Advertisement

Technologien zur Produktion von Wasserstoff für die Herstellung synthetischer Kraftstoffe

  • Günter HarpEmail author
Chapter
Part of the ATZ/MTZ-Fachbuch book series (ATZMTZ)

Zusammenfassung

Durch Hydrierung von CO2 lassen sich Kraftstoffe synthetisieren, die einen CO2-armen Betrieb von Verbrennungsmotoren ermöglichen. Voraussetzung dazu ist die CO2-arme Produktion von Wasserstoff. Referenzverfahren dafür ist die Dampfreformierung von Erdgas. Nachfolgend wird der Stand der Kenntnis zu verschiedenen infrage kommenden Verfahren und Verfahrensansätzen zur Herstellung von Wasserstoff aus fossilen Rohstoffen (Erdgas und Kohle), Biomasse, H2O und H2S beschrieben. Wichtige Parameter für eine Bewertung der Verfahren sind die Energieeffizienz, die CO2-Emission und die Integration in vorhandene Industrieparks. Primär zur Erzeugung von Synthesegas entwickelte Verfahren können zwar auch für eine Wasserstofferzeugung erweitert werden. Das ist aber für eine CO2-arme Kraftstoffsynthese kein Vorteil. Die Entwicklung der Methanpyrolyse als CO2-armes Produktionsverfahren für Wasserstoff erscheint besonders aussichtsreich, wenn die dabei entstehenden Koppelprodukte ohne CO2-Emission nutzbar sind. Die Wasserstofferzeugung durch elektrolytische Spaltung von H2O erfordert die Verwendung von CO2-freier elektrischer Energie. Die Spaltung von H2S in H2 und Schwefel ist wesentlich energieärmer als die Spaltung von Wasser aber bislang nur im Labor erfolgreich erprobt worden. Hier fehlt noch viel Entwicklungsarbeit.

Literatur

  1. 1.
    Mineralölwirtschaftsverband: Jahresbericht 2017. https://www.mwv.de/publikationen/jahresberichte/
  2. 2.
    Vogel A (2016) Energy challenges in the synthetic fuel industry. In: Perspectives of power to liquids and power to chemicals workshop, Freiburg, Germany, 16.–17. January 2016Google Scholar
  3. 3.
    de Klerk A (2008) Fischer-Tropsch Refining. PhD Thesis, University of PretoriaGoogle Scholar
  4. 4.
    de Klerk A (2008) Fischer – Tropsch refining: technology selection to match molecules. Green Chem 10(12):1249–1279Google Scholar
  5. 5.
    de Klerk A (2011) Catalysis in the refining of Fischer Tropsch Syncrude. Platinum Metals Rev 55(4):263–267Google Scholar
  6. 6.
    Goellner JE, Shah V, Turner MJ, Kuehn NJ, Littlefield J, Cooney G, Marriott J (2013) Analysis of natural gas-to-liquid transportation fuels via Fischer-Tropsch. DOE Contract Number DE-FE0004001, DOE/NETL-2013/1597Google Scholar
  7. 7.
    Heinitz-Adrian M, Brandl A, Hooper M, Zhao X, Tabak S (2007) An alternative route for coal to liquids: Methanol-To-Gasoline (MTG) technology. In: Gasification technology conference, San Francisco, USA, 14.–17. Oktober 2007Google Scholar
  8. 8.
    Hindman M (2010) Methanol to gasoline MTG technology. In: World CtL conference, Beijing, China, 13.–16. April 2010Google Scholar
  9. 9.
    Helton T, Hindman M (2014) Methanol to gasoline technology – an alternative for liquid fuel production. GtL technology forum 2014, Houston, USA, 30.–31. Juli 2014Google Scholar
  10. 10.
    Arnold U, Oestreich D, Pitter St, Sauer J (2014) Modified MtG processes for BtL and power to fuels. IEA Bioenergy. In: Task 33 workshop liquid biofuels, Karlsruhe, Germany, 3.–4. November 2014Google Scholar
  11. 11.
    Schmidt St, Kuschel M, Seifert P, Meyer B (2015) Synthetic gasoline production in combination with carbon dioxide utilization. In: 7th Intern. Freiberg, Inner Mongolia conference, Huhhot, China, 7.–11. Juni 2015Google Scholar
  12. 12.
