Advertisement

Paradigmenwechsel in der Demenzforschung

  • Gerald Hüther
  • Doris GebhardEmail author
Chapter

Zusammenfassung

Das menschliche Gehirn verfügt über umfassende Regenerations- und Umbaufähigkeiten. Wie Erkenntnisse aus Studien zur Neuroplastizität für die Demenzforschung genutzt werden können und welche neuen Perspektiven die Erkenntnisse der sogenannten Nonnenstudie dabei eröffnen, zeigt das vorliegende Kapitel. Der direkte und scheinbar unumstößliche Zusammenhang zwischen demenzassoziierten neuropathologischen Veränderungen im Hirn und demenzassoziierten Veränderungen in der Kognition und dem Verhalten wird dabei auf Basis von Forschungsergebnissen kritisch hinterfragt. In diesem Kontext werden das Kohärenzgefühl und die Potenziale von Maßnahmen der Gesundheitsförderung und Prävention zur Steigerung der Plastizität im Zusammenhang mit der Entstehung und Behandlung von Demenzerkrankungen diskutiert und es wird ein mutiger Aufruf zu einem Paradigmenwechsel in der Demenzforschung getätigt.

Literatur

  1. Alm AK, Hagglund P, Norbergh K-G, Hellzen O (2015) Sense of coherence in persons with dementia and their next of kin – a mixed-method study. Open J Nurs 5:490–499. https://doi.org/10.4236/ojn.2015.55052CrossRefGoogle Scholar
  2. Antonovsky A (1997) Salutogenese: Zur Entmystifizierung der Gesundheit (A Franke, Übers.). dgvt, Tübingen (Original erschienen 1987: Unraveling the mystery of health: how people manage stress and stay well)Google Scholar
  3. Bennett DA, Wilson RS, Arvanitakis Z, Boyle PA, de Toledo-Morrell L, Schneider JA (2013) Selected findings from the religious order study and rush memory and aging project. J Alzheimers Dis 33:397–403. https://doi.org/10.3233/JAD-2012-129007CrossRefGoogle Scholar
  4. Boyke J, Driemeyer J, Gaser C, Büchel C, May A (2008) Training-induced brain structure changes in the elderly. J Neurosci 28(28):7031–7035. https://doi.org/10.1523/JNEUROSCI.0742-08.2008CrossRefPubMedGoogle Scholar
  5. Cespón J, Miniussi C, Pellicciari MC (2018) Interventional programmes to improve cognition during healthy and pathological ageing: cortical modulations and evidence for brain plasticity. Ageing Res Rev 43:81–98. https://doi.org/10.1016/j.arr.2018.03.001CrossRefPubMedGoogle Scholar
  6. Cheng S-T (2016) Cognitive reserve and the prevention of dementia: the role of physical and cognitive activities. Curr Psychiatry Rep 18(9):85. https://doi.org/10.1007/s11920-016-0721-2CrossRefPubMedPubMedCentralGoogle Scholar
  7. Creutzfeldt O (1982) Nobelpreis für Psychologie und Medizin. Neue Einsichten in die funktionelle Organisation der Hirnrinde. Naturwissenschaften 69:101–106CrossRefGoogle Scholar
  8. Discoll I, Troncoso J (2011) Asymptomatic Alzheimer’s disease: a prodrome or a state of resilience? Curr Alzheimer Res 8(4):330–335. https://doi.org/10.2174/156720511795745348CrossRefGoogle Scholar
  9. Draganski B, May A (2008) Training-induced structural changes in the adult human brain. Behav Brain Res 192(1):137–142. https://doi.org/10.1016/j.bbr.2008.02.015CrossRefPubMedGoogle Scholar
  10. Dragenski B, Gaser C, Busch V, Schuierer G, Bogdahn U, May A (2004) Changes in grey matter induced by training. Nature 427:311–312. https://doi.org/10.1038/427311aCrossRefGoogle Scholar
