Advertisement

Experimental Studies

  • Céline RöhrigEmail author
  • Stefan Diebels
Chapter
Part of the Mathematical Engineering book series (MATHENGIN)

Abstract

The theoretical results presented in the previous chapters are based on experimental investigations. Therefore, in this chapter, the experimental characterisation of the short fibre-reinforced composite is presented. The performed experiments increase in complexity, starting from uniaxial tensile tests at different strain rates up to multiaxial tests like true biaxial tests and the Nakajima test which introduce stress and strain states closer to applicational load cases. At least the results of the Nakajima tests can be regarded as verification experiments for the developed and implemented models. Effects like elasto-plasticity, damage and anisotropy are investigated in detail. The inhomogeneous strain states, which can be observed already in the uniaxial tests due to localisation phenomena in combination with damage, are evaluated using a three-dimensional optical strain measurement on the surface of the specimens. The underlying principles of digital image correlation are explained in detail.

References

  1. 1.
    Metallische Werkstoffe - Bleche und Bänder - Bestimmung der Grenzformänderungskurve - Teil 2: Bestimmung von Grenzformänderungskurven im Labor (ISO 12004-2) (2008)Google Scholar
  2. 2.
    DIN EN ISO 527-2, Kunststoffe - Bestimmung der Zugeigenschaften -. Teil2: Prüfbedingungen für Form- und Extrusionsmassen (1996)Google Scholar
  3. 3.
    Becker, T., Splitthof, K., Siebert, T., Kletting, P.: Error estimations of 3D digital image correlation measurements. Int. Soc. Opt. Photo. 63410ff (2006)Google Scholar
  4. 4.
    Botha, T.R., Els, P.S.: Digital image correlation techniques for measuring tyre-road interface parameters: Part 1—Side-slip angle measurement on rough terrain. J. Terramech. 61, 87–100 (2015)CrossRefGoogle Scholar
  5. 5.
    Campos, H.B., Butuc, M.C., Grácio, J.J., Rocha, J.E., Duarte, J.M.F.: Theorical and experimental determination of the forming limit diagram for the aisi 304 stainless steel. J. Mater. Process. Tech. 179(1), 56–60 (2006)CrossRefGoogle Scholar
  6. 6.
    Chu, T., Ranson, W., Sutton, M.: Applications of digital-image-correlation techniques to experimental mechanics. Exp. Mech. 25(3), 232–244 (1985)CrossRefGoogle Scholar
  7. 7.
    Cooreman, S., Lecompte, D., Sol, H., Vantomme, J., Debruyne, D.: Identification of mechanical material behavior through inverse modeling and DIC. P. Soc. Exp. Mech. Inc. 65, 421–433 (2008)CrossRefGoogle Scholar
  8. 8.
    Dantec Dynamics: Istra4D Manual (2015)Google Scholar
  9. 9.
    Geiger, M., Merklein, M.: Determination of forming limit diagrams—a new analysis method for characterization of materials’ formability. CIRP Ann. Manuf. Technol. 52(1), 213–216 (2003)CrossRefGoogle Scholar
  10. 10.
    Hasek, V.V.: Investigation and theoretical description of factors relevant to the forming limit diagram-1. Blech Rohre Profile 25(5), 213–219 (1978)Google Scholar
  11. 11.
    Johlitz, M., Diebels, S.: Characterisation of a polymer using biaxial tension tests. Part I: Hyperelasticity. Arch. Appl. Mech. 81(10), 1333–1349 (2011)CrossRefGoogle Scholar
  12. 12.
    Jung, A., Beex, L., Diebels, S., Bordas, S.: Open-cell aluminium foams with graded coatings as passively controllable energy absorbers. Mater. Des. 87, 36–41 (2015)CrossRefGoogle Scholar
  13. 13.
    Jung, A., Grammes, T., Diebels, S.: Micro-structural motivated phenomenological modelling of metal foams: experiments and modelling. Arch. Appl. Mech. 85(8), 1147–1160 (2015)CrossRefGoogle Scholar
  14. 14.
    Lucas, B.D., Kanade, T., et al.: An iterative image registration technique with an application to stereo vision. IJCAI 81, 674–679 (1981)Google Scholar
  15. 15.
    Monte, M.D., Moosbrugger, E., Quaresimin, M.: Influence of temperature and thickness on the off-axis behaviour of short glass fibre reinforced polyamide 6.6 cyclic loading. Compos. Part A Appl. S. 41(10), 1368–1379 (2010)CrossRefGoogle Scholar
  16. 16.
    Nakazima, K., Kikuma, T., Hasuka, K.: Study on the formability of steel sheets. Yawate Tech. Rep. 264, 8517–8530 (1968)Google Scholar
  17. 17.
    Pan, B., Qian, K., Xie, H., Asundi, A.: Two-dimensional digital image correlation for in-plane displacement and strain measurement: a review. Meas. Sci. Technol. 20(6), 062,001 (2009)CrossRefGoogle Scholar
  18. 18.
    Röhrig, C., Scheffer, T., Diebels, S.: Mechanical characterization of a short fiber-reinforced polymer at room temperature: experimental setups evaluated by an optical measurement system. Contin. Mech. Thermodyn. 1–19 (2017)Google Scholar
  19. 19.
    Scheffer, T.: Charakterisierung des nichtlinear-viskoelastischen Materialverhaltens gefüllter Elastomere. Dissertation, Universität des Saarlandes (2016)Google Scholar
  20. 20.
    Seibert, H., Scheffer, T., Diebels, S.: Biaxial testing of elastomers: experimental setup, measurement and experimental optimisation of specimen’s shape. Tech. Mech. 34(2), 72–89 (2014)Google Scholar
  21. 21.
    Speicher, K.: Konstruktion, Aufbau und Steuerung einer Biaxialanlage. Studienarbeit, Universität des Saarlandes (2009)Google Scholar
  22. 22.
    Sutton, M.A., Orteu, J.J., Schreier, H.: Image Correlation for Shape, Motion and Deformation Measurements: Basic Concepts, Theory and Applications. Springer Science & Business Media (2009)Google Scholar
  23. 23.
    Treloar, L.: The Physics of Rubber Elasticity. Oxford University Press, Oxford (2005)Google Scholar
  24. 24.
    Vacher, P., Haddad, A., Arrieux, R.: Determination of the forming limit diagrams using image analysis by the corelation method. CIRP Ann. Manuf. Technol. 48(1), 227–230 (1999)CrossRefGoogle Scholar
  25. 25.
    www.matweb.com: MatWeb—material property data. www.matweb.com

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Lehrstuhl für Technische MechanikUniversität des SaarlandesSaarbrückenGermany

Personalised recommendations