Advertisement

Anwendung virtueller Realität im Sport

  • Katharina Petri
  • Kerstin Witte
Chapter

Zusammenfassung

Auf Grund der Vorteile der virtuellen Realität (Dreidimensionalität, Interaktion mit dem Nutzer, standardisierte Bedingungen) wird sie zunehmend auch in der sportwissenschaftlichen Forschung und Sportpraxis eingesetzt. Das Kapitel beschäftigt sich mit technologischen Grundlagen sowie den Anforderungen an die VR zur Nutzung im Sport. Anwendungsfelder insbesondere in der Sportmotorik werden vorgestellt. Die Kombination mit bewegungsrelevanten Messverfahren (z. B.: Motion Capturing, Kraftmessplatten, EMG, EEG und Eyetracking) können Aufschluss über das Bewegungsverhalten des Menschen in einer virtuellen Umgebung im Vergleich zur realen Welt geben.

Schlüsselwörter

Avatar Head Mounted Display VR-Umgebung Cybersickness Präsenzempfinden 

Literatur

  1. Adamovich, S. V., Fluet, G. G., Tunik, E., & Merians, A. S. (2009). Sensorimotor training in virtual reality: A review. Neurorehabilitation, 25(1), 29–44.  https://doi.org/10.3233/nre-2009-0497.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Aleshin, V., Afanasiev, V., Bobkov, A., Klimenko, S., Kuliev, V., & Novgorodtsev, D. (2012). Visual 3D perception of motion environment and visibility factors in virtual space. In D. Hutchison, et al. (Eds.), Lecture notes in computer science. transactions on computational science XVI, (S. 17–33). Berlin: Springer.  https://doi.org/10.1007/978-3-642-32663-9_2.
  3. Anglin, J. M., Sugiyama, T., & Liew, S. L. (2017). Visuomotor adaptation in head-mounted virtual reality versus conventional training. Scientific Reports, 4(7), 45469.  https://doi.org/10.1038/srep45469.CrossRefGoogle Scholar
  4. Argelaguet, S. F., & Andujar, C. (2013). A survey of 3D object selection techniques for virtual environments. Computer und Graphics, 37,121–136.CrossRefGoogle Scholar
  5. Argelaguet, S. F., Multon, F., & Lécuyer, A. (2015). A methodology for introducing competitive anxiety and pressure in VR sports training. Frontiers in Robotics and AI, Frontiers, 2(10), 11.  https://doi.org/10.3389/frobt.2015.00010.CrossRefGoogle Scholar
  6. Bailenson, J. N., Blascovich, J., Beall, A. C., & Loomis, J. M. (2003). Interpersonal distance in immersive virtual environments. Personality and Social Psychology Bulletin, 29(7), 819–833.  https://doi.org/10.1177/0146167203029007002.CrossRefPubMedGoogle Scholar
  7. Bandow, N., Emmermacher, P., Stucke, C., Masik, S., & Witte, K. (2014). Comparison of a video and a virtual based environment using the temporal and spatial occlusion technique for studying anticipation in karate. International Journal of Computer Science in Sport, 13(1), 44–56.Google Scholar
  8. Bandow, N., Witte, K., & Masik, S. (2012). Development and evaluation of a virtual test environment for performing reaction tasks. International Journal of Computer Science in Sport, 10(1), 4–15.Google Scholar
  9. Bideau, B., Kulpa, R., Vignais, N., Brault, S., Craig, C., & Multon, F. (2010). Using virtual reality to analyze sports performance. IEEE Computer Graphics and Applications, 30(2), 14–21.  https://doi.org/10.1109/mcg.2009.134.CrossRefPubMedGoogle Scholar
  10. Blanke, O., Slater, M., & Serino, A. (2015). Behavioral, neural, and computational principles of bodily self-conciousness. Neuron, 88,145–166.  https://doi.org/10.1016/j.neuron.2015.09.029.CrossRefPubMedGoogle Scholar
  11. Bonney, E., Jelsma, L. D., Ferguson, G. D., & Smits-Engelsman, B. C. M. (2017). Learning better by repetition or variation? Is transfer at odds with task specific training? PLoS ONE, 12(3), e0174214. https://doi.org/10.10.1371/journal.pone.0174214.
