit einer konsequenten Anwendung präoperativer Bestrahlung sowie ein verbessertes und standardisiertes operatives Vorgehen mit der totalen mesorektalen Exzision zurückzuführen. Ein routinemäßiges Restaging nach neoadjuvanter Radiochemotherapie ist hierbei von besonderer klinischer Relevanz. Welche Bildgebungsmodalität sich für das Restaging nach neoadjuvanter Radiochemotherapie am besten eignet, ist derzeit Gegenstand aktueller Forschung. Während der EUS, die CT und die MRT ein strukturelles Bild des Tumors und der umgebenden Strukturen ermöglichen, erlaubt die diffusionsgewichtete MRT bzw. Perfusions-MRT und die 18F-FDG-PET/CT neben der Morphologie auch funktionelle Merkmale der Malignität zu erfassen. Entsprechend der Empfehlungen eines Konsensus-Meetings der European Society of Gastrointestinal and Abdominal Radiology 2012 ist die MRT die Methode der Wahl für das primäre Staging des Rektumkarzinoms und wird auch für das routinemäßige Restaging nach nRCT empfohlen. Im vorliegenden Kapitel wird der Fokus demzufolge auf diese Bildgebungsmethode gelegt.

Literatur

  1. Akhurst T, Kates TJ, Mazumdar M et al (2005) Recent chemotherapy reduces the sensitivity of [18F]fluorodeoxyglucose positron emission tomography in the detection of colorectal metastases. J Clin Oncol 23(34):8713–8716PubMedCrossRefGoogle Scholar
  2. Alberda WJ, Dassen HP, Dwarkasing RS et al (2013) Prediction of tumor stage and lymph node involvement with dynamic contrast-enhanced MRI after chemoradiotherapy for locally advanced rectal cancer. Int J Colorectal Dis 28(4):573–580PubMedCrossRefGoogle Scholar
  3. Amthauer H, Denecke T, Rau B et al (2004) Response prediction by FDG-PET after neoadjuvant radiochemotherapy and combined regional hyperthermia of rectal cancer: correlation with endorectal ultrasound and histopathology. Eur J Nucl Med Mol Imaging 31(6):811–819PubMedCrossRefGoogle Scholar
  4. Attenberger UI, Ong MM, Rathmann N et al (2017) mMRI at 3.0 T as an evaluation tool of therapeutic response to neoadjuvant CRT in patients with advanced-stage rectal cancer. Anticancer Res 37(1):215–222PubMedCrossRefGoogle Scholar
  5. Barbaro B, Fiorucci C, Tebala C et al (2009) Locally advanced rectal cancer: MR imaging in prediction of response after preoperative chemotherapy and radiation therapy. Radiology 250(3):730–739PubMedCrossRefGoogle Scholar
  6. Barbaro B, Vitale R, Valentini V et al (2012) Diffusion-weighted magnetic resonance imaging in monitoring rectal cancer response to neoadjuvant chemoradiotherapy. Int J Radiat Oncol Biol Phys 83(2):594–599PubMedCrossRefGoogle Scholar
  7. Beets-Tan RG, Lambregts DM, Maas M et al (2013) Magnetic resonance imaging for the clinical management of rectal cancer patients: recommendations from the 2012 European Society of Gastrointestinal and Abdominal Radiology (ESGAR) consensus meeting. Eur Radiol 23(9):2522–2531PubMedCrossRefGoogle Scholar
  8. Beynon J, Mortensen NJ, Foy DM et al (1989) Preoperative assessment of mesorectal lymph node involvement in rectal cancer. Br J Surg 76(3):276–279PubMedCrossRefGoogle Scholar
  9. Brix G, Semmler W, Port R et al (1991) Pharmacokinetic parameters in CNS Gd-DTPA enhanced MR imaging. J Comput Assist Tomogr 15(4):621–628PubMedCrossRefGoogle Scholar
  10. Brown G, Richards CJ, Bourne MW et al (2003) Morphologic predictors of lymph node status in rectal cancer with use of high-spatial-resolution MR imaging with histopathologic comparison. Radiology 227(2):371–377PubMedPubMedCentralCrossRefGoogle Scholar