    Hrsg (2017) ProcessNet-Arbeitsausschuss „Alternative flüssige und gasförmige Kraft- und Brennstoffe“ Fortschrittliche alternative flüssige Brenn- und Kraftstoffe: Für Klimaschutz im globalen Rohstoffwandel. http://www.dechema.de/studien.html
  13. 13.
  14. 14.
    Zakkour P, Cook G (2010) CCS roadmap for industry: high purity CO2 sources. Carbon counts co final draft report, September 2010. https://www.globalccsinstitute.com/publications/ccs-roadmap-industry-high-purity-co2-sources-sectoral-assessment-%E2%80%93-final-draft-report
  15. 15.
    IEAGHG (2017) Reference data and supporting literature reviews for SMR based hydrogen production with CCS. 2017-TR3, March 2017. http://www.ieaghg.org/ccs-resources/bio-ccs-web-tool/49-publications/technical-reports/778-2017-tr3-reference-data-supporting-literature-reviews-for-smr-based-hydrogen-production-with-ccs
  16. 16.
    Baufume S, Gruger F, Grube T, Krieg D, Linssen J, Weber M, Hake J-F, Stolten D (2013) GIS-based scenario calculations for a nationwide German hydrogen pipeline infrastructure. Int J Hydrogen Energy 38:3813–3829Google Scholar
  17. 17.
    Rostrup-Nielsen JR, Rostrup-Nielsen T (2002) Large scale hydrogen production. Topsoe technologies CATTECH 6(4):150–159 http://www.topsoe.com/sites/default/files/topsoe_large_scale_hydrogen_produc.pdf
  18. 18.
    Aasberg-Petersen K, Dybkjaer I, Ovesen CV, Schjödt NC, Sehested J, Thomsen S (2011) Natural gas to synthesis gas – catalysts and catalytic processes. J Nat Gas Sci Eng 3:423–459Google Scholar
  19. 19.
    Aasberg-Petersen K, Nielsen CS, Dybkjaer I, Perregaard J (2009) Large scale methanol production from natural gas. Haldor-Topsoe FirmendruckschriftGoogle Scholar
  20. 20.
    Collodi G, Azzarro G, Ferrari N, Santos S (2017) Techno-economic evaluation of deploying CCS in SMR based Merchant H2 production with NG as feedstock and fuel. Energy Procedia 114:2690–2712Google Scholar
  21. 21.
    IEAGHG (2017) Techno-economic evaluation of SMR based standalone (Merchant) plant with CCS, 2017/02, February 2017. http://ieaghg.org/component/content/article/49-publications/technical-reports/784-2017-02-smr-based-h2-plant-with-ccs
  22. 22.
    Alarcon F (2012) Prenflo gasification technology experiences from puertollano plant. Short course gasification processes, Institut für Energieverfahrenstechnik und Chemieingenieurwesen, TU BA Freiberg, Germany, 17.–18. September 2012Google Scholar
  23. 23.
    Casero P, Garcia-Pena F, Coca P (2013) Elcogas: precombustion capture pilot. Real experience of commercial technology. Energy Procedia 37:6374–6382Google Scholar
  24. 24.
    Casero P (2012) Elcogas 14 MWth pre-combustion carbon dioxide capture pilot: technical and economical achievements. In: 5th Intern. Freiberg conf. on IGCC XtL technologies, Leipzig, Germany, 21.–24. Mai 2012Google Scholar
  25. 25.
    Coca-Llano P (2011) Puertollano IGCC: pilot plant for CO2 capture and H2 production. In: 2nd intern. Conference on energy process engineering, Frankfurt, Germany, 20.–22. Juni 2011Google Scholar
  26. 26.
    Garcia-Pena F (2014) H2 production from coal and biomass co-gasification Elcogas experience on the field. In: European Hydrogen Energy Conf. (EHEC), Sevilla, Spain, 12.–14. März 2014Google Scholar
  27. 27.
    Harp G, Tran K-C, Sigurbjörnsson O, Bergins C, Buddenberg T (2016) Carbon recycling for converting coke oven gas to methanol for the reduction of carbon dioxide at steel mill. Scanmet V, Lulea, Sweden, 12.–15. Juni 2016Google Scholar
  28. 28.
    Harp G, Bergins C, Buddenberg T (2017) Combined PtL and use of by-product H2 in an integrated steel mill – industrial symbiosis between chemical and steel industry. In: 3rd ESTAD, Vienna, Austria, 26.–29 Juni 2017Google Scholar
  29. 29.