  12. Bordnick, P. S., Carter, B. L., & Traylor, A. C. (2011). What virtual reality research in addictions can tell us about the future of obesity assessment and treatment. Journal of Diabetes Science and Technology, 5(2), 265–271.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Bowman, D. A., & McMahan, R. P. (2007). Virtual reality: How much immersion is enough? Computer, 40(7), 36–42.CrossRefGoogle Scholar
  14. Brand, J., Piccirelli, M., Hepp-Reymond, M. C., Morari, M., Michels, L., & Eng, K. (2016). Virtual hand feedback reduces reaction time in an interactive finger reaching task. PLoS ONE, 1(5), e0154807.  https://doi.org/10.1371/journal.pone.0154807.CrossRefGoogle Scholar
  15. Brault, S., Bideau, B., Kulpa, R., & Craig, C. M. (2012). Detecting deception in movement: The case of the side-step in rugby. PLoS ONE, 7(6), e37494.  https://doi.org/10.1371/journal.pone.0037494.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Bredl, K., Bräutigam, B., & Herz, D. (2017). Avatar-basierte Beratung in virtuellen Räumen. Die Bedeutung Virtueller Realität bei helfenden Beziehungen für Berater, Coaches und Therapeuten. Wiesbaden: Springer Fachmedien Wiesbaden GmbH.Google Scholar
  17. Brill, M. (2009). Virtuelle Realität. Berlin: Springer.Google Scholar
  18. Calabro, R. S., Naro, A., Russo, M., Leo, A., De Luca, R., Balletta, T., et al. (2017). The role of virtual reality in improving motor performance as revealed by EEG: a randomized controlled trial. Journal of NeuroEngineering and Rehabilitation, 14(1), 53.  https://doi.org/10.1186/s12984-017-0268-4.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Camporesi, C., & Kallmann, M. (2016). The effects of avatars, stereo vision and display size on reaching and motion reproduction. IEEE Transactions on Visualization and Computer Graphics, 22(5), 1592–1604.  https://doi.org/10.1109/tvog.2015.2440231.CrossRefPubMedGoogle Scholar
  20. Carnegie, K., & Rhee, T. (2015). Reducing visual discomfort with HMDs using dynamic depth of field. IEEE Computer Graphics and Applications, 35(5), 34–41.  https://doi.org/10.1109/mcg.2015.98.CrossRefPubMedGoogle Scholar
  21. Chan, J. C. P., Leung, H., Tang, J. K. T., & Komura, T. (2011). A virtual reality dance training system using motion capture technology. IEEE Transactions on Learning Technologies, 4(2), 187–195.  https://doi.org/10.1109/tlt.2010.27.CrossRefGoogle Scholar
  22. Cheung, K. L., Tunik, E., Adamovich, S. V., & Boyd, L. A. (2014). Neuroplasticity and Virtual Reality. In P. L. T. Weiss, et al. (eds.), Virtual reality for physical and motor rehabilitation, virtual reality technologies for health and clinical applications. New York: Springer.  https://doi.org/10.1007/978-1-4939-0968-1_2.
  23. Cleworth, T. W., Chua, R., Inglis, J. T., & Carpenter, M. G. (2016). Influence of virtual height exposure on postural reactions to support surface translations. Gait und Posture, 47,96–102.  https://doi.org/10.1016/j.gaitpost.2016.04.006.CrossRefGoogle Scholar
  24. Colley, A., Väyrynen, J., & Häkkila, J. (2015). Skiing in a blended virtuality – an in-the-wild experiment. AcademicMindTrek, 22–24, Tampere.  https://doi.org/10.1145/2818187.2818288.
  25. Correia, V., Araùjo, D., Cummins, A., & Craig, C. M. (2012). Perceiving and action upon spaces in a VR rugby task: Expertise effects in affordance detention and task achievement. Journal of Sport und Exercise Psychology, 32,305–321.CrossRefGoogle Scholar
  26. Covaci, A., Olivier, A. H., & Multon, F. (2015). Visual perspective and feedback guidance for VR free-throw training. IEEE Computer Graphics and Applications, 35(5), 55–65.  https://doi.org/10.1109/mcg.2015.95.CrossRefPubMedGoogle Scholar
  27. Craig, C. (2013). Understanding perception and action in sport: How can virtual reality technology help? Sports Technology, 6(4), 161–169.  https://doi.org/10.1080/19346182.2013.855224.CrossRefGoogle Scholar
  28. Craig, C. M., Bastin, J., & Montagne, G. (2011). How information guides movement: Intercepting curved free kicks in soccer. Human Movement Science, 30(5), 931–941.  https://doi.org/10.1016/j.humov.2010.08.007.CrossRefPubMedGoogle Scholar
  29. Cummins, A., & Craig, C. (2016). Design and implementation of a low cost virtual rugby decision making interactive. In Augmented Reality, Virtual Reality and Computer Graphics: Third International Conference, AVR 2016. Proceedings, Part I, Vol. 9768, 16–32, Springer Publishing.  https://doi.org/10.1007/978-3-319-40621-3_2.
