Physikalisch-medizinisches Assessment in der Onkologischen Rehabilitation

  • Mohammad KeilaniEmail author
  • Timothy Hasenöhrl


Dieses Kapitel soll einen kurzen Überblick über ausgewählte physikalisch-medizinische Assessment-Methoden in der Rehabilitation von Patientinnen und Patienten mit onkologischen Erkrankungen geben. Dabei sind unterschiedliche Defizite bei onkologischen Patientinnen und Patienten zu berücksichtigen, die durch die Erkrankung sowie deren Behandlung möglicherweise verursacht werden. Diese sind z. B. Einschränkungen der gesundheitsbezogenen Lebensqualität, Schmerz, Fatigue und Einschränkungen der körperlichen Leistungsfähigkeit.

Grundpfeiler des physikalisch-medizinisches Assessments in der Onkologischen Rehabilitation stellen primär die Anamnese und körperliche Untersuchung dar. Diese können durch Anwendung von Skalen und Fragebögen und Tests zur Erfassung der motorischen Grundeigenschaften zwecks genauerer Evaluierung mit dem Ziel der Erstellung eines individuell angepassten Rehabilitationsplans gut ergänzt werden.


  1. Aaronson NK, Ahmedzai S, Bergman B et al (1993) The European Organization for Research and Treatment of Cancer QLQ-C30: a quality-of-life instrument for use in international clinical trials in oncology. J Natl Cancer Inst 85(5):365–376PubMedPubMedCentralCrossRefGoogle Scholar
  2. Berger AM, Abernethy AP, Atkinson A et al (2010) NCCN Clinical Practice Guidelines Cancer-related fatigue. J Natl Compr Canc Netw 8(8):904–993PubMedCrossRefGoogle Scholar
  3. Bower JE (2014) Cancer-related fatigue – mechanisms, risk factors, and treatments. Nat Rev Clin Oncol 11(10):597–609PubMedPubMedCentralCrossRefGoogle Scholar
  4. Bullinger M (1995) German translation and psychometric testing of the SF-36 Health Survey: preliminary results from the IQOLA Project. International Quality of Life Assessment. Soc Sci Med 41:1359–1366PubMedCrossRefGoogle Scholar
  5. Burton AW, Chai T, Smith LS (2014) Cancer pain assessment. Curr Opin Support Palliat Care 8(2):112–116PubMedCrossRefGoogle Scholar
  6. Crevenna R (2015) Cancer rehabilitation and palliative care – two important parts of comprehensive cancer care. Support Care Cancer 23(12):3407–3408PubMedCrossRefGoogle Scholar
  7. Crevenna R (2017) Kompendium Physikalische Medizin und Rehabilitation. Diagnostische und therapeutische Konzepte. Springer, Berlin/HeidelbergCrossRefGoogle Scholar
  8. Crevenna R (2018) Evaluation of cancer rehabilitation in Austria. Wien Med Wochenschr 168(13–14):331–332PubMedCrossRefGoogle Scholar
  9. Crevenna R, Maehr B, Fialka-Moser V, Keilani M (2009) Strength of skeletal muscle and quality of life in patients suffering from „typical male“ carcinomas. Support Care Cancer 17(10):1325–1338PubMedCrossRefGoogle Scholar
  10. Hacke W (2015) Neurologie. Springer, Berlin/HeidelbergGoogle Scholar
  11. Hasenoehrl T, Keilani M, Sedghi Komanadj T et al (2015) The effects of resistance exercise on physical performance and health-related quality of life in prostate cancer patients: a systematic review. Support Care Cancer 23(8):2479–2497PubMedCrossRefGoogle Scholar
  12. Herrmann-Lingen C, Buss U, Snaith RP (2011) Hospital anxiety and depression scale – Deutsche Version (HADS-D), 3., akt. u. neu norm. Aufl. Manual. Huber, BernGoogle Scholar