    Diemer P, Killich H-J, Knop K, Lüngen H-B, Reinke M, Schmöle P (2004) Potentials for utilisation of coke oven gas in integrated iron and steel works. Stahl u Eisen 124(7):21–30Google Scholar
  30. 30.
    Harp G, Tran K-C, Sigurbjörnsson O, Bergins C, Buddenberg T, Drach I (2015) Application of power to methanol technology to integrated steelworks for profitability, conversion efficiency, and CO2 reduction. In: 2nd ESTAD, Düsseldorf, Germany, 15.–19. Juni 2015Google Scholar
  31. 31.
    Yang Z, Zhang Y, Wang X, Zhang Y, Lu X, Ding W (2010) Steam reforming of coke oven gas for hydrogen production over a NiO/MgO solid solution catalyst. Energy Fuels 24(2):785–788Google Scholar
  32. 32.
    Kreysa G (2008) Methan – Chance für eine klimaverträgliche Energieversorgung. Chem Ing Techn 80(7):901–908Google Scholar
  33. 33.
    Abanades A, Ruiz E, Ferruelo EM, Hernandez F, Canaillas A, Martinez-Val JM, Rubio JA, Lopez C, Gavela R, Barrera G, Rubbia C, Salmieri D, Rodilla E, Gutierrez D (2011) Experimental analysis of direct thermal methane cracking. Int J Hydrogen Energy 36(20):12877–12886Google Scholar
  34. 34.
    Muradov N (2001) Hydrogen via methane decomposition: an application for decarbonization of fossil fuels. Int J Hydrogen Energy 26(11):1165–1175Google Scholar
  35. 35.
    Muradov N (2017) Low to near-zero CO2 production of hydrogen from fossil fuels: status and perspectives. Int J Hydrogen Energy 42(20):14058–14088Google Scholar
  36. 36.
    Keipi T (2017) Technology development and techno-economic analysis of hydrogen production by thermal decomposition of methane. Dr. Degree Thesis, Tampere University of TechnologyGoogle Scholar
  37. 37.
    Bode A, Anderlohr Ch, Bernnat J, Flick F, Glenk F, Klingler D, Kolios G, Scheiff F, Wechsung A, Hensmann M, Möhring St, Stubbe G, Lizandara C, Lange de Oliveira A, Schunk StA, Göke V, Hunfeld J, Mihailowitsch D, Pleintinger St, Posselt H, Weikl MC, Zander H-J, Antweiler N, Büker K, Eckbauer M, Krüger M, Marek P, Rosermund K, Janhsen U, Mittelstädt H, Möllers Ch, Agar DW, Munera-Parra A (2018) Feste und fluide Produkte aus Gas – FfPaG Schlussbericht BMBF FKZ 033RC1301 A-G, März 2018Google Scholar
  38. 38.
    Stalhead J (1952) Die Herstellung von Eisenschwamm nach dem Wiherg-Söderfors-Verfahren. Stahl u Eisen 72:459–466Google Scholar
  39. 39.
    Stubbe G, Harp G, Marx K, Ebner M, Mirabile D, Pistelli MI (2013) Upgrading and Utilisation of Residual Iron Oxide Materials for hot metal production (URIOM) Final report EUR 25081. https://publications.europa.eu/en/publication-detail/-/publication/056728f2-0a2c-428e-b9a9-381dffe1a7d5/language-en/format-PDF/source-69944060
  40. 40.
    Geißler T, Abanades A, Heinzel A, Mehravan K, Müller G, Rathnam RK, Rubbia C, Salmieri D, Stoppel L, Stückrad S, Weisenburger A, Wenninger H, Wetzel Th (2016) Hydrogen production via methane pyrolysis in a liquid metal bubble column reactor with a packed bed. Chem Eng J 299:192–200Google Scholar
  41. 41.
    Plevan M (2017) Entwicklung eines Verfahrens zur thermischen Zerlegung von Methan zu Wasserstoff und Kohlenstoff unter Nutzung flüssiger Metalle als Wärmeübertragungsmedium. Dr.-Ing Dissertation, Karlsruher Institut für Technologie KITGoogle Scholar
  42. 42.
    Upham DCh, Agarwal V, Khechfe A, Snodgrass ZR, Gordon MJ, Metiu H, McFarland E (2017) Catalytic molten metals for the direct conversion of methane to hydrogen and separable carbon. Science 358:917–921Google Scholar
  43. 43.