  11. Grefkes C, Ward NS (2014) Cortical reorganization after stroke: how much and how functional? Neuroscientist 20(1):56–70. https://doi.org/10.1177/1073858413491147CrossRefPubMedGoogle Scholar
  12. Herholz SC, Zatorre RJ (2012) Musical training as a framework for brain plasticity: behaviour, function, and structure. Neuron 76(3):486–502. https://doi.org/10.1016/j.neuron.2012.10.011CrossRefPubMedGoogle Scholar
  13. Holman C, Villers-Sidani E (2014) Indestructible plastic: the neuroscience of the new aging brain. Front Hum Neurosci 8:219. https://doi.org/10.3389/fnhum.2014.00219CrossRefPubMedPubMedCentralGoogle Scholar
  14. Hötting K, Röder B (2013) Beneficial effects of physical exercise on neuroplasticity and cognition. Neurosci Biobehav Rev 37:2243–2257. https://doi.org/10.1016/j.neubiorev.2013.04.005CrossRefPubMedGoogle Scholar
  15. Hüther G (1996) Biologie der Angst. Vandenhoeck und Ruprecht, GöttingenGoogle Scholar
  16. Hüther G (2017) Raus aus der Demenz-Falle! Wie es gelingen kann, die Selbstheilungskräfte des Gehirns rechtzeitig zu aktivieren. Arkana, MünchenGoogle Scholar
  17. Jiang G, Yin X, Li C, Li L, Zhao L, Evans AC, Jiang T, Wu J, Wang J (2015) The plasticity of brain gray matter and white matter following lower limb amputation. Neural Plast 2015:10. https://doi.org/10.1155/2015/823185CrossRefGoogle Scholar
  18. Keyes SE, Clarke CL, Wilkinson H, Alexjuk EJ, Wilcockson J, Robinson L, Reynolds J, McClelland S, Corner L, Cattan M (2016) “We’re all thrown in the same boat …”: a qualitative analysis of peer support in dementia care. Dementia 15(4):560–577. https://doi.org/10.1177/1471301214529575CrossRefPubMedGoogle Scholar
  19. Latimer CS, Keene CD, Flanagan ME, Hemmy LS, Lim KO, White LR, Montine KS, Montine TJ (2017) Resistance to Alzheimer disease neuropathologic changes and apparent cognitive resilience in the Nun and Honolulu-Asia Aging Studies. J Neuropathol Exp Neurol 76(6):458–466. https://doi.org/10.1093/jnen/nlx030CrossRefPubMedPubMedCentralGoogle Scholar
  20. Li X-X, Li Z (2018) The impact of anxiety on the progression of mild cognitive impairment to dementia in Chinese and English data bases: a systematic review and meta-analysis. Int J Geriatr Psychiatry 33(1):131–140. https://doi.org/10.1002/gps.4694CrossRefPubMedGoogle Scholar
  21. Lillekroken D, Solveig H, Slettebo A (2015) Enabling resources in people with dementia: a qualitative study about nurses’ strategies that may support a sense of coherence in people with dementia. J Clin Nurs 24:3129–3137. https://doi.org/10.1111/jocn.12945CrossRefPubMedGoogle Scholar
  22. May A (2011) Experience-dependent structural plasticity in the adult human brain. Trends Cogn Sci 15(10):475–482. https://doi.org/10.1016/j.tics.2011.08.002CrossRefPubMedGoogle Scholar
  23. Mjørud M, Engedal K, Røsvik J, Kirkevold M (2017) Living with dementia in a nursing home, as described by persons with dementia: a phenomenological hermeneutic study. BMC Health Serv Res 17(1):93. https://doi.org/10.1186/s12913-017-2053-2CrossRefPubMedPubMedCentralGoogle Scholar