  30. de Bruin, E. D., Schoene, D., Pichierri, G., & Smith, S. T. (2010). Use of virtual reality technique for the training of motor control in the elderly. Some theoretical considerations. Zeitschrift für Gerontologie und Geriatrie, 43,229–234.  https://doi.org/10.1007/s00391-010-0124-7.CrossRefPubMedGoogle Scholar
  31. Dehn, L. B., Kater, L., Piefke, M., Botsch, M., Driessen, M., & Beplo, T. (2018). Training in a comprehensive everyday-like virtual reality environment compared to computerized cognitive training for patients with depression. Computers in Human Behavior, 79,40–52.  https://doi.org/10.1016/j.chb.2017.10.019.CrossRefGoogle Scholar
  32. de Kok, I., Hough, J., Hülsmann, F., Waltemate, T., Botsch, M., Schlangen, D., & Kopp, S. (2015). Demonstrating the Dialogue System of the Intelligent Coaching Space. In C. Howes, & S. Larsson (eds.), SemDial, (S. 168–169). Gothenburg: University of Gothenburg.Google Scholar
  33. Deleuze, J., Christiaens, M., Nuyens, F., & Billieux, J. (2017). Shoot at first sight! First person shooter players display reduced reaction time and compromised inhibitory control in comparison to other video game players. Computers in Human Behavior, 72,570–576.  https://doi.org/10.1016/j.chb.2017.07.027.CrossRefGoogle Scholar
  34. Dessing, J. C., & Craig, C. M. (2010). Bending it like Beckham: How to visually fool the goalkeeper. PLoS ONE, 5(10), 1–8.  https://doi.org/10.1371/journal.pone.0013161.s004.CrossRefGoogle Scholar
  35. De Vries, A. W., Faber, G., Jonkers, I., Van Dieen, J. H., & Verschueren, S. M. P. (2018). Virtual reality balance training for elderly: similar skiing games elicit different challenges in balance training. Gait und Posture, 59,111–116.  https://doi.org/10.1016/j.gaitpost.2017.10.006.CrossRefGoogle Scholar
  36. Dhawan, A., Cummins, A., Spratford, W., Dessing, J. C., & Craig, C. (2016). Development of a Novel Immersive Interactive Virtual Reality Cricket Simulator for Cricket Batting. Proceedings of the 10th International Symposium on Computer Science in Sports (ISCSS), Advances in Intelligent Systems and Computing, 392, 203–210.  https://doi.org/10.1007/978-3-319-24560-7_26.
  37. Dörner, R., Jung, B., Grimm, P., Broll, W., & Göbel, M. (2013). Einleitung. In R. Dörner, W. Broll, P. Grimm, & B. Jung (Hrsg.), Virtual und Augmented Reality (VR/AR). Grundlagen und Methoden der Virtuellen und Augmentierten Realität (S. 1–31). Berlin: Springer.Google Scholar
  38. Dörner, R., & Steinicke, F. (2013). Wahrnehmungsaspekte von VR. In R. Dörner, W. Broll, P. Grimm, & B. Jung (Hrsg.), Virtual und Augmented Reality (VR/AR). Grundlagen und Methoden der Virtuellen und Augmentierten Realität (S. 33–63). Berlin: Springer.Google Scholar
  39. Donath, L., Rössler, R., & Faude, O. (2016). Effects of Virtual Reality training (exergaming) compared to alternative exercise training and passive control on standing balance and functional mobility in health community-dwelling seniors: A meta-analytical review. Sports Medicine, 46(9), 1293–1309.  https://doi.org/10.1007/s40279-016-0485-1.CrossRefPubMedGoogle Scholar
  40. Duque, G., Boersma, D., Loza-Diaz, G., Hassan, S., Suarez, H., Geisinger, D., et al. (2013). Effects of balance training using a virtual-reality system in older fallers. Clinical Interventions in Aging, 8,257–263.  https://doi.org/10.2147/cia.s41453.CrossRefPubMedPubMedCentralGoogle Scholar
  41. Fernandes, A. S., Feiner, S. K. (2016). Combatting VR Sickness through Subtle Dynamic Field-Of-View Modification. In: Proceedings of the IEEE Symposium on 3D User Interfaces, Greenville, SC, USA, 19–20 March 2016.  https://doi.org/10.1109/3dui.2016.7460053.
