Advertisement

Power-to-Methanol: Techno-Economical and Ecological Insights

  • Mohamed OudaEmail author
  • Christoph HankEmail author
  • Florian Nestler
  • Max Hadrich
  • Johannes Full
  • Achim Schaadt
  • Christopher Hebling
Chapter
Part of the ATZ/MTZ-Fachbuch book series (ATZMTZ)

Abstract

Methanol synthesis based on renewable electricity generation, sustainable hydrogen (H2) and recycled industrial carbon dioxide (CO2) represents an interesting solution to integrated renewable energy storage and platform chemical production. In this work the technological overview of the methanol synthesis from conventional feedstocks and based on CO2 is provided. The business case for this electricity based product under current market conditions (e.g. vs. conventional fossil methanol production cost) and the appropriate implementation scenarios to increase methanol attractiveness and adoption is highlighted. A complementary ecological evaluation of PtM process is provided and recommendations for this sustainable platform based on these understandings are highlighted.

Keywords

Power-to-Methanol CO2 utilization Methanol synthesis Economics of methanol synthesis Ecological evaluation Life cycle assessment 

Notes

Acknowledgments

Dr. Matthias Krüger from thyssenkrupp Industrial Solutions AG is gratefully acknowledged for his contributions.

References

  1. 1.
    Bertau M, Asinger F (2014) Methanol: the basic chemical and energy feedstock of the future Asinger’s vision today. Springer, HeidelbergCrossRefGoogle Scholar
  2. 2.
    Schmidt WWP (ed) (2016) Power-to-liquids: potentials and perspectives for the future supply of renewable aviation fuelGoogle Scholar
  3. 3.
    Klankermayer J, Wesselbaum S, Beydoun K, Leitner W (2016) Angew Chem 55(26):7296 (International ed. in English)CrossRefGoogle Scholar
  4. 4.
    Riaz A, Zahedi G, Klemeš JJ (2013) J Cleaner Prod 57:19CrossRefGoogle Scholar
  5. 5.
    Bergren M (2017) Methanol to energy – challenges and opportunities, FrankfurtGoogle Scholar
  6. 6.
  7. 7.
  8. 8.
  9. 9.
    Rostrup-Nielsen JR, Sehested J, Nørskov JK (2002) Adv Catal 47:65Google Scholar
  10. 10.
    Hu YH, Ruckenstein E (2004) Adv Catal 48:297Google Scholar
  11. 11.
    Toporov D, Abraham R (2015) J South Afr Inst Min Metall 115(7):589CrossRefGoogle Scholar
  12. 12.
  13. 13.
    Goehna H, Koenig P (1994) ChemTech 24(6):36Google Scholar
  14. 14.
    Saito M, Takeuchi M, Watanabe T, Toyir J, Luo S, Wu J (1997) Energy Convers Manag 38:403–408CrossRefGoogle Scholar
  15. 15.
    Pontzen F, Liebner W, Gronemann V, Rothaemel M, Ahlers B (2011) Catal Today 171(1):242CrossRefGoogle Scholar
  16. 16.
    Centi G, Perathoner S (2009) Catal Today 148(3–4):191CrossRefGoogle Scholar
  17. 17.
    Joo O-S, Jung K-D, Yonsoo J (2004) In Carbon dioxide utilization for global sustainability. In: Proceedings of the 7th international conference on carbon dioxide utilization. Elsevier, p 67Google Scholar
  18. 18.