  11. Brown G, Daniels IR, Richardson C et al (2005) Techniques and trouble-shooting in high spatial resolution thin slice MRI for rectal cancer. Br J Radiol 78(927):245–251PubMedCrossRefGoogle Scholar
  12. Cai G, Xu Y, Zhu J et al (2013) Diffusion-weighted magnetic resonance imaging for predicting the response of rectal cancer to neoadjuvant concurrent chemoradiation. World J Gastroenterol 19(33):5520–5527PubMedPubMedCentralCrossRefGoogle Scholar
  13. Ceelen WP, Van Nieuwenhove Y, Fierens K (2009) Preoperative chemoradiation versus radiation alone for stage II and III resectable rectal cancer. Cochrane Database Syst Rev 2009(1):CD006041Google Scholar
  14. Chen CC, Lee RC, Lin JK et al (2005) How accurate is magnetic resonance imaging in restaging rectal cancer in patients receiving preoperative combined chemoradiotherapy? Dis Colon Rectum 48(4):722–728PubMedCrossRefGoogle Scholar
  15. Cho EY, Kim SH, Yoon JH et al (2013) Apparent diffusion coefficient for discriminating metastatic from non-metastatic lymph nodes in primary rectal cancer. Eur J Radiol 82(11):e662–e668PubMedCrossRefGoogle Scholar
  16. Curvo-Semedo L, Lambregts DM, Maas M et al (2012) Diffusion-weighted MRI in rectal cancer: apparent diffusion coefficient as a potential noninvasive marker of tumor aggressiveness. J Magn Reson Imaging 35(6):1365–1371PubMedCrossRefGoogle Scholar
  17. de Campos-Lobato LF, Geisler DP, da Luz Moreira A et al (2011) Neoadjuvant therapy for rectal cancer: the impact of longer interval between chemoradiation and surgery. J Gastrointest Surg 15(3):444–450PubMedCrossRefGoogle Scholar
  18. de Lussanet QG, Backes WH, Griffioen AW et al (2005) Dynamic contrast-enhanced magnetic resonance imaging of radiation therapy-induced microcirculation changes in rectal cancer. Int J Radiat Oncol Biol Phys 63(5):1309–1315PubMedCrossRefGoogle Scholar
  19. De Nardi P, Carvello M (2013) How reliable is current imaging in restaging rectal cancer after neoadjuvant therapy? World J Gastroenterol 19(36):5964–5972PubMedPubMedCentralCrossRefGoogle Scholar
  20. DeVries AF, Griebel J, Kremser C et al (2001) Tumor microcirculation evaluated by dynamic magnetic resonance imaging predicts therapy outcome for primary rectal carcinoma. Cancer Res 61(6):2513–2516PubMedGoogle Scholar
  21. DeVries AF, Kremser C, Hein PA et al (2003) Tumor microcirculation and diffusion predict therapy outcome for primary rectal carcinoma. Int J Radiat Oncol Biol Phys 56(4):958–965PubMedCrossRefGoogle Scholar
  22. Dinter DJ, Horisberger K, Zechmann C et al (2009) Can dynamic MR imaging predict response in patients with rectal cancer undergoing cetuximab-based neoadjuvant chemoradiation? Onkologie 32(3):86–93PubMedGoogle Scholar
  23. Dworak O, Keilholz L, Hoffmann A (1997) Pathological features of rectal cancer after preoperative radiochemotherapy. Int J Colorectal Dis 12(1):19–23PubMedPubMedCentralCrossRefGoogle Scholar
  24. Dzik-Jurasz A, Domenig C, George M et al (2002) Diffusion MRI for prediction of response of rectal cancer to chemoradiation. Lancet 360(9329):307–308PubMedCrossRefGoogle Scholar
  25. Elmi A, Hedgire SS, Covarrubias D et al (2013) Apparent diffusion coefficient as a non-invasive predictor of treatment response and recurrence in locally advanced rectal cancer. Clin Radiol 68(10):e524–e531PubMedCrossRefGoogle Scholar