  42. Ferreira dos Santos, L., Christ, O., Mate, K., Schmidt, H., Krüger, J., & Dohle, C. (2016). Movement visualization in virtual reality rehabilitation of the lower limb: A systematic review. Biomedical Engineering OnLine, 15(3), 144.  https://doi.org/10.1186/s12938-016-0289-4.CrossRefPubMedPubMedCentralGoogle Scholar
  43. Gonzalez-Franco, M., & Lanier, J. (2017). Model of illusions and virtual reality. Frontiers in Psychology, 30(8), 1125.  https://doi.org/10.3389/fpsyg.2017.01125.CrossRefGoogle Scholar
  44. Gray, R. (2017). Transfer of training from virtual to real baseball batting. Frontiers in Psychology, 8,2183.  https://doi.org/10.3389/fpsyg.2017.02183.CrossRefPubMedPubMedCentralGoogle Scholar
  45. Grechkin, T. Y., Nguyen, T. D., Plumert, J. M., Cremer, J. F., & Kearny, J. K. (2010). How does presentation method and measurement protocol affect distance estimation in real and virtual environments? ACM Transactions on Applied Perception, 7(4), 1–18.  https://doi.org/10.1145/1823738.1823744.CrossRefGoogle Scholar
  46. Grimm, P., Herold, R., Hummel, J., & Broll, W. (2013). VR-Eingabegeräte. In R. Dörner, W. Broll, P. Grimm, & B. Jung (Hrsg.), Virtual und Augmented Reality (VR/AR). Grundlagen und Methoden der Virtuellen und Augmentierten Realität (S. 97–126). Berlin: Springer.Google Scholar
  47. Hülsmann, F., Frank, C., Schack, T., Kopp, S., & Botsch, M. (2016). Multi-Level Analysis of Motor Actions as a Basis for Effective Coaching in Virtual Reality. In P. Chung, A. Soltoggio, C. W. Dawson, Q. Meng, M. Pain, M. (eds.), Advances in Intelligent Systems and Computing. Proceedings of the 10th International Symposium on Computer Science in Sports (ISCSS) Vol. 392, S. 211–214. Cham: Springer International Publishing.Google Scholar
  48. Ida, H. (2015). Visuomotor behavior in computer-simulated display. In T. Heinen (ed.), Advances in Visual Perception Research, (S. 233–367). ISBN: 978–1-63482-455-2.Google Scholar
  49. Invitto, S., Faggiano, C., Sammarco, S., De Luca, V., & De Paolis, L. T. (2016). Haptic, Virtual Interaction and Motor Imagery: Entertainment Tools and Psychophysiological Testing. Sensors, 16(3). Pii: E394.  https://doi.org/10.3390/S.16030394.