  24. Morgan MD, Mielke MM, O’Brien R, Troncoso JC, Zonderman AB, Lyketsos CG (2007) Rates of depression in individuals with pathologic but not clinical Alzheimer disease are lower than those in individuals without the disease: findings from the Baltimore Longitudinal Study on Aging (BLSA). Alzheimer Dis Assoc Disord 21(3):199–204. https://doi.org/10.1097/WAD.0b013e3181461932CrossRefPubMedPubMedCentralGoogle Scholar
  25. Mourano RJ, Mansur G, Malloy-Diniz LF, Costa EC, Diniz BS (2015) Depressive symptoms increase the risk of progression to dementia in subjects with mild cognitive impairment: systematic review and meta-analysis. Int J Geriatr Psychiatry 31(8):905–911. https://doi.org/10.1002/gps.4406CrossRefGoogle Scholar
  26. O’Brien RJ, Resnick SM, Zonderman AB, Ferrucci L, Crain BJ, Pletnikova O, Rudow G, Iacono D, Riudavets MA, Driscoll I, Price DL, Martin LJ, Troncoso JC (2009) Neuropathologic studies of the Baltimore Longitudinal Study of Aging (BLSA). J Alzheimer’s Dis 18(3):665–675. https://doi.org/10.3233/JAD-2009-1179CrossRefGoogle Scholar
  27. Pascual-Leone A, Amedi A, Freni F, Merabet LB (2005) The plastic human brain cortex. Annu Rev Neurosci 28:377–401. https://doi.org/10.1146/annurev.neuro.27.070203.144216CrossRefPubMedGoogle Scholar
  28. Pedrinolla A, Schena F, Venturelli M (2017) Resilience to Alzheimer’s disease: the role of physical activity. Curr Alzheimer Res 14:546–553. https://doi.org/10.2174/1567205014666170111145817CrossRefPubMedGoogle Scholar
  29. Phillips C (2017) Lifestyle modulators of neuroplasticity: how physical activity, mental engagement, and diet promote cognitive health during aging. Neural Plast 2017:22. https://doi.org/10.1155/2017/3589271CrossRefPubMedPubMedCentralGoogle Scholar
  30. Richter S, Glöckner JM, Blättner B (2018) Psychosoziale Interventionen in der stationären Pflege. Systematische Übersicht des Effekts universeller und selektiver Prävention auf die psychische Gesundheit. Z Gerontol Geriat 51(6):666–674. https://doi.org/10.1007/s00391-017-1231-5CrossRefGoogle Scholar
  31. Sale A (2018) A systematic look at environmental modulation and its impact in brain development. Trends Neurosci 41(1):4–17. https://doi.org/10.1016/j.tins.2017.10.004CrossRefPubMedGoogle Scholar
  32. Seel M (2009) Theorien. S. Fischer, FrankfurtGoogle Scholar
  33. Skrajner MJ, Haberman JL, Camp CJ, Tusick M, Frentiu C, Gorzelle G (2012) Training nursing home residents to serve as group activity leaders: lessons learned and preliminary results from the RAP project. Dementia 11(2):263–274. https://doi.org/10.1177/1471301212437457CrossRefGoogle Scholar
  34. Snowdon D (2001) Aging with grace. What the Nun study teaches us about leading longer, healthier, and more meaningful lives. Bantam Books, New YorkGoogle Scholar
  35. Snowdon DA (2003) Healthy aging and dementia: findings from the Nun study. Ann Intern Med 139(5):450–454CrossRefGoogle Scholar
  36. Souza LC, Filho CB, Goes AT, Del Fabbron L, de Gomes MG, Savegnago L, Schneider Oliveira M, Jesse CR (2013) Neuroprotective effect of physical exercise in a mouse model of Alzheimer’s disease induced by ß-Amyloid Peptide. Neurotox Res 24(2):148–163. https://doi.org/10.1007/s12640-012-9373-0CrossRefPubMedGoogle Scholar
  37. Stern Y (2002) What is cognitive reserve? Theory and research application of the reserve concept. J Int Neuropsychol Soc 8:448–460. https://doi.org/10.1017.S1355617701020240