  26. Engelen SM, Beets-Tan RG, Lahaye MJ et al (2008) Location of involved mesorectal and extramesorectal lymph nodes in patients with primary rectal cancer: preoperative assessment with MR imaging. Eur J Surg Oncol 34(7):776–781PubMedCrossRefGoogle Scholar
  27. Engin G, Sharifov R (2017) Magnetic resonance imaging for diagnosis and neoadjuvant treatment evaluation in locally advanced rectal cancer: a pictorial review. World J Clin Oncol 8(3):214–229PubMedPubMedCentralCrossRefGoogle Scholar
  28. George ML, Dzik-Jurasz AS, Padhani AR et al (2001) Non-invasive methods of assessing angiogenesis and their value in predicting response to treatment in colorectal cancer. Br J Surg 88(12):1628–1636PubMedCrossRefGoogle Scholar
  29. Goh V, Padhani AR, Rasheed S (2007) Functional imaging of colorectal cancer angiogenesis. Lancet Oncol 8(3):245–255PubMedCrossRefGoogle Scholar
  30. Gollub MJ, Gultekin DH, Akin O et al (2012) Dynamic contrast enhanced-MRI for the detection of pathological complete response to neoadjuvant chemotherapy for locally advanced rectal cancer. Eur Radiol 22(4):821–831PubMedCrossRefGoogle Scholar
  31. Gollub MJ, Gultekin DH, Schwartz LH (2013) Letter to the Editor re: perfusion MRI for the prediction of treatment response after preoperative chemoradiotherapy in locally advanced rectal cancer. Eur Radiol 23(5):1297–1298PubMedCrossRefGoogle Scholar
  32. Group MS (2006) Diagnostic accuracy of preoperative magnetic resonance imaging in predicting curative resection of rectal cancer: prospective observational study. BMJ 333(7572):7779Google Scholar
  33. Group MS (2007) Extramural depth of tumor invasion at thin-section MR in patients with rectal cancer: results of the MERCURY study. Radiology 243(1):132–139Google Scholar
  34. Habr-Gama A, Perez RO (2009) Non-operative management of rectal cancer after neoadjuvant chemoradiation. Br J Surg 96(2):125–127PubMedCrossRefGoogle Scholar
  35. Habr-Gama A, Perez RO (2012) The surgical significance of residual mucosal abnormalities in rectal cancer following neoadjuvant chemoradiotherapy (Br J Surg 2012; 99: 993–1001). Br J Surg 99(11):1601PubMedCrossRefGoogle Scholar
  36. Habr-Gama A, Perez RO, Nadalin W et al (2004) Operative versus nonoperative treatment for stage 0 distal rectal cancer following chemoradiation therapy: long-term results. Ann Surg 240(4):711–717 (discussion 717-718)PubMedPubMedCentralGoogle Scholar
  37. Habr-Gama A, Perez RO, Sabbaga J et al (2009) Increasing the rates of complete response to neoadjuvant chemoradiotherapy for distal rectal cancer: results of a prospective study using additional chemotherapy during the resting period. Dis Colon Rectum 52(12):1927–1934PubMedCrossRefGoogle Scholar
  38. Habr-Gama A, Perez R, Proscurshim I et al (2010) Complete clinical response after neoadjuvant chemoradiation for distal rectal cancer. Surg Oncol Clin N Am 19(4):829–845PubMedCrossRefGoogle Scholar
  39. Heijnen LA, Lambregts DM, Mondal D et al (2013) Diffusion-weighted MR imaging in primary rectal cancer staging demonstrates but does not characterise lymph nodes. Eur Radiol 23(12):3354–3360PubMedCrossRefGoogle Scholar
  40. Hötker AM, Garcia-Aguilar J, Gollub MJ (2014) Multiparametric MRI of rectal cancer in the assessment of response to therapy: a systematic review. Dis Colon Rectum 57(6):790–799PubMedCrossRefGoogle Scholar
  41. Hussain SM, Outwater EK, Siegelman ES (1999) Mucinous versus nonmucinous rectal carcinomas: differentiation with MR imaging. Radiology 213(1):79–85PubMedCrossRefGoogle Scholar