    Doss B, Ramos C, Atkins S (2009) Energy Fuels 23(9):4647CrossRefGoogle Scholar
  19. 19.
    Ushikoshi K, Mori K, Kubota T, Watanabe T, Saito M (2000) Appl Organometal Chem 14(12):819CrossRefGoogle Scholar
  20. 20.
  21. 21.
    Ladebeck J (1993) Hydrocarbon processing, (United States) 72(3)Google Scholar
  22. 22.
    Saito M, Takeuchi M, Fujitani T, Toyir J, Luo S, Wu J, Mabuse H, Ushikoshi K, Mori K, Watanabe T (2000) Appl Organometal Chem 14(12):763CrossRefGoogle Scholar
  23. 23.
    Zhang Y, Fei J, Yu Y, Zheng X (2006) Energy Convers Manag 47(18–19):3360CrossRefGoogle Scholar
  24. 24.
    Schlögl R (2013) Chemical energy storage. De Gruyter, BerlinGoogle Scholar
  25. 25.
    Liu G (1984) J Catal 90(1):139CrossRefGoogle Scholar
  26. 26.
    Kung HH (1992) Catal Today 11(4):443CrossRefGoogle Scholar
  27. 27.
    Wu J, Saito M, Takeuchi M, Watanabe T (2001) Appl Catal A Gen 218(1–2):235CrossRefGoogle Scholar
  28. 28.
    Fichtl MB, Schlereth D, Jacobsen N, Kasatkin I, Schumann J, Behrens M, Schlögl R, Hinrichsen O (2015) Appl Catal A Gen 502:262CrossRefGoogle Scholar
  29. 29.
    Arakawa H, Dubois J-L, Sayama K (1992) Energy Convers Manag 33(5–8):521CrossRefGoogle Scholar
  30. 30.
    Lee JS, Lee KH, Lee SY, Kim YG (1993) J Catal 144(2):414CrossRefGoogle Scholar
  31. 31.
    Rahimpour MR (2008) Fuel Process Technol 89(5):556CrossRefGoogle Scholar
  32. 32.
    Goehna H, Koenig P (1994) Verfahren zur Erzeugung von Methanol(DE Patent 000004416425A1)Google Scholar
  33. 33.
    Joo O-S, Jung K-D, Moon I, Rozovskii AY, Lin GI, Han S-H, Uhm S-J (1999) Ind Eng Chem Res 38(5):1808CrossRefGoogle Scholar
  34. 34.
    Joo O-S (2000) In abstracts of papers of the American Chemical Society, p 394Google Scholar
  35. 35.
    Ingolfsson O, Jonsson FR, Shulenberger A, Tran K-C (2007) Process for producing liquid fuel from carbon dioxide and water (WO Patent 002007108014A1)Google Scholar
  36. 36.
    Nestler F, Krüger M, Full J, Hadrich MJ, White RJ, Schaadt A (2018) Chem Ing Tec 90(10):1409CrossRefGoogle Scholar
  37. 37.
    Sun JT, Metcalfe IS, Sahibzada M (1999) Ind Eng Chem Res 38(10):3868CrossRefGoogle Scholar
  38. 38.
    Wu J, Saito M, Takeuchi M, Watanabe T (2001) Appl Catal A 218(1–2):235CrossRefGoogle Scholar
  39. 39.
    Klier K (1982) J Catal 74(2):343CrossRefGoogle Scholar
  40. 40.
    Chanchlani KG (1992) J Catal 136(1):59CrossRefGoogle Scholar
  41. 41.
    Nappi A, Fabbricino L, Hudgins RR, Silveston PL (1985) Can J Chem Eng 63(6):963CrossRefGoogle Scholar
  42. 42.
    Ostrovskii V (2002) Catal Today 77(3):141CrossRefGoogle Scholar
  43. 43.
    Rozovskii AY (2003) Top Catal 22(3/4):137CrossRefGoogle Scholar
  44. 44.
    Coteron A, Hayhurst AN (1994) Chem Eng Sci 49(2):209CrossRefGoogle Scholar
  45. 45.
    Chinchen GC, Denny PJ, Jennings JR, Spencer MS, Waugh KC (1988) Appl Catal 36:1CrossRefGoogle Scholar
  46. 46.
    Takagawa M (1987) J Catal 107(1):161CrossRefGoogle Scholar
  47. 47.
    Ren Z-X, Wang J, Jia J-J, Lu D-S (1989) Appl Catal 49(1):83CrossRefGoogle Scholar