  13. Hinman RS, Dobson F, Takla A, O’Donnell J, Bennell KL (2014) Which is the most useful patient-reported outcome in femoroacetabular impingement? Test-retest reliability of six questionnaires. Br J Sports Med 48:458–463PubMedCrossRefGoogle Scholar
  14. ICD (2017) Internationale statistische Klassifikation der Krankheiten und verwandter Gesundheitsprobleme 10. Revision – BMGF-Version 2017. Zugegriffen am 26.11.2018
  15. ICF (2017) ICF – International classification of functioning, disability and health. World Health Organization. Zugegriffen am 26.11.2018
  16. Janda V (2009) Manuelle Muskelfunktionsdiagnostik, 4. Aufl. Urban&Fischer, Elesvier, MünchenGoogle Scholar
  17. Jerome A, Gross RT (1991) Pain disability index: construct and discriminant validity. Arch Phys Med Rehabil 72:920–922PubMedCrossRefGoogle Scholar
  18. Jones LW, Eves ND, Haykowsky M, Joy AA, Douglas PS (2008) Cardiorespiratory exercise testing in clinical oncology research: systematic review and practice recommendations. Lancet Oncol 9(8):757–765PubMedCrossRefGoogle Scholar
  19. Keilani M, Haig AJ, Crevenna R (2016) Practical assessment in patients suffering from musculoskeletal disorders. Wien Med Wochenschr 166(1–2):5–8PubMedCrossRefGoogle Scholar
  20. Kendall FP, Kendall McCreary E, Provance PG, McIntyre Rogers M, Romani WA (2001) Muskeln – Funktionen Und Tests, 5. Aufl. Urban & Fischer, MünchenGoogle Scholar
  21. Kyle UG, Bosaeus I, De Lorenzo AD (2004) Composition of the ESPEN Working Group. Bioelectrical impedance analysis – part I: review of principles and methods. Clin Nutr 23(5):1226–1243Google Scholar
  22. Lai JS, Cella D, Chang CH, Bode RK, Heinemann AW (2003) Item banking to improve, shorten and computerize self-reported fatigue: an illustration of steps to create a core item bank from the FACIT-Fatigue Scale. Qual Life Res 12(5):485–501PubMedCrossRefGoogle Scholar
  23. Levine GN, D’Amico AV, Berger P (2010) American Heart Association Council on Clinical Cardiology and Council on Epidemiology and Prevention, the American Cancer Society and the AUA Androgen-deprivation therapy in prostate cancer and cardiovascular risk: a science advisory from the American Heart Association, American Cancer Society, and American Urological Association: endorsed by the American Society for Radiation Oncology. Circulation 121:833–840PubMedPubMedCentralCrossRefGoogle Scholar
  24. Lowry DW, Tomiyama AJ (2015) Air displacement plethysmography versus dual-energy x-ray absorptiometry in underweight, normal-weight, and overweight/obese individuals. PLoS One 10(1):e0115086PubMedPubMedCentralCrossRefGoogle Scholar
  25. Maehr B, Keilani M, Wiltschke C et al (2016) Cancer rehabilitation in Austria – aspects of physical medicine and rehabilitation. Wien Med Wochenschr 166(1–2):39–43PubMedCrossRefGoogle Scholar
  26. Manna A, Sarkar SK, Khanra LK (2015) PA1 – an internal audit into the adequacy of pain assessment in a hospice setting. BMJ Support Palliat Care 5(Suppl 1):A19–A20Google Scholar
  27. Matthes KL, Pestoni G, Korol D, Van Hemelrijck M, Rohrmann S (2018) The risk of prostate cancer mortality and cardiovascular mortality of nonmetastatic prostate cancer patients: a population-based retrospective cohort study. Urol Oncol 36(6):309.e15–309.e23CrossRefGoogle Scholar