  42. Iafrate F, Laghi A, Paolantonio P et al (2006) Preoperative staging of rectal cancer with MR Imaging: correlation with surgical and histopathologic findings. Radiographics 26(3):701–714PubMedCrossRefGoogle Scholar
  43. Intven M, Reerink O, Philippens ME (2013) Diffusion-weighted MRI in locally advanced rectal cancer: pathological response prediction after neo-adjuvant radiochemotherapy. Strahlenther Onkol 189(2):117–122PubMedCrossRefGoogle Scholar
  44. Ippolito D, Monguzzi L, Guerra L et al (2012) Response to neoadjuvant therapy in locally advanced rectal cancer: assessment with diffusion-weighted MR imaging and 18FDG PET/CT. Abdom Imaging 37(6):1032–1040PubMedCrossRefGoogle Scholar
  45. Issa N, Murninkas A, Powsner E et al (2012) Long-term outcome of local excision after complete pathological response to neoadjuvant chemoradiation therapy for rectal cancer. World J Surg 36(10):2481–2487PubMedCrossRefGoogle Scholar
  46. Janjan NA, Crane CN, Feig BW et al (2000) Prospective trial of preoperative concomitant boost radiotherapy with continuous infusion 5-fluorouracil for locally advanced rectal cancer. Int J Radiat Oncol Biol Phys 47(3):713–718PubMedCrossRefGoogle Scholar
  47. Jung SH, Heo SH, Kim JW et al (2012) Predicting response to neoadjuvant chemoradiation therapy in locally advanced rectal cancer: diffusion-weighted 3 Tesla MR imaging. J Magn Reson Imaging 35(1):110–116PubMedCrossRefGoogle Scholar
  48. Kang JH, Kim YC, Kim H et al (2010) Tumor volume changes assessed by three-dimensional magnetic resonance volumetry in rectal cancer patients after preoperative chemoradiation: the impact of the volume reduction ratio on the prediction of pathologic complete response. Int J Radiat Oncol Biol Phys 76(4):1018–1025PubMedCrossRefGoogle Scholar
  49. Kim YH, Kim DY, Kim TH et al (2005) Usefulness of magnetic resonance volumetric evaluation in predicting response to preoperative concurrent chemoradiotherapy in patients with resectable rectal cancer. Int J Radiat Oncol Biol Phys 62(3):761–768PubMedCrossRefGoogle Scholar
  50. Kim DJ, Kim JH, Lim JS et al (2010) Restaging of rectal cancer with MR imaging after concurrent chemotherapy and radiation therapy. Radiographics 30(2):503–516PubMedCrossRefGoogle Scholar
  51. Kim DJ, Kim JH, Ryu YH et al (2011) Nodal staging of rectal cancer: high-resolution pelvic MRI versus (1)(8)F-FDGPET/CT. J Comput Assist Tomogr 35(5):531–534PubMedCrossRefGoogle Scholar
  52. Kong JC, Guerra GR, Warrier SK et al (2017) Outcome and salvage surgery following “Watch and Wait” for rectal cancer after neoadjuvant therapy: A systematic review. Dis Colon Rectum 60(3):335–345PubMedCrossRefGoogle Scholar
  53. Kreis ME, Ruppert R, Ptok H et al (2016) Use of preoperative magnetic resonance imaging to select patients with rectal cancer for neoadjuvant chemoradiation – interim analysis of the German OCUM trial (NCT01325649). J Gastrointest Surg 20(1):25–32CrossRefGoogle Scholar
  54. Kuo LJ, Chern MC, Tsou MH et al (2005) Interpretation of magnetic resonance imaging for locally advanced rectal carcinoma after preoperative chemoradiation therapy. Dis Colon Rectum 48(1):23–28PubMedCrossRefGoogle Scholar
  55. Lahaye MJ, Engelen SM, Kessels AG et al (2008) USPIO-enhanced MR imaging for nodal staging in patients with primary rectal cancer: predictive criteria. Radiology 246(3):804–811PubMedCrossRefGoogle Scholar