  48. 48.
    McNeil MA, Schack CJ, Rinker RG (1989) Appl Catal 50(1):265CrossRefGoogle Scholar
  49. 49.
    Denise B, Sneeden RPA, Hamon C (1982) J Mol Catal 17(2–3):359CrossRefGoogle Scholar
  50. 50.
    Kuechen C, Hoffmann U (1993) Chem Eng Sci 48(22):3767CrossRefGoogle Scholar
  51. 51.
    Behrens M (2015) Recyclable Catalysis 2(1):3343CrossRefGoogle Scholar
  52. 52.
    Sahibzada M, Metcalfe IS, Chadwick D (1998) J Catal 174(2):111CrossRefGoogle Scholar
  53. 53.
    J. Ladebeck, J. P. Wagner and T. Matsuhisa in Natural Gas Conversion IV, Elsevier, 1997, p 73Google Scholar
  54. 54.
    Saito M, Murata K (2004) Catal Surv Asia 8(4):285CrossRefGoogle Scholar
  55. 55.
    Lange J-P (2001) Catal Today 64(1–2):3CrossRefGoogle Scholar
  56. 56.
    Balthasar W, Müller D, Wagner U (2016) Verfahren zur Synthese von Methanol (EP Patent 000003205622A1)Google Scholar
  57. 57.
    Bertau M (Hrsg) (2014) Methanol: the basic chemical and energy feedstock of the future: Asinger’s vision today. Springer, HeidelbergGoogle Scholar
  58. 58.
    Olah GA, Goeppert A, Prakash GKS (2009) Beyond oil and gas: the methanol economy. Wiley, ChichesterCrossRefGoogle Scholar
  59. 59.
    Rostrup-Nielsen JR (2002) Catal Today 71(3–4):243CrossRefGoogle Scholar
  60. 60.
    Dybkjær I, Christensen TS (2001) In natural gas conversion VI, p 435. Elsevier, AmsterdamGoogle Scholar
  61. 61.
    Twigg MV (2003) Top Catal 22(3/4):191–203CrossRefGoogle Scholar
  62. 62.
    Liu X-M, Lu GQ, Yan Z-F, Beltramini J (2003) Ind Eng Chem Res 42(25):6518CrossRefGoogle Scholar
  63. 63.
    Müller D, Ott J (2007) Verfahren und Anlage zur Herstellung von Methanol, Bei der Herstellung von Methanol aus einem Synthesegas wird das Kohlenstoffoxid und Wasserstoff enthaltende Synthesegas katalytisch zu Methanol umgesetzt und dann destillativ abgetrennt. Um den Gehalt an Trimethylamin (TMA) im Methanol zu reduzieren, wird das Methanol durch einen Ionenaustauscher geführt. (DE Patent 102007030440A1)Google Scholar
  64. 64.
    Zurbel A, Kraft M, Kavurucu-Schubert S, Bertau M (2018) Chem Ing Tec 90(5):721CrossRefGoogle Scholar
  65. 65.
  66. 66.
    Schittkowski J, Ruland H, Laudenschleger D, Girod K, Kähler K, Kaluza S, Muhler M, Schlögl R (2018) Chem Ing Tec 115(1–4):2Google Scholar
  67. 67.
    Alvarado M (2016) Global Methanol Outlook 2016: February 2016Google Scholar
  68. 68.
    Olah GA, Goeppert A, Prakash GKS (2009) Beyond oil and gas: the methanol economy. Wiley-VCH, WeinheimCrossRefGoogle Scholar
  69. 69.
    Baliban RC, Elia JA, Weekman V, Floudas CA (2012) Comput Chem Eng 47:29CrossRefGoogle Scholar
  70. 70.
  71. 71.
    European Automobile Manufacturers Association (ACEA) (2015) Methanol as a gasoline blending component. ACEA Position PaperGoogle Scholar
  72. 72.
    Methanol Institute. Methanol Use In Gasoline: Blending, Storage and Handling of Gasoline Containing Methanol, Methanol Blending Technical Product Bulletin, Singapore, WashingtonGoogle Scholar