    Parkinson B, Tabatabaei M, Upham DCh, Ballinger B, Greig Ch, Smart S, McFarland E (2018) Hydrogen production using methane: techno-economics of decarbonizing fuels and chemicals. Int J Hydrogen Energy 43(5):2540–2555Google Scholar
  44. 44.
    Chernichowski A (1994) Gliding arc. Applications to engineering and environment control. Pure Appl Chem 66(6):1301–1310Google Scholar
  45. 45.
    Chernichowski A, Chernichowski M, Chernichowski P, Wesolowska K (2006) Hydrogen or syngas generation using plasma technology. Topsoe Catalysis Forum 2006 (https://www.topsoe.com/sites/default/files/czernichowski.pdf)
  46. 46.
    Paulmier T, Fulcheri L (2005) Use of non-thermal plasma for hydrocarbon reforming. Chem Eng J 106(1):59–71Google Scholar
  47. 47.
    Petitpas G, Gonzalez-Aguilar J, Darmon A, Metkemeijer R, Fulcheri F (2007) Non-equilibrium plasma assisted hydrogen production: state-of-the-art. In: Proc. 28th ICPIG internatinal conference on phenomena in ionised gases, Prague, Czech Republic, S 1177–1179, 15.–20. Juli 2007Google Scholar
  48. 48.
    Sennewald K, Schallus E, Pohl F (1963) Erzeugung von Acetylen durch thermische Spaltung von Kohlenwasserstoffen mittels hocherhitzten Wasserstoffes (WLP-Verfahren der Knapsack Griesheim AG). Chem Ing Techn 35(1):1–7Google Scholar
  49. 49.
    Baumann P (1948) Erzeugung von Acetylen nach dem Lichtbogen-Verfahren. Angew Chem Ausgabe B 20(10):257–259Google Scholar
  50. 50.
    Gladisch H (1969) Acetylen-Herstellung im elektrischen Lichtbogen. Chem Ing Techn 41(4):204–208Google Scholar
  51. 51.
    Brachold H, Peuckert C, Regner H (1993) Lichtbogen-Plasma-Reaktor für die Herstellung von Acetylen aus Kohle. Chem Ing Techn 65(3):293–297Google Scholar
  52. 52.
    Gaudernack B, Lynum St (1998) Hydrogen from natural gas without release of CO2 to the atmosphere. Int J Hydrogen Energy 23(12):1087–1093Google Scholar
  53. 53.
    Lynum St (1996) The Kvaerner CB&H Process. In: Carbon black world 1996, Nice, France, 4.–6. März 1996Google Scholar
  54. 54.
    Lynum St (1994) CO2-free hydrogen from hydrocarbons. The Kvaerner CB6H Process. In: Proc. 5th Annual US hydrogen meeting, Washington DC, USA, 23.–25. März 1994, S 6–47, 56Google Scholar
  55. 55.
    Harp G (2018) Methanol as key for industrial symbiosis between chemistry and steel. In: 6th conference on CO2 as feedstock for fuels, Chemistry and polymers, Köln, Germany, 15.–16. März 2018Google Scholar
  56. 56.
  57. 57.
    Ahmad M, Subawi H (2013) New van Krevelen diagram and its correlation with the heating value of biomass. RJAEM 2(10):295–301Google Scholar
  58. 58.
    Dahmen N, Henrich E, Dinjus E, Weinrich F (2012) The bioliq® bioslurry gasification process for the production of biosynfuels, organic chemicals, and energy. Energy Sustain Soc 2:3–47Google Scholar
  59. 59.
    Müller-Langer F, Kaltschmitt M (2007) Wasserstofferzeugung aus Biomasse in der Gesamtschau Bio-chemische und thermo-chemische Verfahren im Vergleich. Gülzower Fachgespräche, Bd 25: „Wasserstoff aus Biomasse“, S 194–216Google Scholar
  60. 60.
    Hosseini SE, Wahid MA, Jamil MM, Azli AAM, Misbah MF (2015) A review on biomass-based hydrogen production for renewable energy supply. Int J Energ Res 39(12):1597–1615Google Scholar
  61. 61.
    Berglin N, Lindblom M, Ekbom T (2003) Preliminary economics of black liquor gasification with motor fuels production. Colloquium on black liquor combustion and gasification, University of Utah, Park City, USA, 13.–16. Mai 2003Google Scholar
  62. 62.