  56. Lahaye MJ, Beets GL, Engelen SM et al (2009) Locally advanced rectal cancer: MR imaging for restaging after neoadjuvant radiation therapy with concomitant chemotherapy. Part II. What are the criteria to predict involved lymph nodes? Radiology 252(1):81–91PubMedCrossRefGoogle Scholar
  57. Lambregts DM, Beets GL, Maas M et al (2011a) Tumour ADC measurements in rectal cancer: effect of ROI methods on ADC values and interobserver variability. Eur Radiol 21(12):2567–2574PubMedPubMedCentralCrossRefGoogle Scholar
  58. Lambregts DM, Maas M, Riedl RG et al (2011b) Value of ADC measurements for nodal staging after chemoradiation in locally advanced rectal cancer-a per lesion validation study. Eur Radiol 21(2):265–273PubMedCrossRefGoogle Scholar
  59. Leitlinienprogramm Onkologie (Deutsche Krebsgesellschaft, D.K., AWMF) (2014) S3-Leitlinie Kolorektales Karzinom, Langversion 1.1, AWMF Registrierungsnummer: 021-007OL. http://leitlinienprogramm-onkologie.de/Leitlinien.7.0.html. Zugegriffen: 16. Juli 2017
  60. Lim SB, Choi HS, Jeong SY et al (2008) Optimal surgery time after preoperative chemoradiotherapy for locally advanced rectal cancers. Ann Surg 248(2):243–251PubMedCrossRefGoogle Scholar
  61. Lim JS, Kim D, Baek SE et al (2012) Perfusion MRI for the prediction of treatment response after preoperative chemoradiotherapy in locally advanced rectal cancer. Eur Radiol 22(8):1693–1700PubMedCrossRefGoogle Scholar
  62. Lollert A, Junginger T, Schimanski CC et al (2014) Rectal cancer: dynamic contrast-enhanced MRI correlates with lymph node status and epidermal growth factor receptor expression. J Magn Reson Imaging 39(6):1436–1442PubMedCrossRefGoogle Scholar
  63. Loos M, Quentmeier P, Schuster T et al (2013) Effect of preoperative radio(chemo)therapy on long-term functional outcome in rectal cancer patients: a systematic review and meta-analysis. Ann Surg Oncol 20(6):1816–1828PubMedCrossRefGoogle Scholar
  64. Maas M, Nelemans PJ, Valentini V et al (2010) Long-term outcome in patients with a pathological complete response after chemoradiation for rectal cancer: a pooled analysis of individual patient data. Lancet Oncol 11(9):835–844PubMedCrossRefGoogle Scholar
  65. Maas M, Lambregts DM, Nelemans PJ et al (2015) Assessment of clinical complete response after chemoradiation for rectal cancer with digital rectal examination, endoscopy, and MRI: Selection for organ-saving treatment. Ann Surg Oncol 22(12):3873–3880PubMedPubMedCentralCrossRefGoogle Scholar
  66. Madoff RD (2004) Chemoradiotherapy for rectal cancer – when, why, and how? N Engl J Med 351(17):1790–1792PubMedCrossRefGoogle Scholar
  67. Marijnen CA, Nagtegaal ID, Kapiteijn E et al (2003) Radiotherapy does not compensate for positive resection margins in rectal cancer patients: report of a multicenter randomized trial. Int J Radiat Oncol Biol Phys 55(5):1311–1320PubMedCrossRefGoogle Scholar
  68. Mizukami Y, Ueda S, Mizumoto A et al (2011) Diffusion-weighted magnetic resonance imaging for detecting lymph node metastasis of rectal cancer. World J Surg 35(4):895–899PubMedCrossRefGoogle Scholar
  69. Monguzzi L, Ippolito D, Bernasconi DP et al (2013) Locally advanced rectal cancer: value of ADC mapping in prediction of tumor response to radiochemotherapy. Eur J Radiol 82(2):234–240PubMedCrossRefGoogle Scholar