  73. 73.
    Bragadeshwaran A, Kasianantham N, Ballusamy S, Tarun KR, Dharmaraj AP, Kaisan MU (2018) Environ Sci Pollut Res Int 25(33):33573CrossRefGoogle Scholar
  74. 74.
    Ouda M, Yarce G, White RJ, Hadrich MJ, Himmel D, Schaadt A, Klein H, Jacob E, Krossing I (2017) React Chem Eng 2(1):50CrossRefGoogle Scholar
  75. 75.
    Ouda M, Mantei F, Hesterwerth K, Bargiacchi E, Klein H, White RJ (2018) React Chem Eng 129(37):11164Google Scholar
  76. 76.
    Ouda M, Mantei FK, Elmehlawy M, White RJ, Klein H, Fateen S-EK (2018) React Chem Eng 3(3):277CrossRefGoogle Scholar
  77. 77.
    International Maritime Organization (IMO) and DNV GL. Methanol as marine fuel: Environmental benefits, technology readiness, and economic feasibility: Use of methanol as fuel, 2016Google Scholar
  78. 78.
  79. 79.
  80. 80.
  81. 81.
  82. 82.
  83. 83.
    Streeck J, Hank C, Neuner M, Gil-Carrera L, Kokko M, Pauliuk S, Schaadt A, Kerzenmacher S, White RJ (2018) Green Chem 20(12):2742CrossRefGoogle Scholar
  84. 84.
  85. 85.
  86. 86.
  87. 87.
  88. 88.
  89. 89.
    Hank C, Gelpke S, Schnabl A, White RJ, Full J, Wiebe N, Smolinka T, Schaadt A, Henning H-M, Hebling C (2018) Sustain Energy Fuels 2(6):1244CrossRefGoogle Scholar
  90. 90.
    Assen Nvd, Muller LJ, Steingrube A, Voll P, Bardow A (2016) Environ Sci Technol 50(3):1093CrossRefGoogle Scholar
  91. 91.
    Fischedick M, Görner K (Hrsg) (2015) CO2: separation, storage, usage: holistic view in ther ange of energy economy and industry. Springer, HeidelbergGoogle Scholar
  92. 92.
    Keith DW, Ha-Duong M, Stolaroff JK (2005) Clim Change 74(1–3):17Google Scholar
  93. 93.
    Goehna H, Koenig P (1994) Chemtech (Chemical technoloy) 36Google Scholar
  94. 94.
    Pérez-Fortes M, Schöneberger JC, Boulamanti A, Tzimas E (2016) Appl Energy 161:718CrossRefGoogle Scholar
  95. 95.
    Rihko-Struckmann LK, Peschel A, Hanke-Rauschenbach R, Sundmacher K (2010) Ind Eng Chem Res 49(21):11073CrossRefGoogle Scholar
  96. 96.
    Stefansson B (2015) Power and CO2 emissions to methanol, BrüsselGoogle Scholar
  97. 97.
    Kost C, Mayer J, Thomsen J, Hartmann N, Senkpiel C, Philipps S, Nold S, Lude S, Schlegl T (2013) Stromgestehungskosten Erneuerbare Energien, FreiburgGoogle Scholar
  98. 98.
    Bundesministerium für Wirtschaft und Energie BMWi (2014) Gesetz für den Ausbau erneuerbarer Energien: Erneuerbare-Energien-Gesetz – EEG 2014Google Scholar
  99. 99.
    Baerns M (2013) Technische Chemie. Wiley-VCH, WeinheimGoogle Scholar
  100. 100.
    Machhammer O, Bode A, Hormuth W (2015) Chem Ing Tec 87(4):409CrossRefGoogle Scholar
  101. 101.
    Atsonios K, Panopoulos KD, Kakaras E (2016) Int J Hydrogen Energy 41(4):2202CrossRefGoogle Scholar
  102. 102.
    Matzen M, Alhajji M, Demirel Y (2015) Energy 93:343CrossRefGoogle Scholar
  103. 103.
    Schlögl R (2016) Top Catal 59(8–9):772CrossRefGoogle Scholar
  104. 104.
    In EUR-Lex, 2003Google Scholar
  105. 105.
    SCOT Project ed (2015) EU ETS to incentivise CO2 UtilisationGoogle Scholar