    Ekbom T, Lindblom M, Berglin N, Ahlvik P (2003) Technical and commercial feasibility study of black liquor gasification with methanol/DME production as motor fuels for automotive uses – BLGMF. Final Report Altener II EU-Project Contract Nr 4.1030/Z/01-087/2001, Dezember 2003. citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.468.6163&rep=rep1&type=pdf
  63. 63.
  64. 64.
    Landälf I, Lindblom M D3.1.1 Report with evaluation of the Skoghall plant performance. RE-NEW Renewable fuels for advanced powertrains (2005) RENEW Renewable fuels for advanced powertrains FP6 project SES6-CT-2003-502705. http://www.renew-fuel.com/fs_documents.php
  65. 65.
    Landälf I, Gebart R, Marke B, Granberg F, Furusjö E, Löwnertz P, Öhrmann OGW, Lauge Sörensen E, Salomonsson P (2014) Two years experience of the BioDME project – a complete wood to wheel concept. Environ Prog Sustain Energy 33(3):744–750Google Scholar
  66. 66.
    Furusjö E, Kirtania K, Jafri Y, Bach-Oller A, Umeki K, Andersson J, Lundgren J, Wetter-lund E, Landälf I, Gebart R (2015 ) Co-gasification of pyrolysis oil and black liquor – a new track for pro-duction of chemicals and transportation fuels from biomass tcbiomass2015. In: Intern. Conf. on ther-mochemical conversion science, Westin Chicago River North, 2.–5. November 2015. http://www.gastechnology.org/tcbiomass/Pages/2015-tcbiomass-presentations.aspx
  67. 67.
    Carlsson P, Gebart R, Grönberg C, Marklund M, Risberg M, Wiinikka H, Öhrman O (2009) Spatially resolved measurements of gas composition in a pressurised black liquor gasifier. Environ Prog Sustain Energy 28(3):316–323Google Scholar
  68. 68.
    Risberg M (2011) Black liquor gasification – burner characteristics and syngas cooling. Lic Thesis March 2011, Lulea Technical UniversityGoogle Scholar
  69. 69.
    Jafri Y, Furusjö E, Kirtania K, Gebart R (2016) Performance of a pilot scale entrained-flow black liquor gasifier. Energy Fuels 30(3):3175–3185Google Scholar
  70. 70.
    Dahmen N, Dinjus E, Henrich E (2007) Das Karlsruher Verfahren bioliq® Synthesekraftstoffe aus Biomasse. In: Bührke Th, Wengenmayr R (Hrsg) Erneuerbare Energie: Alternative Energiekonzepte für die Zukunft, 1. Aufl. Wiley VCH, Weinheim, S 61–65Google Scholar
  71. 71.
    Dahmen N (2008) Die Schnellpyrolyse im Rahmen des bioliq®-Verfahrens am Forschungszentrum Karlsruhe. In: Fachagentur Nachwachsende Rohstoffe (Hrsg) Gülzower Fachgespräche Bd 28 Biocrudeoil, S 98–114Google Scholar
  72. 72.
    Dahmen N, Henrich E, Dinjus E, Weirich F (2012) The bioliq® bioslurry gasification process for the production of biosynfuels, organic chemicals, and energy. Energy Sustain Soc 2:3–47Google Scholar
  73. 73.
    Tomasi Morgano M, Leibold H, Richter F (2015) Upgrading of low-grade biogenic feedstock by innovative screw pyrolysis. Biorefineries, Concepcion, Chile, 23.–25. November 2015. https://www.biorrefinerias.cl/wp-content/uploads/2017/12/MTomasi-Biorefineries_2015_ForWebsite_03122015.pdf
  74. 74.
    Tomasi Morgano M, Leibold H, Richter F, Stapf D, Seifert H (2018) Screw pyrolysis technology for sewage sludge treatment. Waste Manag 73:487–495Google Scholar
  75. 75.
    Eberhard M, Santo U, Böning D, Schmid H, Michelfelder B, Zimmerlin B, Günther A, Weigand P, Müller-Hagedorn M, Stapf D, Kolb Th (2018) Der bioliq-Flugstromvergaser – ein Baustein der Energiewende. Chem Ing Techn 90(1–2):85–98Google Scholar
  76. 76.