  70. Musio D, De Felice F, Magnante AL et al (2013) Diffusion-weighted magnetic resonance application in response prediction before, during, and after neoadjuvant radiochemotherapy in primary rectal cancer carcinoma. Biomed Res Int 2013:740195PubMedPubMedCentralCrossRefGoogle Scholar
  71. Nougaret S, Rouanet P, Molinari N et al (2012) MR volumetric measurement of low rectal cancer helps predict tumor response and outcome after combined chemotherapy and radiation therapy. Radiology 263(2):409–418PubMedCrossRefGoogle Scholar
  72. Nougaret S, Reinhold C, Mikhael HW et al (2013) The use of MR imaging in treatment planning for patients with rectal carcinoma: have you checked the “DISTANCE”? Radiology 268(2):330–344PubMedCrossRefGoogle Scholar
  73. Oberholzer K, Menig M, Kreft A et al (2012) Rectal cancer: mucinous carcinoma on magnetic resonance imaging indicates poor response to neoadjuvant chemoradiation. Int J Radiat Oncol Biol Phys 82(2):842–848PubMedCrossRefGoogle Scholar
  74. Oberholzer K, Menig M, Pohlmann A et al (2013) Rectal cancer: assessment of response to neoadjuvant chemoradiation by dynamic contrast-enhanced MRI. J Magn Reson Imaging 38(1):119–126PubMedCrossRefGoogle Scholar
  75. Park MJ, Kim SH, Lee SJ et al (2011) Locally advanced rectal cancer: added value of diffusion-weighted MR imaging for predicting tumor clearance of the mesorectal fascia after neoadjuvant chemotherapy and radiation therapy. Radiology 260(3):771–780PubMedCrossRefGoogle Scholar
  76. Patel UB, Taylor F, Blomqvist L et al (2011) Magnetic resonance imaging-detected tumor response for locally advanced rectal cancer predicts survival outcomes: MERCURY experience. J Clin Oncol 29(28):3753–3760PubMedCrossRefGoogle Scholar
  77. Perez RO, Habr-Gama A, Sao Juliao GP et al (2012) Optimal timing for assessment of tumor response to neoadjuvant chemoradiation in patients with rectal cancer: do all patients benefit from waiting longer than 6 weeks? Int J Radiat Oncol Biol Phys 84(5):1159–1165PubMedCrossRefGoogle Scholar
  78. Pomerri F, Pucciarelli S, Maretto I et al (2011) Prospective assessment of imaging after preoperative chemoradiotherapy for rectal cancer. Surgery 149(1):56–64PubMedCrossRefGoogle Scholar
  79. Reerink O, Verschueren RC, Szabo BG et al (2003) A favourable pathological stage after neoadjuvant radiochemotherapy in patients with initially irresectable rectal cancer correlates with a favourable prognosis. Eur J Cancer 39(2):192–195PubMedCrossRefGoogle Scholar
  80. Rouanet P, Rullier E, Lelong B et al (2017) Tailored treatment strategy for locally advanced rectal carcinoma based on the tumor response to induction chemotherapy: preliminary results of the French phase II multicenter GRECCAR4 trial. Dis Colon Rectum 60(7):653–663PubMedCrossRefGoogle Scholar
  81. Rudisch A, Kremser C, Judmaier W et al (2005) Dynamic contrast-enhanced magnetic resonance imaging: a non-invasive method to evaluate significant differences between malignant and normal tissue. Eur J Radiol 53(3):514–519PubMedCrossRefGoogle Scholar
  82. Ryan JE, Warrier SK, Lynch AC et al (2015) Assessing pathological complete response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer: a systematic review. Colorectal Dis 17(10):849–861PubMedCrossRefGoogle Scholar
  83. Sauer R, Liersch T, Merkel S et al (2012) Preoperative versus postoperative chemoradiotherapy for locally advanced rectal cancer: results of the German CAO/ARO/AIO-94 randomized phase III trial after a median follow-up of 11 years. J Clin Oncol 30(16):1926–1933PubMedCrossRefGoogle Scholar