  106. 106.
    SETIS (2016) Carbon capture utilisation and storage, BrüsselGoogle Scholar
  107. 107.
    Duncan I (ed) (2016) Draft Report on the proposal for a directive of the European Parliament and of the Council amending Directive 2003/87/EC to enhance cost-effective emission reductions and low-carbon investments, European ParliamentGoogle Scholar
  108. 108.
    Altenschmidt S (2017) Recognition of climate protection measures: success at ECJ for the Lime Industry with LutherGoogle Scholar
  109. 109.
    Fischedick M, Görner K (Hrsg) (2015) CO2: Abtrennung, Speicherung, Nutzung: Ganzheitliche Bewertung im Bereich von Energiewirtschaft und Industrie. Springer, HeidelbergGoogle Scholar
  110. 110.
    Hendriks , Graus W (2004) Global carbon dioxide storage potential and costs, UtrechtGoogle Scholar
  111. 111.
    Humphreys KK (2004) Project and cost engineers handbook. Marcel Dekker, New YorkCrossRefGoogle Scholar
  112. 112.
    Smolinka T, Günther M, Garche J (2011) Stand und Entwicklungspotenzial der Wasserelektrolyse zur Herstellung von Wasserstoff aus regenerativen Energien: NOW-StudieGoogle Scholar
  113. 113.
    vad Mathiesen B, Ridjan I, Connolly D, Nielsen MP, Hendriksen PV, Mogensen MB, Jensen SH, Ebbesen SD (2013) Technology data for high temperature solid oxide electrolyser cells, alkali and PEM electrolysersGoogle Scholar
  114. 114.
    Smolinka T (2015) Cost break down and analysis of PEM electrolysis systems for different industrial and Power to Gas applications, Stuttgart, GermanyGoogle Scholar
  115. 115.
    Deutsches Zentrum für Luft- und Raumfahrt, Ludwig-Bölkow Systemtechnik, Fraunhofer-Institut für Solare Energiesysteme ISE and KBB Underground Technologies, Studie über die Planung einer Demonstrationsanlage zur Wasserstoff-Kraftstoffgewinnung durch Elektrolyse mit Zwischenspeicherung in Salzkavernen unter Druck, Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit, 2014Google Scholar
  116. 116.
    Aicher T, Gonzalez MI, Götz M (2014) Energie Wasser Praxis -DVGW JahresrevueGoogle Scholar
  117. 117.
    Humphreys KK (2005) Project and cost engineers’ handbook. Marcel Dekker, New YorkGoogle Scholar
  118. 118.
    ADI Analytics LLC (2015) Natural Gas Utilization via Small-Scale Methanol Technologies, Commissioned by Ben Franklin Technology Partners’ Shale Gas Innovation & Commercialization Center, HoustonGoogle Scholar
  119. 119.
    Smolinka T, Wiebe N, Philip S, Palzer A, Lehner F, Jansen M, Kiemel S, Robert M, Wahren S, Zimmermann F (2018) Studie IndWEDe: Industrialisierung der Wasserelektrolyse in Deutschland: Chancen und Herausforderungen für nachhaltigen Wasserstoff für Verkehr, Strom und Wärme, BerlinGoogle Scholar
  120. 120.
    Fuel Cell and Hydrogen Joint Undertaking – FCH JU (2017) Study on early business cases for H2 in energy and more broadly power to H2 applications. Final Report, BrüsselGoogle Scholar
  121. 121.