    Henrich E, Dahmen N, Niebel A Study on energy carrier use on entrained flow gasification. Report Deliverable 5.8 BioBoost EU Project. http://www.bioboost.eu/results/applications.php
  77. 77.
    Rammler R (1966) Betriebserfahrungen mit dem LR-Verfahren zur Entgasung feinkörniger Brennstoffe. Erdoel Kohle 19(2):117–126Google Scholar
  78. 78.
    Schmalfeld P (1975) The use of the Lurgi-Rurgas Process for the Distillation of Oil Shale. Colo sch Mines qtly 70(3):129–145Google Scholar
  79. 79.
    Vogel F (2016) Kap. 15. Hydrothermale Verfahren. In: Kaltschmitt M, Hartmann H, Hofbauer H (Hrsg) Energie aus Biomasse: Grundlagen Techniken und Verfahren. Springer, BerlinGoogle Scholar
  80. 80.
    Potic B (2016) Gasification of biomass in supercritical water. Dr. Dissertation 2006. Universität Twente, NiederlandeGoogle Scholar
  81. 81.
    Van Bennekom JG (2013) Glycerol reforming and methanol synthesis for the production of renewable methanol. Dr. Dissertation 2013. Universität Groningen, NiederlandeGoogle Scholar
  82. 82.
    Boukis N, Dinjus E (2007) Bau einer Anlage zur Biomassevergasung unter hydrothermalen Bedingungen. Schlussbericht BMBF Förderkennzeichen 0330267. https://www.tib.eu/de/suchen/id/TIBKAT%3A559688539/
  83. 83.
    Boukis N, Kruse A, Galla U, Diem V, Dinjus E (2003) Biomassevergasung in überkritischem Wasser. NACHRICHTEN – FZKA 35(3):99–104Google Scholar
  84. 84.
    Boukis N, Korving L, Hauer E, Herbig S, Sauer J (2015) Gasification of sewage sludge in supercritical water, experimental results from the gasification of dutch sewage sludge. In: Proc. 23rd European biomass conference, Vienna, Austria, 1.–4. Juni 2015, S 83–87Google Scholar
  85. 85.
    Boukis N, Herbig S, Hauer E, Sauer J (2016) Catalytic gasification of digestate sludge in supercritical water, experimental results on the pilot scale. In: Proc. 24th European biomass conference, Amsterdam, Netherlands, 6.–9. Juni 2016, S 1062–1066Google Scholar
  86. 86.
  87. 87.
    Smolinka T (2015) Wasserstofferzeugung durch PEM Elektrolyse – Grundlagen und Entwicklungstrends einer Schlüsseltechnologie für die Energiewende. In: Vortrag Anorganisch-Chemisches Seminar. Universität Freiburg, 22. Juli 2015Google Scholar
  88. 88.
    Firmendruckschrift Hydrogenics HyLYZER 600. http://www.hydrogenics.com/technology-resources/media-downloads/
  89. 89.
    Jensen SH, Graves C, Chen M, Hansen JB, Sun X (2016) Characterization of a Planar Solid Oxide Cell Stack Operated at Elevated Pressure. J Electrochem Soc 163(14):F1596–F1604Google Scholar
  90. 90.
  91. 91.
    Zaman J, Chakma A (1995) Production of hydrogen and sulfur from hydrogen sulfide. Fuel Process Technol 41:159–198Google Scholar
  92. 92.
    T-Raissi A (2001) Technoeconomic analysis of area II hydrogen production – part 1. In: Proc. 2001 DOE hydrogen program review NREL/CP-570-30535Google Scholar
  93. 93.
    Li Y, Yu X, Guo Q, Dai Z, Yu G, Wang F (2017) Kinetic study of decomposition of H2S and CH4 for H2 production using detailed mechanism. Energy Procedia 142:1065–1070Google Scholar
  94. 94.
    Reverberi AP, Klemes JJ, Varbanov PV, Fabiano B (2016) A review on hydrogen production from hydrogen sulphide by chemical and photochemical methods. J Clean Prod 139:72–80Google Scholar
  95. 95.
    Ozaki J, Yoshimoto Y, Oya A, Takarada T, Kuzunetsov VV, Ismagilov ZR (2001) H2S decomposition activity of TS carbon derived from furan resin. Carbon 39:1605–1616Google Scholar
  96. 96.