  84. Schmoll HJ, Van Cutsem E, Stein A et al (2012) ESMO Consensus Guidelines for management of patients with colon and rectal cancer. A personalized approach to clinical decision making. Ann Oncol 23(10):2479–2516PubMedCrossRefGoogle Scholar
  85. Shanmugan S, Arrangoiz R, Nitzkorski JR et al (2012) Predicting pathological response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer using 18FDG-PET/CT. Ann Surg Oncol 19(7):2178–2185PubMedCrossRefGoogle Scholar
  86. Stoker J, Rociu E, Wiersma TG et al (2000) Imaging of anorectal disease. Br J Surg 87(1):10–27PubMedCrossRefGoogle Scholar
  87. Sun YS, Zhang XP, Tang L et al (2010) Locally advanced rectal carcinoma treated with preoperative chemotherapy and radiation therapy: preliminary analysis of diffusion-weighted MR imaging for early detection of tumor histopathologic downstaging. Radiology 254(1):170–178PubMedCrossRefGoogle Scholar
  88. Tofts PS (1997) Modeling tracer kinetics in dynamic Gd-DTPA MR imaging. J Magn Reson Imaging 7(1):91–101PubMedCrossRefGoogle Scholar
  89. Tofts PS, Kermode AG (1991) Measurement of the blood-brain barrier permeability and leakage space using dynamic MR imaging 1 Fundamental concepts. Magn Reson Med 17(2):357–367PubMedCrossRefGoogle Scholar
  90. Torkzad MR, Lindholm J, Martling A et al (2007) MRI after preoperative radiotherapy for rectal cancer; correlation with histopathology and the role of volumetry. Eur Radiol 17(6):1566–1573PubMedCrossRefGoogle Scholar
  91. Vliegen RF, Beets GL, von Meyenfeldt MF et al (2005) Rectal cancer: MR imaging in local staging – is gadolinium-based contrast material helpful? Radiology 234(1):179–188CrossRefGoogle Scholar
  92. Vliegen RF, Beets GL, Lammering G et al (2008) Mesorectal fascia invasion after neoadjuvant chemotherapy and radiation therapy for locally advanced rectal cancer: accuracy of MR imaging for prediction. Radiology 246(2):454–462PubMedCrossRefGoogle Scholar
  93. White NS, McDonald C, Farid N et al (2014) Diffusion-weighted imaging in cancer: physical foundations and applications of restriction spectrum imaging. Cancer Res 74(17):4638–4652PubMedPubMedCentralCrossRefGoogle Scholar
  94. Will O, Purkayastha S, Chan C et al (2006) Diagnostic precision of nanoparticle-enhanced MRI for lymph-node metastases: a meta-analysis. Lancet Oncol 7(1):52–60PubMedCrossRefGoogle Scholar
  95. Yablonskiy DA, Sukstanskii AL (2010) Theoretical models of the diffusion weighted MR signal. NMR Biomed 23(7):661–681PubMedPubMedCentralCrossRefGoogle Scholar
  96. Yasuda K, Adachi Y, Shiraishi N et al (2001) Pattern of lymph node micrometastasis and prognosis of patients with colorectal cancer. Ann Surg Oncol 8(4):300–304PubMedCrossRefGoogle Scholar
  97. Zhang XM, Yu D, Zhang HL et al (2008) 3D dynamic contrast-enhanced MRI of rectal carcinoma at 3T: correlation with microvascular density and vascular endothelial growth factor markers of tumor angiogenesis. J Magn Reson Imaging 27(6):1309–1316PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2020

Authors and Affiliations

  • Ulrike I. Attenberger
    • 1
    Email author
  • Ralf D. Hofheinz
    • 2
  • Barbara D. Wichtmann
    • 1
  1. 1.Klinik für diagnostische und interventionelle RadiologieRheinische Friedrich-Wilhelms-Universität BonnBonnDeutschland
  2. 2.Medizinische Fakultät Mannheim der Universität Heidelberg, Universitätsmedizin Mannheim GmbHInterdisziplinäres TumorzentrumMannheimDeutschland

Personalised recommendations