  50. Kehoe, R., & Rice, M. (2016). Reality, virtual reality, and imagery: Quality of movement in novice dart players. British Journal of Occupational Therapy, 79(4), 244–251.  https://doi.org/10.1177/0308022615616820.CrossRefGoogle Scholar
  51. Kelly, P., Healy, A., Moran, K., & O’Connor, N. E. (2010). A virtual coaching environment for improving golf swing technique. In: SMVC 2010-ACM Workshop on Surreal Media and Virtual Cloning. Firenze, Italy. ISBN: 978–1-4503-0175-6.Google Scholar
  52. Kennedy, R. S., Lane, E., Berbaum, K. S., & Lilienthal, M. G. (1993). Simulator sickness questionnaire: An enhanced method for quantifying simulator sickness. The International Journal of Aviation Psychology, 3(3), 203–220.  https://doi.org/10.1207/s15327108ijap03033.CrossRefGoogle Scholar
  53. Kilteni, K., Groten, R., & Slater, M. (2012). The sense of embodiment in virtual reality. Presence, 21(4), 373–387.CrossRefGoogle Scholar
  54. Kojima, T., Hiyama, A., Miura, T., & Hirose, M. (2014). Training Archived Physical Skill through Immersive Virtual Environment. In D. Hutchison, T. Kanade, J. Kittler, J. M. Kleinberg, A. Kobsa, F. Mattern, J. C. Mitchell, M. Naor, O. Nierstrasz, C. P. Rangang, B. Steffen, D. Terzopulos, D. Tygar, G. Weikum, & S. Yamamoto (Eds.), Lecture notes in computer science. Human interface and the management of information. Information and knowledge in applications and services (S. 51–58). Cham: Springer International Publishing.Google Scholar
  55. Komura, T., Lau, R. W. H., Lin, M. C., Majumder, A., Manocha, D., & Xu, W. W. (2015). Virtual reality software and technology. IEEE Computer Graphics and Applications, 35(5), 20–21.  https://doi.org/10.1109/mcg.2015.102.CrossRefPubMedGoogle Scholar
  56. Lammfromm, R., & Gopher, D. (2011). Transfer of skill from a virtual reality trainer to real juggling. BIO Web of Conferences, 1,00054.  https://doi.org/10.1051/bioconf/20110100054.CrossRefGoogle Scholar
  57. LaViola, J., Jr. (2000). A discussion of cybersickness in virtual environments. ACM SIGCHI Bulletin, 32(1), 47–56.CrossRefGoogle Scholar
  58. Lee, Y., Choi, W., Lee, K., Song, C., & Lee, S. (2017). Virtual reality training with three-dimensional video games improves postural balance and lower extremity strength in community-dwelling older adults. Journal of Aging and Physical Activity, 19,1–7. https://doi.org/11.1123/apa.2015-0271.
  59. Lin, C. J., Woldegiorgis, B. H. (2015). Interaction and visual performance in stereoscopic displays: A review. Journal of Society for Information Display, 23, 319–332. https://doi.org/10.10002/jsid.378.
  60. Lin, C. J., & Woldegiorgis, B. H. (2017). Egocentric distance perception and performance of direct pointing in stereoscopic displays. Applied Ergonomics, 64,66–74. https://doi.org/10.1016/j.apergo.2017.05.007.CrossRefPubMedGoogle Scholar
  61. Lutz, O. H. M., Schmidt, H., & Krüger, J. (2015). Nutzerzentrierte Gestaltung von VR-Systemen für die motorische Neurorehabilitation. In A. Weisbecker, M. Burmester, & A. Schmidt (Hrsg.), Mensch und Computer 2015 Workshopband (S. 141–143). Stuttgart: Oldenburg Wissenschaftsverlag.Google Scholar
  62. Mieg, H. A., & Näf, M. (2005). Experteninterviews (2. Aufl.). ETH Zürich: Institut für Mensch-Umwelt-Systeme (HES).Google Scholar
  63. Miles, H. C., Pop, S. R., Watt, S. J., Lawrence, G. P., & John, N. W. (2012). A review of virtual environments for training in ball sports. Computer & Graphics, 36,714–726.CrossRefGoogle Scholar
  64. Miles, H. C., Pop, S. R., Watt, S. J., Lawrence, G. P., John, N. W., Perrot, V., Mallet, P., Mestre, D. R., & Morgan, K. (2014). Efficacy of a Virtual Environment for Training Ball Passing Skills in Rugby. In M. L. Gavrilova, C. J. Kenneth Tan, Xiaaoyang Mao, & Lichan Hong (Eds.), Transactions on Computational Science XXIII (S. 98–117). Berlin: Springer.Google Scholar
  65. Milner, A. D., & Goodale, M. A. (2008). Two visual systems re-viewed. Neuropsychologia, 46,774–785.  https://doi.org/10.1016/j.neuropsychologia.2007.10.005.CrossRefPubMedGoogle Scholar