    Startsev AN (2017) Hydrogen sulfide as a source of hydrogen production. Russ Chem Bull Int Edition 66(8):1378–1397Google Scholar
  97. 97.
    Startsev AN, Kruglykova OV, Chesalov YA, Paukshtis EA, Avdeev VI, Ruzankin SP, Zhdanov AA, Molina IY, Plyasova LM (2016) Low-temperature catalytic decomposition of hydrogen sulfide on metal catalysts under layer of solvent. J Sulfur Chem 37(2):229–240Google Scholar
  98. 98.
    Startsev AN (2016) Low temperature catalytic decomposition of hydrogen sulfide into hydrogen and diatomic gaseous sulfur. Kinetics and Catalysis. Kinet Catal 57(4):511–522Google Scholar
  99. 99.
    Startsev AN, Bulgakov NN, Ruzankin SP, Kruglykova OV, Paukshtis EA (2015) The reaction thermodynamics of hydrogen sulfide decomposition into hydrogen and diatomic sulfur. J Sulfur Chem 36(3):234–239Google Scholar
  100. 100.
    Startsev AN, Kruglykova OV, Chesalov YA, Ruzankin SP, Kravtsov EA, Larina TV, Paukshtis EA (2013) Low temperature catalytic decomposition of hydrogen sulfide into hydrogen and diatomic gaseous sulfur. Top Catal 56(11):969–980Google Scholar
  101. 101.
    Anani AA, Mao Z, White RE, Srinivasan S, Appleby AJ (1990) Electrochemical Production of hydrogen and sulfuer by low-temperature decomposition of hydrogen sulfide in an aqueous alkaline solution. J Electrochem Soc 137(9):2703–2709Google Scholar
  102. 102.
    Mao Z, Anani A, White RE, Srinivasan S, Appleby AJ (1991) A modified electrochemical process for the decomposition of hydrogen sulfide in aqueous alkaline solution. J Electrochem Soc 138(5):1299–1303Google Scholar
  103. 103.
    Selvaraj, H.; Chandrasekaran, K.; Gopalkrishnan, R.: Recovery of solid sulfur from hydrogen sulfide gas by an electrochemical membrane cell. RSC Advances 6 (2016) S. 3735/41Google Scholar
  104. 104.
    Gray D, White Ch, Salerno S, Plunkett J, Tomlinson G (2010) Production of high purity hydro-gen from domestic coal: assessing the techno-economic impact of emerging technologies. DOE/NETL-2010/1432, 30. August 2010Google Scholar
  105. 105.
    Burmistrz P, Chmielniak T, Czepirski L, Gazda-Grzywacz M (2016) Carbon footprint of the hydrogen production process utilizing subbituminous coal and lignite gasification. J Clean Prod 139:858–865Google Scholar
  106. 106.
    Machhammer O, Bode A, Hormuth W (2015) Ökonomisch/ökologische Betrachtung der Herstellung von Wasserstoff in Großanlagen. Chem Ing Techn 87(4):409–418Google Scholar
  107. 107.
    Postels S, Abanades A, van der Assen N, Kumar Rathnam R, Stückrad S, Bardow A (2016) Life cycle assessment of hydrogen production by thermal cracking of methane, based on liquid metal technology. Int J Hydrogen Energy 41:23204–23212Google Scholar
  108. 108.
    Icha P, Kuhs G Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990–2016. Hrsg. Umweltbundesamt Climate Change 15/2017. https://www.umweltbundesamt.de/sites/default/files/medien/1410/publikationen/2017-05-22_climate-change_15-2017_strommix.pdf
  109. 109.
    Hamaguchi M, Cardoso M, Vakkilainen E (2012) Alternative technologies for biofuels production in kraft pulp mills – potential and prospects. Energies 5(7):2288–2309Google Scholar
  110. 110.
  111. 111.
    Weltgrösste Wasserstoff-Elektrolyse entsteht in der Rheinland Raffinerie. Pressemitteilung der Shell Deutschland GmbH. https://www.shell.de/medien/shell-presseinformationen/2018/weltweit-groe%C3%9Fte-wasserstoff-elektrolyse-anlage-rheinland.html. Zugegriffen: 18. Jan. 2018
  112. 112.
  113. 113.
  114. 114.
  115. 115.

Copyright information

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2019

Authors and Affiliations

  1. 1.Harp Process Chemistry ConsultingDüsseldorfDeutschland

Personalised recommendations