  28. Mendoza TR, Wang XS, Cleeland CS (1999) The rapid assessment of fatigue severity in cancer patients: use of the brief fatigue inventory. Cancer 85(5):1186–1196PubMedCrossRefGoogle Scholar
  29. Meneses-Echávez JF, González-Jiménez E, Ramírez-Vélez R (2015) Effects of supervised multimodal exercise interventions on cancer-related fatigue: systematic review and meta-analysis of randomized controlled trials. Biomed Res Int. Article ID: 328636Google Scholar
  30. Morishita S, Mitobe Y, Tsubaki A (2018) Differences in balance function between cancer survivors and healthy subjects: a pilot study. Integr Cancer Ther 17(4):1144–1149PubMedPubMedCentralCrossRefGoogle Scholar
  31. Moss-Morris R, Deary V, Castell B (2013) Chronic fatigue syndrome. Handb Clin Neurol 110:303–314PubMedCrossRefGoogle Scholar
  32. Offenbächer M, Ewert T, Sangha O, Stucki G (2003) Validation of a German version of the ‚Disabilities of Arm, Shoulder and Hand‘ questionnaire (DASH-G). Z Rheumatol 62(2):168–177PubMedCrossRefGoogle Scholar
  33. Oliveira CB, Maher CG, Pinto RZ et al (2018) Clinical practice guidelines for the management of non-specific low back pain in primary care: an updated overview. Eur Spine J 27(11):28791–28703Google Scholar
  34. Ordan MA, Mazza C, Barbe C et al (2018) Feasibility of systematic handgrip strength testing in digestive cancer patients treated with chemotherapy: the FIGHTDIGO study. Cancer 124(7):1501–1506PubMedCrossRefGoogle Scholar
  35. Pachman DR, Barton DL, Swetz KM et al (2012) Troublesome symptoms in cancer survivors: fatigue, insomnia, neuropathy, and pain. J Clin Oncol 30(30):3687–3696PubMedCrossRefGoogle Scholar
  36. Pedersen BK, Febbraio MA (2008) Muscle as an endocrine organ: focus on muscle-derived interleukin-6. Physiol Rev 88(4):1379–1406CrossRefPubMedGoogle Scholar
  37. Pereira JC, Neri SGR, Vainshelboim B et al (2018) Normative values of knee extensor isokinetic strength for older women and implications on physical function. J Geriatr Phys Ther. Epub ahead of printPubMedCrossRefGoogle Scholar
  38. Peters DM, Fritz SL, Krotish DE (2013) Assessing the reliability and validity of a shorter walk test compared with the 10-meter walk test for measurements of gait speed in healthy, older adults. J Geriatr Phys Ther 36(1):24–30PubMedCrossRefGoogle Scholar
  39. Pfingsten M, Kröner-Herwig B, Leibing E, Kronshage U, Hildebrandt J (2000) Validation of the German version of the Fear-Avoidance Beliefs Questionnaire (FABQ). Eur J Pain 4:259–266PubMedCrossRefGoogle Scholar
  40. Rocourt MH, Radlinger L, Kalberer F et al (2008) Evaluation of intratester and intertester reliability of the Constant-Murley shoulder assessment. J Shoulder Elbow Surg 17:364–369PubMedCrossRefGoogle Scholar
  41. Roubenoff R, Kehayias JJ, Dawson-Hughes B, Heymsfield SB (1993) Use of dual-energy x-ray absorptiometry in body-composition studies: not yet a „gold standard“. Am J Clin Nutr 58(5):589–591PubMedCrossRefGoogle Scholar
  42. Rupp T, Butscheidt S, Jähn K et al (2018) Low physical performance determined by chair rising test muscle mechanography is associated with prevalent fragility fractures. Arch Osteoporos 13(1):71PubMedCrossRefGoogle Scholar
  43. Sayers SP, Guralnik JM, Newman AB, Brach JS, Fielding RA (2006) Concordance and discordance between two measures of lower extremity function: 400 meter self-paced walk and SPPB. Aging Clin Exp Res 18(2):100–106PubMedCrossRefGoogle Scholar