    Schmidt O, Gambhir A, Staffell I, Hawkes A, Nelson J, Few S (2017) Int J Hydrogen Energy 42(52):30470CrossRefGoogle Scholar
  122. 122.
    Saba SM, Müller M, Robinius M, Stolten D (2018) Int J Hydrogen Energy 43(3):1209CrossRefGoogle Scholar
  123. 123.
    Mignard D, Sahibzada M (2003)Google Scholar
  124. 124.
    Mignard D (2003) Int J Hydrogen Energy 28(4):455CrossRefGoogle Scholar
  125. 125.
    ADI Analytics LLC (2015) Natural gas utilization via small-scale methanol technologiesGoogle Scholar
  126. 126.
    Goehna H, Koenig P (1994) ChemTech 1994(24/6):36Google Scholar
  127. 127.
    Ladebeck J, Wagner JP, Matsuhisa T (1997) Stud Surf Sci Catal 1997(107):73CrossRefGoogle Scholar
  128. 128.
  129. 129.
  130. 130.
  131. 131.
  132. 132.
  133. 133.
    Gerhard N, Sandau F, Zimmermann B, Papen C, Bofinger S, Hoffmann C (2014) Geschäftsmodell Energiewende: Eine Antwort auf das “Die-Kosten-der-Energiewende”-Argument, KasselGoogle Scholar
  134. 134.
    Palzer A, Henning H-M (2014) Renew Sustain Energy Rev 2014(30):1019CrossRefGoogle Scholar
  135. 135.
    ecoinvent (2016) Int J Life Cycle Assess 21(9):1218–1230Google Scholar
  136. 136.
    Kuckshinrichs W, Markewitz P, Linssen J, Zapp P, Peters M, Köhler B, Müller TE, Leitner W (2010) Weltweite Innovationen bei der Entwicklung von CCS-Technologien und Möglichkeiten der Nutzung und des Recyclings von CO2Google Scholar
  137. 137.
    Hugill JA, Overbeek JP, Spoelstra S (2001) A comparison of the eco-efficiency of two production routes for methanolGoogle Scholar
  138. 138.
    DIN EN ISO 14040Google Scholar
  139. 139.
    DIN, DIN EN ISO 14044: Umweltmanagement – Ökobilanz – Anforderungen und Anleitungen (ISO 14044:2006); Deutsche und Englische Fassung EN ISO 14044:2006, Beuth Verlag, Berlin, GermanyGoogle Scholar
  140. 140.
  141. 141.
    European Commission, Joint Research Centre (2010). Institute for Environment and Sustainability. International Reference Life Cycle Data System (ILCD) Handbook – General guide for Life Cycle Assessment – Detailed guidance. First edition, Publications Office of the European Union, LuxembourgGoogle Scholar
  142. 142.
    Zimmermann A, Johannes W, Buchner G, Muller LJ, Armstrong K, Michailos S, Marxen A, Naims H, Zimmerman A, Wunderlich J, Buchner G, Müller L, Mason F, Stokes G, Williams E (2018) Techno-economic assessment & life cycle assessment guidelines for CO2 utilization, global CO2 initiative. University of Michigan, BerlinCrossRefGoogle Scholar
  143. 143.
  144. 144.
  145. 145.
  146. 146.

Copyright information

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2019

Authors and Affiliations

  • Mohamed Ouda
    • 1
    Email author
  • Christoph Hank
    • 1
    Email author
  • Florian Nestler
    • 1
  • Max Hadrich
    • 1
  • Johannes Full
    • 1
  • Achim Schaadt
    • 1
  • Christopher Hebling
    • 1
  1. 1.Thermochemical Processes Department, Hydrogen Technologies DivisionFraunhofer Institute for Solar Energy SystemsFreiburgGermany

Personalised recommendations