  38. Stern Y (2012) Cognitive reserve in ageing and Alzheimer’s disease. Lancet Neurol 11(11):1006–1012. https://doi.org/10.1016/S1474-4422(12)70191-6CrossRefPubMedPubMedCentralGoogle Scholar
  39. Stern Y (2013) Cognitive reserve: implications for assessment and intervention. Folia Phoniatr 65(2):49–54. https://doi.org/10.1159/000353443CrossRefGoogle Scholar
  40. Stoner CR, Orrell M, Spector A (2015) Review of positive psychology outcome measures for chronic illness, traumatic brain injury and older adults: adaptability in dementia? Dement Geriatr Cogn Disord 40(5–6):340–357. https://doi.org/10.1159/000439044CrossRefPubMedGoogle Scholar
  41. Styliadis C, Kartsidis P, Paraskevopoulos E, Ionnides AA, Bamidis PD (2015) Neuroplastic effects of combined computerized physical and cognitive training in elderly individuals at risk for dementia: an eLORETA controlled study on resting states. Neural Plast 2015:12. https://doi.org/10.1155/2015/172192CrossRefPubMedPubMedCentralGoogle Scholar
  42. Tak SH, Kedia S, Tongumpun TM, Hong SH (2015) Activity engagement: perspectives from nursing home residents with dementia. Educ Gerontol 41:182–192. https://doi.org/10.1080/03601277.2014.937217CrossRefPubMedGoogle Scholar
  43. Taylor J (2010) Mit einem Schlag. Knaur, MünchenGoogle Scholar
  44. Terracciano A, Iacono D, O’Brien RJ, Troncoso JC, An Y, Sutin AR, Ferrucci L, Zonderman AB, Resnick SM (2013) Personality and resilience to Alzheimer’s disease neuropathology: a prospective autopsy study. Neurobiol Aging 34(4):1045–1050. https://doi.org/10.1016/j.neurobiolaging.2012.08.008CrossRefPubMedGoogle Scholar
  45. Theurer K, Wister A, Sixsmith A, Chaudhury H, Lovegreen L (2014) The development and evaluation of mutual support groups in long-term care homes. J Appl Gerontol 33(4):387–415. https://doi.org/10.1177/0733464812446866CrossRefPubMedGoogle Scholar
  46. Theurer K, Mortenson WB, Stone R, Suto M, Timonen V, Rozanova J (2015) The need for a social revolution in residential care. J Aging Stud 35:201–210. https://doi.org/10.1016/j.jaging.2015.08.011CrossRefPubMedGoogle Scholar
  47. Van Praag H, Fleshner M, Schwartz MW, Mattson MP (2014) Exercise, energy intake, glucose homeostasis, and the brain. J Neurosci 34(46):15139–15149. https://doi.org/10.1523/JNEUROSCI.2814-14.2014CrossRefPubMedPubMedCentralGoogle Scholar
  48. Wahl D, Cogger VC, Solon-Biet SM, Waern RV, Gokarn R, Pulpitel T, Cabo R, Mattson MP, Raubenheimer D, Simpson SJ, Le Couteur DG (2016) Nutritional strategies to optimize cognitive function in the aging brain. Ageing Res Rev 31:80–92. https://doi.org/10.1016/j.arr.2016.06.006CrossRefPubMedPubMedCentralGoogle Scholar
  49. Wajda DA, Mirelman A, Hausdorff JM, Sosnoff JJ (2017) Intervention modalities for targeting cognitive-motor interference in individuals with neurodegenerative diseases: a systematic review. Expert Rev Neurother 17(3):251–261. https://doi.org/10.1080/14737175.2016.1227704CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2019

Authors and Affiliations

  1. 1.Akademie für PotentialentfaltungGöttingenDeutschland
  2. 2.Technische Universität MünchenMünchenDeutschland

Personalised recommendations