  66. Mohler, B. J., Thompson, W. B., Creem-Regehr, S. H., Pick, H. L., Jr., & Warren, W. H., Jr. (2007). Visual flow influences gait transition speed and preferred walking speed. Experimental Brain Research, 181(2), 221–228.  https://doi.org/10.1007/s00221-007-0917-0.CrossRefPubMedGoogle Scholar
  67. Molina, K. I., Ricci, N. A., de Moraes, S. A., & Perracini, M. R. (2014). Virtual reality using games for improving physical functioning in older adults: a systematic review. Journal of NeuroEngineering and Rehabilitation, 15(11), 156.  https://doi.org/10.1186/1743-0003-11-156.CrossRefGoogle Scholar
  68. Mukherjee, M., Siu, K. C., Katsavelis, D., Fyaad, P., & Stergiou, N. (2011). The influence of visual perception of self-motion on locomotor adaptation to unilateral limb loading. Journal of Motor Behavior, 43(2), 101–111.CrossRefPubMedGoogle Scholar
  69. Neth, C. T., Souman, J. L., Engel, D., Kloos, U., Bülthoff, H. H., & Mohler, B. J. (2012). Velocity-dependent dynamic curvature gain for redirected walking. IEEE Transactions on Visualization and Computer Graphics, 18(7), 1041–1052.  https://doi.org/10.1109/tvcg.2011.275.CrossRefPubMedGoogle Scholar
  70. Petri, K., & Witte K. (2016). Virtuelle Realität im Sport: Möglichkeiten und Grenzen. In K. Witte, N. Bandow, & J. Edelmann-Nusser (Hrsg.), Sportinformatik XI (S. 125–131). Shaker Verlag. ISBN: 978–3-8440-4955-8.Google Scholar
  71. Petri, K., Mattert, S., Heinisch, P., Salb, S., Bandow, N., Emmermacher, P., Masik, S., Danneberg, M., Zhang, L., Brunnett, G., & Witte, K. (2016). Evaluation eines autonom interagierenden Gegners (AIG) in Virtueller Realität (VR) im Karate-Kumite. In K. Witte, N. Bandow, & J. Edelmann-Nusser, (Hrsg.), Sportinformatik XI (S. 143–149). Shaker Verlag. ISBN: 978–3-8440-4955-8.Google Scholar
  72. Petri, K., Witte, K., Bandow, N., Emmermacher, P., Masik, S., Danneberg, M., Salb, S., Zhang, L., & Brunnett, G. (2017). Development of an autonomous character in karate kumite. Proceedings of the 11th International Symposium on Computer Science in Sport (IACSS 2017), Advances in Intelligent Systems and Computing 663. Springer International Publishing. ISBN: 978–3-319-67845-0.  https://doi.org/10.1007/978-3-319-67846-1_13.
  73. Pietschmann, D. (2009). Das Erleben virtueller Welten. Involvierung, Immersion und Engagement in Computerspielen. Boizenburg: Hülsbusch.Google Scholar
  74. Pinder, R. A., Davids, K., Renshaw, I., & Araùjo, D. (2011). Representative learning design and functionality of research and practice in sport. Journal of Sport and Exercise Psychology, 33(1), 146–155.CrossRefPubMedGoogle Scholar
  75. Plass, J. L., Homer, B. D., & Hayward, E. O. (2009). Design factors for educationally effective animations and simulations. Journal of Computing in Higher Education, 21(1), 31–61.  https://doi.org/10.1007/s12528-009-9011-x.CrossRefGoogle Scholar
  76. Plummer, P. (2017). Gait and balance training using virtual reality is more effective for improving gait and balance ability after stroke than conventional training without virtual reality. Journal of Physiotherapy, 63,114.  https://doi.org/10.1016/j.jphys.2017.02.010.CrossRefPubMedGoogle Scholar
  77. Pronost, N., Multon, F., Li, Q., Geng, W., Kulpa, R., Domont, G. (2008). Interactive animation of virtual characters: Application to virtual kung-fu fighting. Proceedings of the International Conference on Cyberworlds, Hangzhou, China 2008.  https://doi.org/10.1109/cw.2008.33.
  78. Rauter, G., Sigrist, R., Koch, C., Crivelli, F., van Raai, M., Riener, R., & Wolf, P. (2013). Transfer of complex skill learning from virtual to real rowing. PLOS ONE, 8(12), e82145.  https://doi.org/10.1371/journal.pone.0082145.
  79. Rebenitsch, L., & Owen, C. (2016). Review on cybersickness in applications and visual displays. Virtual Reality, 20, 101–125.  https://doi.org/10.1007/S.10055-016-0285-9.
  80. Renner, R. S., Velichkovsky, B. M., & Helmert, J. R. (2013). The perception of egocentric distances in Virtual Environments – a Review. ACM Computing Surveys, 46(2), 23, 1–40.  https://doi.org/10.1145/2543581.2543590.
  81. Robert, M. T., Ballaz, L., & Lemay, M. (2016). The effect of viewing a virtual environment through a head-mounted display on balance. Gait & Posture, 48, 261–266.  https://doi.org/10.1016/j.gaitpost.2016.06.10.