  44. Schmidt K, Vogt L, Thiel C, Jäger E, Banzer W (2013) Validity of the six-minute walk test in cancer patients. J Sports Med 34(7):631–636Google Scholar
  45. Schmitz KH, Courneya KS, Matthews C et al (2010) American College of Sports Medicine roundtable on exercise guidelines for cancer survivors. Med Sci Sports Exerc 42(7):1409–1426. Erratum in: Med Sci Sports Exerc 2011 Jan;43(1):195PubMedCrossRefPubMedCentralGoogle Scholar
  46. Schulz LO (1993) Methods of body composition analysis the status of the gold standard. Trends Endocrinol Metab 4(10):318–322PubMedCrossRefGoogle Scholar
  47. Seyidova-Khoshknabi D, Davis MP, Walsh D (2011) Review article: a systematic review of cancer-related fatigue measurement questionnaires. Am J Hosp Palliat Care 28(2):119–129PubMedCrossRefGoogle Scholar
  48. Silver JK, Baima J (2013) Cancer prehabilitation: an opportunity to decrease treatment-related morbidity, increase cancer treatment options, and improve physical and psychological health outcomes. Am J Phys Med Rehabil 92(8):715–727PubMedCrossRefGoogle Scholar
  49. Silver JK, Smith SR, Wisotzky EM, Raj VS, Fu JB, Kirch RA (2015) Response to editorial by Richard Crevenna, MD, regarding „cancer rehabilitation and palliative care: critical components in the delivery of high-quality oncology services“ by Silver et al. Support Care Cancer 23(12):3409–3410PubMedCrossRefGoogle Scholar
  50. Stark T, Walker B, Phillips JK, Fejer R, Beck R (2011) Hand-held dynamometry correlation with the gold standard isokinetic dynamometry: a systematic review. PM R 3(5):472–479PubMedCrossRefGoogle Scholar
  51. Thomann KD, Schröter F, Grosser V (2008) Orthopädisch-unfallchirurgische Begutachtung – Praxis der klinischen Begutachtung. Elsevier, AmsterdamCrossRefGoogle Scholar
  52. Tinetti ME, Richman D, Powell L (1990) Falls efficacy as a measure of fear of falling. J Gerontol 45(6):239–243CrossRefGoogle Scholar
  53. Trutschnigg B, Kilgour RD, Reinglas J (2008) Precision and reliability of strength (Jamar vs. Biodex handgrip) and body composition (dual-energy X-ray absorptiometry vs. bioimpedance analysis) measurements in advanced cancer patients. Appl Physiol Nutr Metab 33(6):1232–1239PubMedCrossRefGoogle Scholar
  54. Wood LJ, Nail LM, Winters KA (2009) Does muscle-derived interleukin-6 mediate some of the beneficial effects of exercise on cancer treatment-related fatigue? Oncol Nurs Forum 36(5):519–524PubMedPubMedCentralCrossRefGoogle Scholar
  55. Yellen SB, Cella DF, Webster K, Blendowski C, Kaplan E (1997) Measuring fatigue and other anemia-related symptoms with the Functional Assessment of Cancer Therapy (FACT) measurement system. J Pain Symptom Manage 13(2):63–74PubMedCrossRefGoogle Scholar
  56. Zanini A, Aiello M, Cherubino F (2015) The one repetition maximum test and the sit-to-stand test in the assessment of a specific pulmonary rehabilitation program on peripheral muscle strength in COPD patients. Int J Chron Obstruct Pulmon Dis 10:2423–2430PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2020

Authors and Affiliations

  1. 1.Universitätsklinik für Physikalische Medizin, Rehabilitation und ArbeitsmedizinMedizinische Universität WienWienÖsterreich

Personalised recommendations