  82. Ruffaldi, E., & Filippeschi, A. (2013). Structuring a virtual environment for sport training: A case study on rowing technique. Robotics and Autonomous Systems, 61,390–397.CrossRefGoogle Scholar
  83. Ruffaldi, E., Filippeschi, A., Varlet, M., Hoffmann, C., & Bardy, B. (2013). Design and evaluation of a multimodal virtual reality platform for rowing training. In M. Bergamasco, B. Bardy, & D. Gopher (eds.), Skill Training in Multimodal Virtual Environments (S. 173–186).  https://doi.org/10.1201/b12704-16.
  84. Saldana, S. J., Marsh, A. P., Rejeski, W. J., Haberl, J. K., Wu, P., Rosenthal, S., et al. (2017). Assessing balance through the use of a low-cost head-mounted display in older adults: a pilot study. Clinical Interventions in Aging, 12,1363–1370.CrossRefPubMedPubMedCentralGoogle Scholar
  85. Schubert, T. W., Friedmann, F., & Regenbrecht, H. T. (1999). Decomposing the sense of presence: Factor analytic insights. 2nd International Workshop on Presence, University of Essex, UK, 6–7 April 1999.Google Scholar
  86. Schuemie, M. J., van der Straaten, P., Krijn, M., & van der Mast, C. A. P. G. (2001). Research on presence in virtual reality: A survey. Cyber psychology & Behavior, 4(2), 183–201.  https://doi.org/10.1089/109493101300117884.CrossRefGoogle Scholar
  87. Shotton, J., Fitzgibbon, A., Cook, M., Sharp, T., Finocchio, M., Moore, R., Kipman, A., & Blake, A. (2011). Real-Time Human Pose Recognition in Parts from a Single Depth Image. Proceedings of the IEEE Conference Computer Vision and Pattern Recognition (CVPR), S. 1297–1304.Google Scholar
  88. Shotton, J., Girshick, R., Fitzgibbon, A., Sharp, T., Cook, M., Finocchio, M., et al. (2012). Efficient human pose estimation from single depth images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(12), 2821–2840.  https://doi.org/10.1109/tpami.2012.241.CrossRefGoogle Scholar
  89. Sigrist, R., Rauter, G., Marchal-Crespo, L., Riener, R., & Wolf, P. (2015). Sonification and haptic feedback in addition to visual feedback enhances complex motor task learning. Experimental Brain Research, 233(3), 909–925.  https://doi.org/10.1007/s00221-014-4167-7.CrossRefPubMedGoogle Scholar
  90. Singh, D. K. A., Rajaratnam, B. S., Palaniswamy, V., Pearson, H., Raman, V. P., & Bong, P. S. (2012). Participating in a virtual reality balance exercise program can reduce risk and fear of falls. Maturitas, 73,239–243.  https://doi.org/10.1016/.j.maturitas.2012.07.011.CrossRefPubMedGoogle Scholar
  91. Slater, M., Spanling, B., Sanchez-Vives, M. V., & Blanke, O. (2010). First person experience of body transfer in virtual reality. PLoS ONE, 5(5), e10564.  https://doi.org/10.1371/journal.pone.0010564.CrossRefPubMedPubMedCentralGoogle Scholar
  92. Steptoe, W., Steed, A., & Slater, M. (2013). Human tails: Ownership and control of extended humanoid avatars. IEEE Transactions on Visualization and Computer Graphics, 19(4), 583–590.CrossRefPubMedGoogle Scholar
  93. Storch, M., Benita, C., Hüther, G., & Tschacher, W. (2011). Embodiment – Die Wechselwirkung von Körper und Psyche verstehen und nutzen. Bern: Huber. (HOGEFE Verlagsgruppe), ISBN: 978-3-456-84837-2.Google Scholar
  94. Tanaka, K. (2017). 3D action reconstruction using virtual reality to assist training. Proceedings of IEEE Virtual Reality, 395–396.  https://doi.org/10.1109/vr.2017.7892343.
  95. Thompson, J. D., & Franz, J. R. (2017). Do kinematic metrics of walking balance adapt to perturbed optical flow? Human Movement Science, 54,34–40.  https://doi.org/10.1016/j.humov.2017.03.004.CrossRefPubMedPubMedCentralGoogle Scholar
  96. Tidoni, E., Scandola, M., Orvalho, V., Candidi, M. (2016). Apparent biological motion in first and third person perspective. I-Perception, 1–6.  https://doi.org/10.1177/204/6695/6669156.
  97. Tirp, J., Steingrover, C., Wattie, N., Baker, J., & Schorer, J. (2015). Virtual realities as optimal learning environment in sport – A transfer study of virtual and real dart throwing. Psychological Test and Assessment Modeling, 57,57–69.Google Scholar
  98. Varlet, M., Filippeschi, A., Ben-Sadun, G., Ratto, M., Marin, L., Ruffaldi, E., et al. (2013). Virtual reality as a tool to learn interpersonal coordination: Example of team rowing. Presence: Teleoperators and Virtual Environments, 22(3), 202–215.  https://doi.org/10.1162/pres_a_00151.CrossRefGoogle Scholar
  99. van der Kamp, J., Rivas, F., van Doorn, H., & Savelsbergh, G. (2008). Ventral and dorsal system contributions to visual anticipation in fast ball sports. International Journal of Sport Psychology, 39(2), 100–130.Google Scholar
  100. Vignais, N., Bideau, B., Craig, C., Brault, S., Multon, F., Delamarche, P., et al. (2009). Does the level of graphical detail of a virtual handball thrower influence goalkeeper’s motor response? Journal of Sports Science and Medicine, 8,501–508.PubMedGoogle Scholar
  101. Waltemate, T., Hülsmann, F., Pfeiffer, T., Kopp, S., Botsch, M. (2015). Realizing a Low-latency Virtual Reality Environment for Motor Learning. Proceedings of ACM Symposium on Virtual Reality Software and Technology (S. 139–147). ACM.Google Scholar
  102. Waltemate, T., Senna, I., Hülsmann, F., Rohde, M., Kopp, S., Ernst, M., & Botsch, M. (2016). The impact on perceptual judgements and motor performance in closed-loop interactions in Virtual Reality. VRST 2016 Garching, Germany. ISBN: 978–1-4503-4491-3/16/11.  https://doi.org/10.1145/2993369.2993381.
  103. Wang, J. (2012). Research on Application of Virtual Reality Technology in Competitive Sports. Procedia Engineering, 29,3659–3662.CrossRefGoogle Scholar
  104. Watson, G., Brault, S., Kulpa, R., Bideau, B., Butterfield, J., & Craig, C. (2011). Judging the „passability“ of dynamic gaps in a virtual rugby environment. Human Movement Science, 30,942–956.  https://doi.org/10.1016/j.humov.2010.08.004.CrossRefPubMedGoogle Scholar
  105. Witkowski, K., Sobecki, J., Maslinski, J., Cieslinski, W. B., Rokita, A., & Kalina, R. M. (2016). The use of augmented-reality technology to improve judo techniques. Premises, assumptions, methodology, research tools, preliminary scenarios – the first stage of the study. Archieves of Budo, 12,355–367.Google Scholar
  106. Witte, K., Emmermacher, P., Bandow, N., & Masik, S. (2012). Usage of virtual reality technology to study reactions in karate-kumite. International Journal of Sports Science and Engineering, 6(1), 017–024.Google Scholar
  107. Witte, K., Salb, S., Petri, K., Bandow, N., Emmermacher, P., Zhang, L., Brunnett, G., & Masik, S. (2016). Analysis of anticipation by integration of Eye-Tracking in virtual reality – a future method. ECSS 2016, Vienna.Google Scholar
  108. Yanovich, E., & Ronen, O. (2015). The use of virtual reality in motor learning: a multiple pilot study review. Advances in Physical Education, 5,188–193.  https://doi.org/10.4236/ape.2015.53023.CrossRefGoogle Scholar
  109. Zaal, F. T. J. M., & Bootsma, R. J. (2011). Virtual reality as a tool for the study of perception-action: The case of running to catch fly balls. Presence: Teleoperators and Virtual Environments, 20(1), 93–103.  https://doi.org/10.1162/pres_a_00037.CrossRefGoogle Scholar
  110. Zhang, L., Brunnett, G., Petri, K., Danneberg, M., Masik, S., Bandow, N., et al. (2018). KaraKter: An autonomously interacting karate kumite character for VR-based training and research. Computer & Graphics, 72,59–69.  https://doi.org/10.1016/j.cag.2018.01.008.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2018

Authors and Affiliations

  1. 1.Institut III – Philologie, Philosophie, SportwissenschaftOtto-von-Guericke-Universität MagdeburgMagdeburgDeutschland

Personalised recommendations